0
0
mirror of https://github.com/python/cpython.git synced 2024-11-21 12:59:38 +01:00

gh-125985: Add free threading scaling micro benchmarks (#125986)

These consist of a number of short snippets that help identify scaling
bottlenecks in the free threaded interpreter.

The current bottlenecks are in calling functions in benchmarks that call
functions (due to `LOAD_ATTR` not yet using deferred reference counting)
and when accessing thread-local data.
This commit is contained in:
Sam Gross 2024-10-28 17:47:23 -04:00 committed by GitHub
parent b5b06349eb
commit 00ea179879
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,324 @@
# This script runs a set of small benchmarks to help identify scaling
# bottlenecks in the free-threaded interpreter. The benchmarks consist
# of patterns that ought to scale well, but haven't in the past. This is
# typically due to reference count contention or lock contention.
#
# This is not intended to be a general multithreading benchmark suite, nor
# are the benchmarks intended to be representative of real-world workloads.
#
# On Linux, to avoid confounding hardware effects, the script attempts to:
# * Use a single CPU socket (to avoid NUMA effects)
# * Use distinct physical cores (to avoid hyperthreading/SMT effects)
# * Use "performance" cores (Intel, ARM) on CPUs that have performance and
# efficiency cores
#
# It also helps to disable dynamic frequency scaling (i.e., "Turbo Boost")
#
# Intel:
# > echo "1" | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo
#
# AMD:
# > echo "0" | sudo tee /sys/devices/system/cpu/cpufreq/boost
#
import math
import os
import queue
import sys
import threading
import time
# The iterations in individual benchmarks are scaled by this factor.
WORK_SCALE = 100
ALL_BENCHMARKS = {}
threads = []
in_queues = []
out_queues = []
def register_benchmark(func):
ALL_BENCHMARKS[func.__name__] = func
return func
@register_benchmark
def object_cfunction():
accu = 0
tab = [1] * 100
for i in range(1000 * WORK_SCALE):
tab.pop(0)
tab.append(i)
accu += tab[50]
return accu
@register_benchmark
def cmodule_function():
for i in range(1000 * WORK_SCALE):
math.floor(i * i)
@register_benchmark
def mult_constant():
x = 1.0
for i in range(3000 * WORK_SCALE):
x *= 1.01
def simple_gen():
for i in range(10):
yield i
@register_benchmark
def generator():
accu = 0
for i in range(100 * WORK_SCALE):
for v in simple_gen():
accu += v
return accu
class Counter:
def __init__(self):
self.i = 0
def next_number(self):
self.i += 1
return self.i
@register_benchmark
def pymethod():
c = Counter()
for i in range(1000 * WORK_SCALE):
c.next_number()
return c.i
def next_number(i):
return i + 1
@register_benchmark
def pyfunction():
accu = 0
for i in range(1000 * WORK_SCALE):
accu = next_number(i)
return accu
def double(x):
return x + x
module = sys.modules[__name__]
@register_benchmark
def module_function():
total = 0
for i in range(1000 * WORK_SCALE):
total += module.double(i)
return total
class MyObject:
pass
@register_benchmark
def load_string_const():
accu = 0
for i in range(1000 * WORK_SCALE):
if i == 'a string':
accu += 7
else:
accu += 1
return accu
@register_benchmark
def load_tuple_const():
accu = 0
for i in range(1000 * WORK_SCALE):
if i == (1, 2):
accu += 7
else:
accu += 1
return accu
@register_benchmark
def create_pyobject():
for i in range(1000 * WORK_SCALE):
o = MyObject()
@register_benchmark
def create_closure():
for i in range(1000 * WORK_SCALE):
def foo(x):
return x
foo(i)
@register_benchmark
def create_dict():
for i in range(1000 * WORK_SCALE):
d = {
"key": "value",
}
thread_local = threading.local()
@register_benchmark
def thread_local_read():
tmp = thread_local
tmp.x = 10
for i in range(500 * WORK_SCALE):
_ = tmp.x
_ = tmp.x
_ = tmp.x
_ = tmp.x
_ = tmp.x
def bench_one_thread(func):
t0 = time.perf_counter_ns()
func()
t1 = time.perf_counter_ns()
return t1 - t0
def bench_parallel(func):
t0 = time.perf_counter_ns()
for inq in in_queues:
inq.put(func)
for outq in out_queues:
outq.get()
t1 = time.perf_counter_ns()
return t1 - t0
def benchmark(func):
delta_one_thread = bench_one_thread(func)
delta_many_threads = bench_parallel(func)
speedup = delta_one_thread * len(threads) / delta_many_threads
if speedup >= 1:
factor = speedup
direction = "faster"
else:
factor = 1 / speedup
direction = "slower"
use_color = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty()
color = reset_color = ""
if use_color:
if speedup <= 1.1:
color = "\x1b[31m" # red
elif speedup < len(threads)/2:
color = "\x1b[33m" # yellow
reset_color = "\x1b[0m"
print(f"{color}{func.__name__:<18} {round(factor, 1):>4}x {direction}{reset_color}")
def determine_num_threads_and_affinity():
if sys.platform != "linux":
return [None] * os.cpu_count()
# Try to use `lscpu -p` on Linux
import subprocess
try:
output = subprocess.check_output(["lscpu", "-p=cpu,node,core,MAXMHZ"],
text=True, env={"LC_NUMERIC": "C"})
except (FileNotFoundError, subprocess.CalledProcessError):
return [None] * os.cpu_count()
table = []
for line in output.splitlines():
if line.startswith("#"):
continue
cpu, node, core, maxhz = line.split(",")
if maxhz == "":
maxhz = "0"
table.append((int(cpu), int(node), int(core), float(maxhz)))
cpus = []
cores = set()
max_mhz_all = max(row[3] for row in table)
for cpu, node, core, maxmhz in table:
# Choose only CPUs on the same node, unique cores, and try to avoid
# "efficiency" cores.
if node == 0 and core not in cores and maxmhz == max_mhz_all:
cpus.append(cpu)
cores.add(core)
return cpus
def thread_run(cpu, in_queue, out_queue):
if cpu is not None and hasattr(os, "sched_setaffinity"):
# Set the affinity for the current thread
os.sched_setaffinity(0, (cpu,))
while True:
func = in_queue.get()
if func is None:
break
func()
out_queue.put(None)
def initialize_threads(opts):
if opts.threads == -1:
cpus = determine_num_threads_and_affinity()
else:
cpus = [None] * opts.threads # don't set affinity
print(f"Running benchmarks with {len(cpus)} threads")
for cpu in cpus:
inq = queue.Queue()
outq = queue.Queue()
in_queues.append(inq)
out_queues.append(outq)
t = threading.Thread(target=thread_run, args=(cpu, inq, outq), daemon=True)
threads.append(t)
t.start()
def main(opts):
global WORK_SCALE
if not hasattr(sys, "_is_gil_enabled") or sys._is_gil_enabled():
sys.stderr.write("expected to be run with the GIL disabled\n")
benchmark_names = opts.benchmarks
if benchmark_names:
for name in benchmark_names:
if name not in ALL_BENCHMARKS:
sys.stderr.write(f"Unknown benchmark: {name}\n")
sys.exit(1)
else:
benchmark_names = ALL_BENCHMARKS.keys()
WORK_SCALE = opts.scale
if not opts.baseline_only:
initialize_threads(opts)
do_bench = not opts.baseline_only and not opts.parallel_only
for name in benchmark_names:
func = ALL_BENCHMARKS[name]
if do_bench:
benchmark(func)
continue
if opts.parallel_only:
delta_ns = bench_parallel(func)
else:
delta_ns = bench_one_thread(func)
time_ms = delta_ns / 1_000_000
print(f"{func.__name__:<18} {time_ms:.1f} ms")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--threads", type=int, default=-1,
help="number of threads to use")
parser.add_argument("--scale", type=int, default=100,
help="work scale factor for the benchmark (default=100)")
parser.add_argument("--baseline-only", default=False, action="store_true",
help="only run the baseline benchmarks (single thread)")
parser.add_argument("--parallel-only", default=False, action="store_true",
help="only run the parallel benchmark (many threads)")
parser.add_argument("benchmarks", nargs="*",
help="benchmarks to run")
options = parser.parse_args()
main(options)