mirror of
https://github.com/python/cpython.git
synced 2024-11-21 12:59:38 +01:00
gh-125985: Add free threading scaling micro benchmarks (#125986)
These consist of a number of short snippets that help identify scaling bottlenecks in the free threaded interpreter. The current bottlenecks are in calling functions in benchmarks that call functions (due to `LOAD_ATTR` not yet using deferred reference counting) and when accessing thread-local data.
This commit is contained in:
parent
b5b06349eb
commit
00ea179879
324
Tools/ftscalingbench/ftscalingbench.py
Normal file
324
Tools/ftscalingbench/ftscalingbench.py
Normal file
@ -0,0 +1,324 @@
|
||||
# This script runs a set of small benchmarks to help identify scaling
|
||||
# bottlenecks in the free-threaded interpreter. The benchmarks consist
|
||||
# of patterns that ought to scale well, but haven't in the past. This is
|
||||
# typically due to reference count contention or lock contention.
|
||||
#
|
||||
# This is not intended to be a general multithreading benchmark suite, nor
|
||||
# are the benchmarks intended to be representative of real-world workloads.
|
||||
#
|
||||
# On Linux, to avoid confounding hardware effects, the script attempts to:
|
||||
# * Use a single CPU socket (to avoid NUMA effects)
|
||||
# * Use distinct physical cores (to avoid hyperthreading/SMT effects)
|
||||
# * Use "performance" cores (Intel, ARM) on CPUs that have performance and
|
||||
# efficiency cores
|
||||
#
|
||||
# It also helps to disable dynamic frequency scaling (i.e., "Turbo Boost")
|
||||
#
|
||||
# Intel:
|
||||
# > echo "1" | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo
|
||||
#
|
||||
# AMD:
|
||||
# > echo "0" | sudo tee /sys/devices/system/cpu/cpufreq/boost
|
||||
#
|
||||
|
||||
import math
|
||||
import os
|
||||
import queue
|
||||
import sys
|
||||
import threading
|
||||
import time
|
||||
|
||||
# The iterations in individual benchmarks are scaled by this factor.
|
||||
WORK_SCALE = 100
|
||||
|
||||
ALL_BENCHMARKS = {}
|
||||
|
||||
threads = []
|
||||
in_queues = []
|
||||
out_queues = []
|
||||
|
||||
|
||||
def register_benchmark(func):
|
||||
ALL_BENCHMARKS[func.__name__] = func
|
||||
return func
|
||||
|
||||
@register_benchmark
|
||||
def object_cfunction():
|
||||
accu = 0
|
||||
tab = [1] * 100
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
tab.pop(0)
|
||||
tab.append(i)
|
||||
accu += tab[50]
|
||||
return accu
|
||||
|
||||
@register_benchmark
|
||||
def cmodule_function():
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
math.floor(i * i)
|
||||
|
||||
@register_benchmark
|
||||
def mult_constant():
|
||||
x = 1.0
|
||||
for i in range(3000 * WORK_SCALE):
|
||||
x *= 1.01
|
||||
|
||||
def simple_gen():
|
||||
for i in range(10):
|
||||
yield i
|
||||
|
||||
@register_benchmark
|
||||
def generator():
|
||||
accu = 0
|
||||
for i in range(100 * WORK_SCALE):
|
||||
for v in simple_gen():
|
||||
accu += v
|
||||
return accu
|
||||
|
||||
class Counter:
|
||||
def __init__(self):
|
||||
self.i = 0
|
||||
|
||||
def next_number(self):
|
||||
self.i += 1
|
||||
return self.i
|
||||
|
||||
@register_benchmark
|
||||
def pymethod():
|
||||
c = Counter()
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
c.next_number()
|
||||
return c.i
|
||||
|
||||
def next_number(i):
|
||||
return i + 1
|
||||
|
||||
@register_benchmark
|
||||
def pyfunction():
|
||||
accu = 0
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
accu = next_number(i)
|
||||
return accu
|
||||
|
||||
def double(x):
|
||||
return x + x
|
||||
|
||||
module = sys.modules[__name__]
|
||||
|
||||
@register_benchmark
|
||||
def module_function():
|
||||
total = 0
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
total += module.double(i)
|
||||
return total
|
||||
|
||||
class MyObject:
|
||||
pass
|
||||
|
||||
@register_benchmark
|
||||
def load_string_const():
|
||||
accu = 0
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
if i == 'a string':
|
||||
accu += 7
|
||||
else:
|
||||
accu += 1
|
||||
return accu
|
||||
|
||||
@register_benchmark
|
||||
def load_tuple_const():
|
||||
accu = 0
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
if i == (1, 2):
|
||||
accu += 7
|
||||
else:
|
||||
accu += 1
|
||||
return accu
|
||||
|
||||
@register_benchmark
|
||||
def create_pyobject():
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
o = MyObject()
|
||||
|
||||
@register_benchmark
|
||||
def create_closure():
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
def foo(x):
|
||||
return x
|
||||
foo(i)
|
||||
|
||||
@register_benchmark
|
||||
def create_dict():
|
||||
for i in range(1000 * WORK_SCALE):
|
||||
d = {
|
||||
"key": "value",
|
||||
}
|
||||
|
||||
thread_local = threading.local()
|
||||
|
||||
@register_benchmark
|
||||
def thread_local_read():
|
||||
tmp = thread_local
|
||||
tmp.x = 10
|
||||
for i in range(500 * WORK_SCALE):
|
||||
_ = tmp.x
|
||||
_ = tmp.x
|
||||
_ = tmp.x
|
||||
_ = tmp.x
|
||||
_ = tmp.x
|
||||
|
||||
|
||||
def bench_one_thread(func):
|
||||
t0 = time.perf_counter_ns()
|
||||
func()
|
||||
t1 = time.perf_counter_ns()
|
||||
return t1 - t0
|
||||
|
||||
|
||||
def bench_parallel(func):
|
||||
t0 = time.perf_counter_ns()
|
||||
for inq in in_queues:
|
||||
inq.put(func)
|
||||
for outq in out_queues:
|
||||
outq.get()
|
||||
t1 = time.perf_counter_ns()
|
||||
return t1 - t0
|
||||
|
||||
|
||||
def benchmark(func):
|
||||
delta_one_thread = bench_one_thread(func)
|
||||
delta_many_threads = bench_parallel(func)
|
||||
|
||||
speedup = delta_one_thread * len(threads) / delta_many_threads
|
||||
if speedup >= 1:
|
||||
factor = speedup
|
||||
direction = "faster"
|
||||
else:
|
||||
factor = 1 / speedup
|
||||
direction = "slower"
|
||||
|
||||
use_color = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty()
|
||||
color = reset_color = ""
|
||||
if use_color:
|
||||
if speedup <= 1.1:
|
||||
color = "\x1b[31m" # red
|
||||
elif speedup < len(threads)/2:
|
||||
color = "\x1b[33m" # yellow
|
||||
reset_color = "\x1b[0m"
|
||||
|
||||
print(f"{color}{func.__name__:<18} {round(factor, 1):>4}x {direction}{reset_color}")
|
||||
|
||||
def determine_num_threads_and_affinity():
|
||||
if sys.platform != "linux":
|
||||
return [None] * os.cpu_count()
|
||||
|
||||
# Try to use `lscpu -p` on Linux
|
||||
import subprocess
|
||||
try:
|
||||
output = subprocess.check_output(["lscpu", "-p=cpu,node,core,MAXMHZ"],
|
||||
text=True, env={"LC_NUMERIC": "C"})
|
||||
except (FileNotFoundError, subprocess.CalledProcessError):
|
||||
return [None] * os.cpu_count()
|
||||
|
||||
table = []
|
||||
for line in output.splitlines():
|
||||
if line.startswith("#"):
|
||||
continue
|
||||
cpu, node, core, maxhz = line.split(",")
|
||||
if maxhz == "":
|
||||
maxhz = "0"
|
||||
table.append((int(cpu), int(node), int(core), float(maxhz)))
|
||||
|
||||
cpus = []
|
||||
cores = set()
|
||||
max_mhz_all = max(row[3] for row in table)
|
||||
for cpu, node, core, maxmhz in table:
|
||||
# Choose only CPUs on the same node, unique cores, and try to avoid
|
||||
# "efficiency" cores.
|
||||
if node == 0 and core not in cores and maxmhz == max_mhz_all:
|
||||
cpus.append(cpu)
|
||||
cores.add(core)
|
||||
return cpus
|
||||
|
||||
|
||||
def thread_run(cpu, in_queue, out_queue):
|
||||
if cpu is not None and hasattr(os, "sched_setaffinity"):
|
||||
# Set the affinity for the current thread
|
||||
os.sched_setaffinity(0, (cpu,))
|
||||
|
||||
while True:
|
||||
func = in_queue.get()
|
||||
if func is None:
|
||||
break
|
||||
func()
|
||||
out_queue.put(None)
|
||||
|
||||
|
||||
def initialize_threads(opts):
|
||||
if opts.threads == -1:
|
||||
cpus = determine_num_threads_and_affinity()
|
||||
else:
|
||||
cpus = [None] * opts.threads # don't set affinity
|
||||
|
||||
print(f"Running benchmarks with {len(cpus)} threads")
|
||||
for cpu in cpus:
|
||||
inq = queue.Queue()
|
||||
outq = queue.Queue()
|
||||
in_queues.append(inq)
|
||||
out_queues.append(outq)
|
||||
t = threading.Thread(target=thread_run, args=(cpu, inq, outq), daemon=True)
|
||||
threads.append(t)
|
||||
t.start()
|
||||
|
||||
|
||||
def main(opts):
|
||||
global WORK_SCALE
|
||||
if not hasattr(sys, "_is_gil_enabled") or sys._is_gil_enabled():
|
||||
sys.stderr.write("expected to be run with the GIL disabled\n")
|
||||
|
||||
benchmark_names = opts.benchmarks
|
||||
if benchmark_names:
|
||||
for name in benchmark_names:
|
||||
if name not in ALL_BENCHMARKS:
|
||||
sys.stderr.write(f"Unknown benchmark: {name}\n")
|
||||
sys.exit(1)
|
||||
else:
|
||||
benchmark_names = ALL_BENCHMARKS.keys()
|
||||
|
||||
WORK_SCALE = opts.scale
|
||||
|
||||
if not opts.baseline_only:
|
||||
initialize_threads(opts)
|
||||
|
||||
do_bench = not opts.baseline_only and not opts.parallel_only
|
||||
for name in benchmark_names:
|
||||
func = ALL_BENCHMARKS[name]
|
||||
if do_bench:
|
||||
benchmark(func)
|
||||
continue
|
||||
|
||||
if opts.parallel_only:
|
||||
delta_ns = bench_parallel(func)
|
||||
else:
|
||||
delta_ns = bench_one_thread(func)
|
||||
|
||||
time_ms = delta_ns / 1_000_000
|
||||
print(f"{func.__name__:<18} {time_ms:.1f} ms")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("-t", "--threads", type=int, default=-1,
|
||||
help="number of threads to use")
|
||||
parser.add_argument("--scale", type=int, default=100,
|
||||
help="work scale factor for the benchmark (default=100)")
|
||||
parser.add_argument("--baseline-only", default=False, action="store_true",
|
||||
help="only run the baseline benchmarks (single thread)")
|
||||
parser.add_argument("--parallel-only", default=False, action="store_true",
|
||||
help="only run the parallel benchmark (many threads)")
|
||||
parser.add_argument("benchmarks", nargs="*",
|
||||
help="benchmarks to run")
|
||||
options = parser.parse_args()
|
||||
main(options)
|
Loading…
Reference in New Issue
Block a user