diff --git a/Tools/ftscalingbench/ftscalingbench.py b/Tools/ftscalingbench/ftscalingbench.py new file mode 100644 index 00000000000..767aeae9349 --- /dev/null +++ b/Tools/ftscalingbench/ftscalingbench.py @@ -0,0 +1,324 @@ +# This script runs a set of small benchmarks to help identify scaling +# bottlenecks in the free-threaded interpreter. The benchmarks consist +# of patterns that ought to scale well, but haven't in the past. This is +# typically due to reference count contention or lock contention. +# +# This is not intended to be a general multithreading benchmark suite, nor +# are the benchmarks intended to be representative of real-world workloads. +# +# On Linux, to avoid confounding hardware effects, the script attempts to: +# * Use a single CPU socket (to avoid NUMA effects) +# * Use distinct physical cores (to avoid hyperthreading/SMT effects) +# * Use "performance" cores (Intel, ARM) on CPUs that have performance and +# efficiency cores +# +# It also helps to disable dynamic frequency scaling (i.e., "Turbo Boost") +# +# Intel: +# > echo "1" | sudo tee /sys/devices/system/cpu/intel_pstate/no_turbo +# +# AMD: +# > echo "0" | sudo tee /sys/devices/system/cpu/cpufreq/boost +# + +import math +import os +import queue +import sys +import threading +import time + +# The iterations in individual benchmarks are scaled by this factor. +WORK_SCALE = 100 + +ALL_BENCHMARKS = {} + +threads = [] +in_queues = [] +out_queues = [] + + +def register_benchmark(func): + ALL_BENCHMARKS[func.__name__] = func + return func + +@register_benchmark +def object_cfunction(): + accu = 0 + tab = [1] * 100 + for i in range(1000 * WORK_SCALE): + tab.pop(0) + tab.append(i) + accu += tab[50] + return accu + +@register_benchmark +def cmodule_function(): + for i in range(1000 * WORK_SCALE): + math.floor(i * i) + +@register_benchmark +def mult_constant(): + x = 1.0 + for i in range(3000 * WORK_SCALE): + x *= 1.01 + +def simple_gen(): + for i in range(10): + yield i + +@register_benchmark +def generator(): + accu = 0 + for i in range(100 * WORK_SCALE): + for v in simple_gen(): + accu += v + return accu + +class Counter: + def __init__(self): + self.i = 0 + + def next_number(self): + self.i += 1 + return self.i + +@register_benchmark +def pymethod(): + c = Counter() + for i in range(1000 * WORK_SCALE): + c.next_number() + return c.i + +def next_number(i): + return i + 1 + +@register_benchmark +def pyfunction(): + accu = 0 + for i in range(1000 * WORK_SCALE): + accu = next_number(i) + return accu + +def double(x): + return x + x + +module = sys.modules[__name__] + +@register_benchmark +def module_function(): + total = 0 + for i in range(1000 * WORK_SCALE): + total += module.double(i) + return total + +class MyObject: + pass + +@register_benchmark +def load_string_const(): + accu = 0 + for i in range(1000 * WORK_SCALE): + if i == 'a string': + accu += 7 + else: + accu += 1 + return accu + +@register_benchmark +def load_tuple_const(): + accu = 0 + for i in range(1000 * WORK_SCALE): + if i == (1, 2): + accu += 7 + else: + accu += 1 + return accu + +@register_benchmark +def create_pyobject(): + for i in range(1000 * WORK_SCALE): + o = MyObject() + +@register_benchmark +def create_closure(): + for i in range(1000 * WORK_SCALE): + def foo(x): + return x + foo(i) + +@register_benchmark +def create_dict(): + for i in range(1000 * WORK_SCALE): + d = { + "key": "value", + } + +thread_local = threading.local() + +@register_benchmark +def thread_local_read(): + tmp = thread_local + tmp.x = 10 + for i in range(500 * WORK_SCALE): + _ = tmp.x + _ = tmp.x + _ = tmp.x + _ = tmp.x + _ = tmp.x + + +def bench_one_thread(func): + t0 = time.perf_counter_ns() + func() + t1 = time.perf_counter_ns() + return t1 - t0 + + +def bench_parallel(func): + t0 = time.perf_counter_ns() + for inq in in_queues: + inq.put(func) + for outq in out_queues: + outq.get() + t1 = time.perf_counter_ns() + return t1 - t0 + + +def benchmark(func): + delta_one_thread = bench_one_thread(func) + delta_many_threads = bench_parallel(func) + + speedup = delta_one_thread * len(threads) / delta_many_threads + if speedup >= 1: + factor = speedup + direction = "faster" + else: + factor = 1 / speedup + direction = "slower" + + use_color = hasattr(sys.stdout, 'isatty') and sys.stdout.isatty() + color = reset_color = "" + if use_color: + if speedup <= 1.1: + color = "\x1b[31m" # red + elif speedup < len(threads)/2: + color = "\x1b[33m" # yellow + reset_color = "\x1b[0m" + + print(f"{color}{func.__name__:<18} {round(factor, 1):>4}x {direction}{reset_color}") + +def determine_num_threads_and_affinity(): + if sys.platform != "linux": + return [None] * os.cpu_count() + + # Try to use `lscpu -p` on Linux + import subprocess + try: + output = subprocess.check_output(["lscpu", "-p=cpu,node,core,MAXMHZ"], + text=True, env={"LC_NUMERIC": "C"}) + except (FileNotFoundError, subprocess.CalledProcessError): + return [None] * os.cpu_count() + + table = [] + for line in output.splitlines(): + if line.startswith("#"): + continue + cpu, node, core, maxhz = line.split(",") + if maxhz == "": + maxhz = "0" + table.append((int(cpu), int(node), int(core), float(maxhz))) + + cpus = [] + cores = set() + max_mhz_all = max(row[3] for row in table) + for cpu, node, core, maxmhz in table: + # Choose only CPUs on the same node, unique cores, and try to avoid + # "efficiency" cores. + if node == 0 and core not in cores and maxmhz == max_mhz_all: + cpus.append(cpu) + cores.add(core) + return cpus + + +def thread_run(cpu, in_queue, out_queue): + if cpu is not None and hasattr(os, "sched_setaffinity"): + # Set the affinity for the current thread + os.sched_setaffinity(0, (cpu,)) + + while True: + func = in_queue.get() + if func is None: + break + func() + out_queue.put(None) + + +def initialize_threads(opts): + if opts.threads == -1: + cpus = determine_num_threads_and_affinity() + else: + cpus = [None] * opts.threads # don't set affinity + + print(f"Running benchmarks with {len(cpus)} threads") + for cpu in cpus: + inq = queue.Queue() + outq = queue.Queue() + in_queues.append(inq) + out_queues.append(outq) + t = threading.Thread(target=thread_run, args=(cpu, inq, outq), daemon=True) + threads.append(t) + t.start() + + +def main(opts): + global WORK_SCALE + if not hasattr(sys, "_is_gil_enabled") or sys._is_gil_enabled(): + sys.stderr.write("expected to be run with the GIL disabled\n") + + benchmark_names = opts.benchmarks + if benchmark_names: + for name in benchmark_names: + if name not in ALL_BENCHMARKS: + sys.stderr.write(f"Unknown benchmark: {name}\n") + sys.exit(1) + else: + benchmark_names = ALL_BENCHMARKS.keys() + + WORK_SCALE = opts.scale + + if not opts.baseline_only: + initialize_threads(opts) + + do_bench = not opts.baseline_only and not opts.parallel_only + for name in benchmark_names: + func = ALL_BENCHMARKS[name] + if do_bench: + benchmark(func) + continue + + if opts.parallel_only: + delta_ns = bench_parallel(func) + else: + delta_ns = bench_one_thread(func) + + time_ms = delta_ns / 1_000_000 + print(f"{func.__name__:<18} {time_ms:.1f} ms") + + +if __name__ == "__main__": + import argparse + + parser = argparse.ArgumentParser() + parser.add_argument("-t", "--threads", type=int, default=-1, + help="number of threads to use") + parser.add_argument("--scale", type=int, default=100, + help="work scale factor for the benchmark (default=100)") + parser.add_argument("--baseline-only", default=False, action="store_true", + help="only run the baseline benchmarks (single thread)") + parser.add_argument("--parallel-only", default=False, action="store_true", + help="only run the parallel benchmark (many threads)") + parser.add_argument("benchmarks", nargs="*", + help="benchmarks to run") + options = parser.parse_args() + main(options)