mirror of
https://github.com/sqlite/sqlite.git
synced 2024-11-24 16:18:08 +01:00
3f80dbd51e
FossilOrigin-Name: d5523c77fd0bcdc8344971a116d6ce9657f2b6daddeb7d936cd7607163a36744
621 lines
17 KiB
C
621 lines
17 KiB
C
/*
|
|
** 2011 Jun 13
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
******************************************************************************
|
|
**
|
|
** This file is not part of the production FTS code. It is only used for
|
|
** testing. It contains a Tcl command that can be used to test if a document
|
|
** matches an FTS NEAR expression.
|
|
**
|
|
** As of March 2012, it also contains a version 1 tokenizer used for testing
|
|
** that the sqlite3_tokenizer_module.xLanguage() method is invoked correctly.
|
|
*/
|
|
|
|
#include "tclsqlite.h"
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#if defined(SQLITE_TEST)
|
|
#if defined(SQLITE_ENABLE_FTS3) || defined(SQLITE_ENABLE_FTS4)
|
|
|
|
/* Required so that the "ifdef SQLITE_ENABLE_FTS3" below works */
|
|
#include "fts3Int.h"
|
|
|
|
#define NM_MAX_TOKEN 12
|
|
|
|
typedef struct NearPhrase NearPhrase;
|
|
typedef struct NearDocument NearDocument;
|
|
typedef struct NearToken NearToken;
|
|
|
|
struct NearDocument {
|
|
int nToken; /* Length of token in bytes */
|
|
NearToken *aToken; /* Token array */
|
|
};
|
|
|
|
struct NearToken {
|
|
int n; /* Length of token in bytes */
|
|
const char *z; /* Pointer to token string */
|
|
};
|
|
|
|
struct NearPhrase {
|
|
int nNear; /* Preceding NEAR value */
|
|
int nToken; /* Number of tokens in this phrase */
|
|
NearToken aToken[NM_MAX_TOKEN]; /* Array of tokens in this phrase */
|
|
};
|
|
|
|
static int nm_phrase_match(
|
|
NearPhrase *p,
|
|
NearToken *aToken
|
|
){
|
|
int ii;
|
|
|
|
for(ii=0; ii<p->nToken; ii++){
|
|
NearToken *pToken = &p->aToken[ii];
|
|
if( pToken->n>0 && pToken->z[pToken->n-1]=='*' ){
|
|
if( aToken[ii].n<(pToken->n-1) ) return 0;
|
|
if( memcmp(aToken[ii].z, pToken->z, pToken->n-1) ) return 0;
|
|
}else{
|
|
if( aToken[ii].n!=pToken->n ) return 0;
|
|
if( memcmp(aToken[ii].z, pToken->z, pToken->n) ) return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int nm_near_chain(
|
|
int iDir, /* Direction to iterate through aPhrase[] */
|
|
NearDocument *pDoc, /* Document to match against */
|
|
int iPos, /* Position at which iPhrase was found */
|
|
int nPhrase, /* Size of phrase array */
|
|
NearPhrase *aPhrase, /* Phrase array */
|
|
int iPhrase /* Index of phrase found */
|
|
){
|
|
int iStart;
|
|
int iStop;
|
|
int ii;
|
|
int nNear;
|
|
int iPhrase2;
|
|
NearPhrase *p;
|
|
NearPhrase *pPrev;
|
|
|
|
assert( iDir==1 || iDir==-1 );
|
|
|
|
if( iDir==1 ){
|
|
if( (iPhrase+1)==nPhrase ) return 1;
|
|
nNear = aPhrase[iPhrase+1].nNear;
|
|
}else{
|
|
if( iPhrase==0 ) return 1;
|
|
nNear = aPhrase[iPhrase].nNear;
|
|
}
|
|
pPrev = &aPhrase[iPhrase];
|
|
iPhrase2 = iPhrase+iDir;
|
|
p = &aPhrase[iPhrase2];
|
|
|
|
iStart = iPos - nNear - p->nToken;
|
|
iStop = iPos + nNear + pPrev->nToken;
|
|
|
|
if( iStart<0 ) iStart = 0;
|
|
if( iStop > pDoc->nToken - p->nToken ) iStop = pDoc->nToken - p->nToken;
|
|
|
|
for(ii=iStart; ii<=iStop; ii++){
|
|
if( nm_phrase_match(p, &pDoc->aToken[ii]) ){
|
|
if( nm_near_chain(iDir, pDoc, ii, nPhrase, aPhrase, iPhrase2) ) return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nm_match_count(
|
|
NearDocument *pDoc, /* Document to match against */
|
|
int nPhrase, /* Size of phrase array */
|
|
NearPhrase *aPhrase, /* Phrase array */
|
|
int iPhrase /* Index of phrase to count matches for */
|
|
){
|
|
int nOcc = 0;
|
|
int ii;
|
|
NearPhrase *p = &aPhrase[iPhrase];
|
|
|
|
for(ii=0; ii<(pDoc->nToken + 1 - p->nToken); ii++){
|
|
if( nm_phrase_match(p, &pDoc->aToken[ii]) ){
|
|
/* Test forward NEAR chain (i>iPhrase) */
|
|
if( 0==nm_near_chain(1, pDoc, ii, nPhrase, aPhrase, iPhrase) ) continue;
|
|
|
|
/* Test reverse NEAR chain (i<iPhrase) */
|
|
if( 0==nm_near_chain(-1, pDoc, ii, nPhrase, aPhrase, iPhrase) ) continue;
|
|
|
|
/* This is a real match. Increment the counter. */
|
|
nOcc++;
|
|
}
|
|
}
|
|
|
|
return nOcc;
|
|
}
|
|
|
|
/*
|
|
** Tclcmd: fts3_near_match DOCUMENT EXPR ?OPTIONS?
|
|
*/
|
|
static int SQLITE_TCLAPI fts3_near_match_cmd(
|
|
ClientData clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
int nTotal = 0;
|
|
int rc;
|
|
int ii;
|
|
int nPhrase;
|
|
NearPhrase *aPhrase = 0;
|
|
NearDocument doc = {0, 0};
|
|
Tcl_Obj **apDocToken;
|
|
Tcl_Obj *pRet;
|
|
Tcl_Obj *pPhrasecount = 0;
|
|
|
|
Tcl_Obj **apExprToken;
|
|
Tcl_Size nExprToken;
|
|
Tcl_Size nn;
|
|
|
|
UNUSED_PARAMETER(clientData);
|
|
|
|
/* Must have 3 or more arguments. */
|
|
if( objc<3 || (objc%2)==0 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "DOCUMENT EXPR ?OPTION VALUE?...");
|
|
rc = TCL_ERROR;
|
|
goto near_match_out;
|
|
}
|
|
|
|
for(ii=3; ii<objc; ii+=2){
|
|
enum NM_enum { NM_PHRASECOUNTS };
|
|
struct TestnmSubcmd {
|
|
char *zName;
|
|
enum NM_enum eOpt;
|
|
} aOpt[] = {
|
|
{ "-phrasecountvar", NM_PHRASECOUNTS },
|
|
{ 0, 0 }
|
|
};
|
|
int iOpt;
|
|
if( Tcl_GetIndexFromObjStruct(
|
|
interp, objv[ii], aOpt, sizeof(aOpt[0]), "option", 0, &iOpt)
|
|
){
|
|
return TCL_ERROR;
|
|
}
|
|
|
|
switch( aOpt[iOpt].eOpt ){
|
|
case NM_PHRASECOUNTS:
|
|
pPhrasecount = objv[ii+1];
|
|
break;
|
|
}
|
|
}
|
|
|
|
rc = Tcl_ListObjGetElements(interp, objv[1], &nn, &apDocToken);
|
|
doc.nToken = (int)nn;
|
|
if( rc!=TCL_OK ) goto near_match_out;
|
|
doc.aToken = (NearToken *)ckalloc(doc.nToken*sizeof(NearToken));
|
|
for(ii=0; ii<doc.nToken; ii++){
|
|
doc.aToken[ii].z = Tcl_GetStringFromObj(apDocToken[ii], &nn);
|
|
doc.aToken[ii].n = (int)nn;
|
|
}
|
|
|
|
rc = Tcl_ListObjGetElements(interp, objv[2], &nExprToken, &apExprToken);
|
|
if( rc!=TCL_OK ) goto near_match_out;
|
|
|
|
nPhrase = (int)(nExprToken + 1) / 2;
|
|
aPhrase = (NearPhrase *)ckalloc(nPhrase * sizeof(NearPhrase));
|
|
memset(aPhrase, 0, nPhrase * sizeof(NearPhrase));
|
|
for(ii=0; ii<nPhrase; ii++){
|
|
Tcl_Obj *pPhrase = apExprToken[ii*2];
|
|
Tcl_Obj **apToken;
|
|
Tcl_Size nToken;
|
|
int jj;
|
|
|
|
rc = Tcl_ListObjGetElements(interp, pPhrase, &nToken, &apToken);
|
|
if( rc!=TCL_OK ) goto near_match_out;
|
|
if( nToken>NM_MAX_TOKEN ){
|
|
Tcl_AppendResult(interp, "Too many tokens in phrase", 0);
|
|
rc = TCL_ERROR;
|
|
goto near_match_out;
|
|
}
|
|
for(jj=0; jj<(int)nToken; jj++){
|
|
NearToken *pT = &aPhrase[ii].aToken[jj];
|
|
pT->z = Tcl_GetStringFromObj(apToken[jj], &nn);
|
|
pT->n = (int)nn;
|
|
}
|
|
aPhrase[ii].nToken = (int)nToken;
|
|
}
|
|
for(ii=1; ii<nPhrase; ii++){
|
|
Tcl_Obj *pNear = apExprToken[2*ii-1];
|
|
int nNear;
|
|
rc = Tcl_GetIntFromObj(interp, pNear, &nNear);
|
|
if( rc!=TCL_OK ) goto near_match_out;
|
|
aPhrase[ii].nNear = nNear;
|
|
}
|
|
|
|
pRet = Tcl_NewObj();
|
|
Tcl_IncrRefCount(pRet);
|
|
for(ii=0; ii<nPhrase; ii++){
|
|
int nOcc = nm_match_count(&doc, nPhrase, aPhrase, ii);
|
|
Tcl_ListObjAppendElement(interp, pRet, Tcl_NewIntObj(nOcc));
|
|
nTotal += nOcc;
|
|
}
|
|
if( pPhrasecount ){
|
|
Tcl_ObjSetVar2(interp, pPhrasecount, 0, pRet, 0);
|
|
}
|
|
Tcl_DecrRefCount(pRet);
|
|
Tcl_SetObjResult(interp, Tcl_NewBooleanObj(nTotal>0));
|
|
|
|
near_match_out:
|
|
ckfree((char *)aPhrase);
|
|
ckfree((char *)doc.aToken);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Tclcmd: fts3_configure_incr_load ?CHUNKSIZE THRESHOLD?
|
|
**
|
|
** Normally, FTS uses hard-coded values to determine the minimum doclist
|
|
** size eligible for incremental loading, and the size of the chunks loaded
|
|
** when a doclist is incrementally loaded. This command allows the built-in
|
|
** values to be overridden for testing purposes.
|
|
**
|
|
** If present, the first argument is the chunksize in bytes to load doclists
|
|
** in. The second argument is the minimum doclist size in bytes to use
|
|
** incremental loading with.
|
|
**
|
|
** Whether or not the arguments are present, this command returns a list of
|
|
** two integers - the initial chunksize and threshold when the command is
|
|
** invoked. This can be used to restore the default behavior after running
|
|
** tests. For example:
|
|
**
|
|
** # Override incr-load settings for testing:
|
|
** set cfg [fts3_configure_incr_load $new_chunksize $new_threshold]
|
|
**
|
|
** .... run tests ....
|
|
**
|
|
** # Restore initial incr-load settings:
|
|
** eval fts3_configure_incr_load $cfg
|
|
*/
|
|
static int SQLITE_TCLAPI fts3_configure_incr_load_cmd(
|
|
ClientData clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
#ifdef SQLITE_ENABLE_FTS3
|
|
extern int test_fts3_node_chunksize;
|
|
extern int test_fts3_node_chunk_threshold;
|
|
Tcl_Obj *pRet;
|
|
|
|
if( objc!=1 && objc!=3 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "?CHUNKSIZE THRESHOLD?");
|
|
return TCL_ERROR;
|
|
}
|
|
|
|
pRet = Tcl_NewObj();
|
|
Tcl_IncrRefCount(pRet);
|
|
Tcl_ListObjAppendElement(
|
|
interp, pRet, Tcl_NewIntObj(test_fts3_node_chunksize));
|
|
Tcl_ListObjAppendElement(
|
|
interp, pRet, Tcl_NewIntObj(test_fts3_node_chunk_threshold));
|
|
|
|
if( objc==3 ){
|
|
int iArg1;
|
|
int iArg2;
|
|
if( Tcl_GetIntFromObj(interp, objv[1], &iArg1)
|
|
|| Tcl_GetIntFromObj(interp, objv[2], &iArg2)
|
|
){
|
|
Tcl_DecrRefCount(pRet);
|
|
return TCL_ERROR;
|
|
}
|
|
test_fts3_node_chunksize = iArg1;
|
|
test_fts3_node_chunk_threshold = iArg2;
|
|
}
|
|
|
|
Tcl_SetObjResult(interp, pRet);
|
|
Tcl_DecrRefCount(pRet);
|
|
#endif
|
|
UNUSED_PARAMETER(clientData);
|
|
return TCL_OK;
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_FTS3
|
|
/**************************************************************************
|
|
** Beginning of test tokenizer code.
|
|
**
|
|
** For language 0, this tokenizer is similar to the default 'simple'
|
|
** tokenizer. For other languages L, the following:
|
|
**
|
|
** * Odd numbered languages are case-sensitive. Even numbered
|
|
** languages are not.
|
|
**
|
|
** * Language ids 100 or greater are considered an error.
|
|
**
|
|
** The implementation assumes that the input contains only ASCII characters
|
|
** (i.e. those that may be encoded in UTF-8 using a single byte).
|
|
*/
|
|
typedef struct test_tokenizer {
|
|
sqlite3_tokenizer base;
|
|
} test_tokenizer;
|
|
|
|
typedef struct test_tokenizer_cursor {
|
|
sqlite3_tokenizer_cursor base;
|
|
const char *aInput; /* Input being tokenized */
|
|
int nInput; /* Size of the input in bytes */
|
|
int iInput; /* Current offset in aInput */
|
|
int iToken; /* Index of next token to be returned */
|
|
char *aBuffer; /* Buffer containing current token */
|
|
int nBuffer; /* Number of bytes allocated at pToken */
|
|
int iLangid; /* Configured language id */
|
|
} test_tokenizer_cursor;
|
|
|
|
static int testTokenizerCreate(
|
|
int argc, const char * const *argv,
|
|
sqlite3_tokenizer **ppTokenizer
|
|
){
|
|
test_tokenizer *pNew;
|
|
UNUSED_PARAMETER(argc);
|
|
UNUSED_PARAMETER(argv);
|
|
|
|
pNew = sqlite3_malloc(sizeof(test_tokenizer));
|
|
if( !pNew ) return SQLITE_NOMEM;
|
|
memset(pNew, 0, sizeof(test_tokenizer));
|
|
|
|
*ppTokenizer = (sqlite3_tokenizer *)pNew;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int testTokenizerDestroy(sqlite3_tokenizer *pTokenizer){
|
|
test_tokenizer *p = (test_tokenizer *)pTokenizer;
|
|
sqlite3_free(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int testTokenizerOpen(
|
|
sqlite3_tokenizer *pTokenizer, /* The tokenizer */
|
|
const char *pInput, int nBytes, /* String to be tokenized */
|
|
sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
|
|
){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
test_tokenizer_cursor *pCsr; /* New cursor object */
|
|
|
|
UNUSED_PARAMETER(pTokenizer);
|
|
|
|
pCsr = (test_tokenizer_cursor *)sqlite3_malloc(sizeof(test_tokenizer_cursor));
|
|
if( pCsr==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
memset(pCsr, 0, sizeof(test_tokenizer_cursor));
|
|
pCsr->aInput = pInput;
|
|
if( nBytes<0 ){
|
|
pCsr->nInput = (int)strlen(pInput);
|
|
}else{
|
|
pCsr->nInput = nBytes;
|
|
}
|
|
}
|
|
|
|
*ppCursor = (sqlite3_tokenizer_cursor *)pCsr;
|
|
return rc;
|
|
}
|
|
|
|
static int testTokenizerClose(sqlite3_tokenizer_cursor *pCursor){
|
|
test_tokenizer_cursor *pCsr = (test_tokenizer_cursor *)pCursor;
|
|
sqlite3_free(pCsr->aBuffer);
|
|
sqlite3_free(pCsr);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
static int testIsTokenChar(char c){
|
|
return (c>='a' && c<='z') || (c>='A' && c<='Z');
|
|
}
|
|
static int testTolower(char c){
|
|
char ret = c;
|
|
if( ret>='A' && ret<='Z') ret = ret - ('A'-'a');
|
|
return ret;
|
|
}
|
|
|
|
static int testTokenizerNext(
|
|
sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by testTokenizerOpen */
|
|
const char **ppToken, /* OUT: *ppToken is the token text */
|
|
int *pnBytes, /* OUT: Number of bytes in token */
|
|
int *piStartOffset, /* OUT: Starting offset of token */
|
|
int *piEndOffset, /* OUT: Ending offset of token */
|
|
int *piPosition /* OUT: Position integer of token */
|
|
){
|
|
test_tokenizer_cursor *pCsr = (test_tokenizer_cursor *)pCursor;
|
|
int rc = SQLITE_OK;
|
|
const char *p;
|
|
const char *pEnd;
|
|
|
|
p = &pCsr->aInput[pCsr->iInput];
|
|
pEnd = &pCsr->aInput[pCsr->nInput];
|
|
|
|
/* Skip past any white-space */
|
|
assert( p<=pEnd );
|
|
while( p<pEnd && testIsTokenChar(*p)==0 ) p++;
|
|
|
|
if( p==pEnd ){
|
|
rc = SQLITE_DONE;
|
|
}else{
|
|
/* Advance to the end of the token */
|
|
const char *pToken = p;
|
|
sqlite3_int64 nToken;
|
|
while( p<pEnd && testIsTokenChar(*p) ) p++;
|
|
nToken = (sqlite3_int64)(p-pToken);
|
|
|
|
/* Copy the token into the buffer */
|
|
if( nToken>pCsr->nBuffer ){
|
|
sqlite3_free(pCsr->aBuffer);
|
|
pCsr->aBuffer = sqlite3_malloc64(nToken);
|
|
}
|
|
if( pCsr->aBuffer==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
int i;
|
|
|
|
if( pCsr->iLangid & 0x00000001 ){
|
|
for(i=0; i<nToken; i++) pCsr->aBuffer[i] = pToken[i];
|
|
}else{
|
|
for(i=0; i<nToken; i++) pCsr->aBuffer[i] = (char)testTolower(pToken[i]);
|
|
}
|
|
pCsr->iToken++;
|
|
pCsr->iInput = (int)(p - pCsr->aInput);
|
|
|
|
*ppToken = pCsr->aBuffer;
|
|
*pnBytes = (int)nToken;
|
|
*piStartOffset = (int)(pToken - pCsr->aInput);
|
|
*piEndOffset = (int)(p - pCsr->aInput);
|
|
*piPosition = pCsr->iToken;
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int testTokenizerLanguage(
|
|
sqlite3_tokenizer_cursor *pCursor,
|
|
int iLangid
|
|
){
|
|
int rc = SQLITE_OK;
|
|
test_tokenizer_cursor *pCsr = (test_tokenizer_cursor *)pCursor;
|
|
pCsr->iLangid = iLangid;
|
|
if( pCsr->iLangid>=100 ){
|
|
rc = SQLITE_ERROR;
|
|
}
|
|
return rc;
|
|
}
|
|
#endif
|
|
|
|
static int SQLITE_TCLAPI fts3_test_tokenizer_cmd(
|
|
ClientData clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
#ifdef SQLITE_ENABLE_FTS3
|
|
static const sqlite3_tokenizer_module testTokenizerModule = {
|
|
1,
|
|
testTokenizerCreate,
|
|
testTokenizerDestroy,
|
|
testTokenizerOpen,
|
|
testTokenizerClose,
|
|
testTokenizerNext,
|
|
testTokenizerLanguage
|
|
};
|
|
const sqlite3_tokenizer_module *pPtr = &testTokenizerModule;
|
|
if( objc!=1 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "");
|
|
return TCL_ERROR;
|
|
}
|
|
Tcl_SetObjResult(interp, Tcl_NewByteArrayObj(
|
|
(const unsigned char *)&pPtr, sizeof(sqlite3_tokenizer_module *)
|
|
));
|
|
#endif
|
|
UNUSED_PARAMETER(clientData);
|
|
return TCL_OK;
|
|
}
|
|
|
|
static int SQLITE_TCLAPI fts3_test_varint_cmd(
|
|
ClientData clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
#ifdef SQLITE_ENABLE_FTS3
|
|
char aBuf[24];
|
|
int rc;
|
|
Tcl_WideInt w;
|
|
sqlite3_int64 w2;
|
|
int nByte, nByte2;
|
|
|
|
if( objc!=2 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "INTEGER");
|
|
return TCL_ERROR;
|
|
}
|
|
|
|
rc = Tcl_GetWideIntFromObj(interp, objv[1], &w);
|
|
if( rc!=TCL_OK ) return rc;
|
|
|
|
nByte = sqlite3Fts3PutVarint(aBuf, w);
|
|
nByte2 = sqlite3Fts3GetVarint(aBuf, &w2);
|
|
if( w!=w2 || nByte!=nByte2 ){
|
|
char *zErr = sqlite3_mprintf("error testing %lld", w);
|
|
Tcl_ResetResult(interp);
|
|
Tcl_AppendResult(interp, zErr, 0);
|
|
return TCL_ERROR;
|
|
}
|
|
|
|
if( w<=2147483647 && w>=0 ){
|
|
int i;
|
|
nByte2 = fts3GetVarint32(aBuf, &i);
|
|
if( (int)w!=i || nByte!=nByte2 ){
|
|
char *zErr = sqlite3_mprintf("error testing %lld (32-bit)", w);
|
|
Tcl_ResetResult(interp);
|
|
Tcl_AppendResult(interp, zErr, 0);
|
|
return TCL_ERROR;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
UNUSED_PARAMETER(clientData);
|
|
return TCL_OK;
|
|
}
|
|
|
|
/*
|
|
** End of tokenizer code.
|
|
**************************************************************************/
|
|
|
|
/*
|
|
** sqlite3_fts3_may_be_corrupt BOOLEAN
|
|
**
|
|
** Set or clear the global "may-be-corrupt" flag. Return the old value.
|
|
*/
|
|
static int SQLITE_TCLAPI fts3_may_be_corrupt(
|
|
void * clientData,
|
|
Tcl_Interp *interp,
|
|
int objc,
|
|
Tcl_Obj *CONST objv[]
|
|
){
|
|
#ifdef SQLITE_DEBUG
|
|
int bOld = sqlite3_fts3_may_be_corrupt;
|
|
|
|
if( objc!=2 && objc!=1 ){
|
|
Tcl_WrongNumArgs(interp, 1, objv, "?BOOLEAN?");
|
|
return TCL_ERROR;
|
|
}
|
|
if( objc==2 ){
|
|
int bNew;
|
|
if( Tcl_GetBooleanFromObj(interp, objv[1], &bNew) ) return TCL_ERROR;
|
|
sqlite3_fts3_may_be_corrupt = bNew;
|
|
}
|
|
|
|
Tcl_SetObjResult(interp, Tcl_NewIntObj(bOld));
|
|
#endif
|
|
return TCL_OK;
|
|
}
|
|
|
|
int Sqlitetestfts3_Init(Tcl_Interp *interp){
|
|
Tcl_CreateObjCommand(interp, "fts3_near_match", fts3_near_match_cmd, 0, 0);
|
|
Tcl_CreateObjCommand(interp,
|
|
"fts3_configure_incr_load", fts3_configure_incr_load_cmd, 0, 0
|
|
);
|
|
Tcl_CreateObjCommand(
|
|
interp, "fts3_test_tokenizer", fts3_test_tokenizer_cmd, 0, 0
|
|
);
|
|
Tcl_CreateObjCommand(
|
|
interp, "fts3_test_varint", fts3_test_varint_cmd, 0, 0
|
|
);
|
|
Tcl_CreateObjCommand(
|
|
interp, "sqlite3_fts3_may_be_corrupt", fts3_may_be_corrupt, 0, 0
|
|
);
|
|
return TCL_OK;
|
|
}
|
|
#endif /* SQLITE_ENABLE_FTS3 || SQLITE_ENABLE_FTS4 */
|
|
#endif /* ifdef SQLITE_TEST */
|