0
0
mirror of https://github.com/sqlite/sqlite.git synced 2024-12-01 01:01:28 +01:00
sqlite/ext/misc/sha1.c
drh 165daef043 Add sha1() functions to the CLI. Fix sha1b() such that it actually returns
a BLOB.

FossilOrigin-Name: fe65821a3b912f061026e6fd7174be26897010e6b474e2780350cac60faebaad
2024-09-12 14:43:05 +00:00

410 lines
13 KiB
C

/*
** 2017-01-27
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This SQLite extension implements functions that compute SHA1 hashes.
** Two SQL functions are implemented:
**
** sha1(X)
** sha1_query(Y)
**
** The sha1(X) function computes the SHA1 hash of the input X, or NULL if
** X is NULL.
**
** The sha1_query(Y) function evalutes all queries in the SQL statements of Y
** and returns a hash of their results.
*/
#include "sqlite3ext.h"
SQLITE_EXTENSION_INIT1
#include <assert.h>
#include <string.h>
#include <stdarg.h>
/******************************************************************************
** The Hash Engine
*/
/* Context for the SHA1 hash */
typedef struct SHA1Context SHA1Context;
struct SHA1Context {
unsigned int state[5];
unsigned int count[2];
unsigned char buffer[64];
};
#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
#define rol(x,k) SHA_ROT(x,k,32-(k))
#define ror(x,k) SHA_ROT(x,32-(k),k)
#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
|(rol(block[i],8)&0x00FF00FF))
#define blk0be(i) block[i]
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
^block[(i+2)&15]^block[i&15],1))
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*
* Rl0() for little-endian and Rb0() for big-endian. Endianness is
* determined at run-time.
*/
#define Rl0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define Rb0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R1(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R2(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
#define R3(v,w,x,y,z,i) \
z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
#define R4(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
static void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){
unsigned int qq[5]; /* a, b, c, d, e; */
static int one = 1;
unsigned int block[16];
memcpy(block, buffer, 64);
memcpy(qq,state,5*sizeof(unsigned int));
#define a qq[0]
#define b qq[1]
#define c qq[2]
#define d qq[3]
#define e qq[4]
/* Copy p->state[] to working vars */
/*
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
*/
/* 4 rounds of 20 operations each. Loop unrolled. */
if( 1 == *(unsigned char*)&one ){
Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
}else{
Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
}
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
#undef a
#undef b
#undef c
#undef d
#undef e
}
/* Initialize a SHA1 context */
static void hash_init(SHA1Context *p){
/* SHA1 initialization constants */
p->state[0] = 0x67452301;
p->state[1] = 0xEFCDAB89;
p->state[2] = 0x98BADCFE;
p->state[3] = 0x10325476;
p->state[4] = 0xC3D2E1F0;
p->count[0] = p->count[1] = 0;
}
/* Add new content to the SHA1 hash */
static void hash_step(
SHA1Context *p, /* Add content to this context */
const unsigned char *data, /* Data to be added */
unsigned int len /* Number of bytes in data */
){
unsigned int i, j;
j = p->count[0];
if( (p->count[0] += len << 3) < j ){
p->count[1] += (len>>29)+1;
}
j = (j >> 3) & 63;
if( (j + len) > 63 ){
(void)memcpy(&p->buffer[j], data, (i = 64-j));
SHA1Transform(p->state, p->buffer);
for(; i + 63 < len; i += 64){
SHA1Transform(p->state, &data[i]);
}
j = 0;
}else{
i = 0;
}
(void)memcpy(&p->buffer[j], &data[i], len - i);
}
/* Compute a string using sqlite3_vsnprintf() and hash it */
static void hash_step_vformat(
SHA1Context *p, /* Add content to this context */
const char *zFormat,
...
){
va_list ap;
int n;
char zBuf[50];
va_start(ap, zFormat);
sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap);
va_end(ap);
n = (int)strlen(zBuf);
hash_step(p, (unsigned char*)zBuf, n);
}
/* Add padding and compute the message digest. Render the
** message digest as lower-case hexadecimal and put it into
** zOut[]. zOut[] must be at least 41 bytes long. */
static void hash_finish(
SHA1Context *p, /* The SHA1 context to finish and render */
char *zOut, /* Store hex or binary hash here */
int bAsBinary /* 1 for binary hash, 0 for hex hash */
){
unsigned int i;
unsigned char finalcount[8];
unsigned char digest[20];
static const char zEncode[] = "0123456789abcdef";
for (i = 0; i < 8; i++){
finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
hash_step(p, (const unsigned char *)"\200", 1);
while ((p->count[0] & 504) != 448){
hash_step(p, (const unsigned char *)"\0", 1);
}
hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++){
digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
if( bAsBinary ){
memcpy(zOut, digest, 20);
}else{
for(i=0; i<20; i++){
zOut[i*2] = zEncode[(digest[i]>>4)&0xf];
zOut[i*2+1] = zEncode[digest[i] & 0xf];
}
zOut[i*2]= 0;
}
}
/* End of the hashing logic
*****************************************************************************/
/*
** Implementation of the sha1(X) function.
**
** Return a lower-case hexadecimal rendering of the SHA1 hash of the
** argument X. If X is a BLOB, it is hashed as is. For all other
** types of input, X is converted into a UTF-8 string and the string
** is hash without the trailing 0x00 terminator. The hash of a NULL
** value is NULL.
*/
static void sha1Func(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
SHA1Context cx;
int eType = sqlite3_value_type(argv[0]);
int nByte = sqlite3_value_bytes(argv[0]);
char zOut[44];
assert( argc==1 );
if( eType==SQLITE_NULL ) return;
hash_init(&cx);
if( eType==SQLITE_BLOB ){
hash_step(&cx, sqlite3_value_blob(argv[0]), nByte);
}else{
hash_step(&cx, sqlite3_value_text(argv[0]), nByte);
}
if( sqlite3_user_data(context)!=0 ){
hash_finish(&cx, zOut, 1);
sqlite3_result_blob(context, zOut, 20, SQLITE_TRANSIENT);
}else{
hash_finish(&cx, zOut, 0);
sqlite3_result_blob(context, zOut, 40, SQLITE_TRANSIENT);
}
}
/*
** Implementation of the sha1_query(SQL) function.
**
** This function compiles and runs the SQL statement(s) given in the
** argument. The results are hashed using SHA1 and that hash is returned.
**
** The original SQL text is included as part of the hash.
**
** The hash is not just a concatenation of the outputs. Each query
** is delimited and each row and value within the query is delimited,
** with all values being marked with their datatypes.
*/
static void sha1QueryFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
sqlite3 *db = sqlite3_context_db_handle(context);
const char *zSql = (const char*)sqlite3_value_text(argv[0]);
sqlite3_stmt *pStmt = 0;
int nCol; /* Number of columns in the result set */
int i; /* Loop counter */
int rc;
int n;
const char *z;
SHA1Context cx;
char zOut[44];
assert( argc==1 );
if( zSql==0 ) return;
hash_init(&cx);
while( zSql[0] ){
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql);
if( rc ){
char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s",
zSql, sqlite3_errmsg(db));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
if( !sqlite3_stmt_readonly(pStmt) ){
char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt));
sqlite3_finalize(pStmt);
sqlite3_result_error(context, zMsg, -1);
sqlite3_free(zMsg);
return;
}
nCol = sqlite3_column_count(pStmt);
z = sqlite3_sql(pStmt);
n = (int)strlen(z);
hash_step_vformat(&cx,"S%d:",n);
hash_step(&cx,(unsigned char*)z,n);
/* Compute a hash over the result of the query */
while( SQLITE_ROW==sqlite3_step(pStmt) ){
hash_step(&cx,(const unsigned char*)"R",1);
for(i=0; i<nCol; i++){
switch( sqlite3_column_type(pStmt,i) ){
case SQLITE_NULL: {
hash_step(&cx, (const unsigned char*)"N",1);
break;
}
case SQLITE_INTEGER: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
sqlite3_int64 v = sqlite3_column_int64(pStmt,i);
memcpy(&u, &v, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'I';
hash_step(&cx, x, 9);
break;
}
case SQLITE_FLOAT: {
sqlite3_uint64 u;
int j;
unsigned char x[9];
double r = sqlite3_column_double(pStmt,i);
memcpy(&u, &r, 8);
for(j=8; j>=1; j--){
x[j] = u & 0xff;
u >>= 8;
}
x[0] = 'F';
hash_step(&cx,x,9);
break;
}
case SQLITE_TEXT: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_text(pStmt, i);
hash_step_vformat(&cx,"T%d:",n2);
hash_step(&cx, z2, n2);
break;
}
case SQLITE_BLOB: {
int n2 = sqlite3_column_bytes(pStmt, i);
const unsigned char *z2 = sqlite3_column_blob(pStmt, i);
hash_step_vformat(&cx,"B%d:",n2);
hash_step(&cx, z2, n2);
break;
}
}
}
}
sqlite3_finalize(pStmt);
}
hash_finish(&cx, zOut, 0);
sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT);
}
#ifdef _WIN32
__declspec(dllexport)
#endif
int sqlite3_sha_init(
sqlite3 *db,
char **pzErrMsg,
const sqlite3_api_routines *pApi
){
int rc = SQLITE_OK;
static int one = 1;
SQLITE_EXTENSION_INIT2(pApi);
(void)pzErrMsg; /* Unused parameter */
rc = sqlite3_create_function(db, "sha1", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
0, sha1Func, 0, 0);
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha1b", 1,
SQLITE_UTF8 | SQLITE_INNOCUOUS | SQLITE_DETERMINISTIC,
(void*)&one, sha1Func, 0, 0);
}
if( rc==SQLITE_OK ){
rc = sqlite3_create_function(db, "sha1_query", 1,
SQLITE_UTF8|SQLITE_DIRECTONLY, 0,
sha1QueryFunc, 0, 0);
}
return rc;
}