mirror of
https://github.com/sqlite/sqlite.git
synced 2024-11-24 08:07:42 +01:00
4167033eaf
string interface, and so that it does console output using the ext/consio extension. FossilOrigin-Name: 4443b7e592da97d1cb1b3b79ed0559452d8057a33aba4d184c2fffbf200e05f5
2056 lines
64 KiB
C
2056 lines
64 KiB
C
/*
|
|
** 2015-04-06
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This is a utility program that computes the differences in content
|
|
** between two SQLite databases.
|
|
**
|
|
** To compile, simply link against SQLite. (Windows builds must also link
|
|
** against ext/consio/console_io.c.)
|
|
**
|
|
** See the showHelp() routine below for a brief description of how to
|
|
** run the utility.
|
|
*/
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
#include <ctype.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include "sqlite3.h"
|
|
|
|
/* Output function substitutions that cause UTF8 characters to be rendered
|
|
** correctly on Windows:
|
|
**
|
|
** fprintf() -> Wfprintf()
|
|
**
|
|
*/
|
|
#if defined(_WIN32)
|
|
# include "console_io.h"
|
|
# define Wfprintf fPrintfUtf8
|
|
#else
|
|
# define Wfprintf fprintf
|
|
#endif
|
|
|
|
/*
|
|
** All global variables are gathered into the "g" singleton.
|
|
*/
|
|
struct GlobalVars {
|
|
const char *zArgv0; /* Name of program */
|
|
int bSchemaOnly; /* Only show schema differences */
|
|
int bSchemaPK; /* Use the schema-defined PK, not the true PK */
|
|
int bHandleVtab; /* Handle fts3, fts4, fts5 and rtree vtabs */
|
|
unsigned fDebug; /* Debug flags */
|
|
int bSchemaCompare; /* Doing single-table sqlite_schema compare */
|
|
sqlite3 *db; /* The database connection */
|
|
} g;
|
|
|
|
/*
|
|
** Allowed values for g.fDebug
|
|
*/
|
|
#define DEBUG_COLUMN_NAMES 0x000001
|
|
#define DEBUG_DIFF_SQL 0x000002
|
|
|
|
/*
|
|
** Clear and free an sqlite3_str object
|
|
*/
|
|
static void strFree(sqlite3_str *pStr){
|
|
sqlite3_free(sqlite3_str_finish(pStr));
|
|
}
|
|
|
|
/*
|
|
** Print an error resulting from faulting command-line arguments and
|
|
** abort the program.
|
|
*/
|
|
static void cmdlineError(const char *zFormat, ...){
|
|
sqlite3_str *pOut = sqlite3_str_new(0);
|
|
va_list ap;
|
|
va_start(ap, zFormat);
|
|
sqlite3_str_vappendf(pOut, zFormat, ap);
|
|
va_end(ap);
|
|
Wfprintf(stderr, "%s: %s\n", g.zArgv0, sqlite3_str_value(pOut));
|
|
strFree(pOut);
|
|
Wfprintf(stderr, "\"%s --help\" for more help\n", g.zArgv0);
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
** Print an error message for an error that occurs at runtime, then
|
|
** abort the program.
|
|
*/
|
|
static void runtimeError(const char *zFormat, ...){
|
|
sqlite3_str *pOut = sqlite3_str_new(0);
|
|
va_list ap;
|
|
va_start(ap, zFormat);
|
|
sqlite3_str_vappendf(pOut, zFormat, ap);
|
|
va_end(ap);
|
|
Wfprintf(stderr, "%s: %s\n", g.zArgv0, sqlite3_str_value(pOut));
|
|
strFree(pOut);
|
|
exit(1);
|
|
}
|
|
|
|
|
|
/* Safely quote an SQL identifier. Use the minimum amount of transformation
|
|
** necessary to allow the string to be used with %s.
|
|
**
|
|
** Space to hold the returned string is obtained from sqlite3_malloc(). The
|
|
** caller is responsible for ensuring this space is freed when no longer
|
|
** needed.
|
|
*/
|
|
static char *safeId(const char *zId){
|
|
int i, x;
|
|
char c;
|
|
if( zId[0]==0 ) return sqlite3_mprintf("\"\"");
|
|
for(i=x=0; (c = zId[i])!=0; i++){
|
|
if( !isalpha(c) && c!='_' ){
|
|
if( i>0 && isdigit(c) ){
|
|
x++;
|
|
}else{
|
|
return sqlite3_mprintf("\"%w\"", zId);
|
|
}
|
|
}
|
|
}
|
|
if( x || !sqlite3_keyword_check(zId,i) ){
|
|
return sqlite3_mprintf("%s", zId);
|
|
}
|
|
return sqlite3_mprintf("\"%w\"", zId);
|
|
}
|
|
|
|
/*
|
|
** Prepare a new SQL statement. Print an error and abort if anything
|
|
** goes wrong.
|
|
*/
|
|
static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){
|
|
char *zSql;
|
|
int rc;
|
|
sqlite3_stmt *pStmt;
|
|
|
|
zSql = sqlite3_vmprintf(zFormat, ap);
|
|
if( zSql==0 ) runtimeError("out of memory");
|
|
rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0);
|
|
if( rc ){
|
|
runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db),
|
|
zSql);
|
|
}
|
|
sqlite3_free(zSql);
|
|
return pStmt;
|
|
}
|
|
static sqlite3_stmt *db_prepare(const char *zFormat, ...){
|
|
va_list ap;
|
|
sqlite3_stmt *pStmt;
|
|
va_start(ap, zFormat);
|
|
pStmt = db_vprepare(zFormat, ap);
|
|
va_end(ap);
|
|
return pStmt;
|
|
}
|
|
|
|
/*
|
|
** Free a list of strings
|
|
*/
|
|
static void namelistFree(char **az){
|
|
if( az ){
|
|
int i;
|
|
for(i=0; az[i]; i++) sqlite3_free(az[i]);
|
|
sqlite3_free(az);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return a list of column names [a] for the table zDb.zTab. Space to
|
|
** hold the list is obtained from sqlite3_malloc() and should released
|
|
** using namelistFree() when no longer needed.
|
|
**
|
|
** Primary key columns are listed first, followed by data columns.
|
|
** The number of columns in the primary key is returned in *pnPkey.
|
|
**
|
|
** Normally [a], the "primary key" in the previous sentence is the true
|
|
** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables
|
|
** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if
|
|
** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is
|
|
** used in all cases. In that case, entries that have NULL values in
|
|
** any of their primary key fields will be excluded from the analysis.
|
|
**
|
|
** If the primary key for a table is the rowid but rowid is inaccessible,
|
|
** then this routine returns a NULL pointer.
|
|
**
|
|
** [a. If the lone, named table is "sqlite_schema", "rootpage" column is
|
|
** omitted and the "type" and "name" columns are made to be the PK.]
|
|
**
|
|
** Examples:
|
|
** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c));
|
|
** *pnPKey = 1;
|
|
** az = { "rowid", "a", "b", "c", 0 } // Normal case
|
|
** az = { "c", "a", "b", 0 } // g.bSchemaPK==1
|
|
**
|
|
** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b));
|
|
** *pnPKey = 1;
|
|
** az = { "b", "a", "c", 0 }
|
|
**
|
|
** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z));
|
|
** *pnPKey = 1 // Normal case
|
|
** az = { "rowid", "x", "y", "z", 0 } // Normal case
|
|
** *pnPKey = 2 // g.bSchemaPK==1
|
|
** az = { "y", "x", "z", 0 } // g.bSchemaPK==1
|
|
**
|
|
** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID;
|
|
** *pnPKey = 2
|
|
** az = { "y", "z", "x", 0 }
|
|
**
|
|
** CREATE TABLE t5(rowid,_rowid_,oid);
|
|
** az = 0 // The rowid is not accessible
|
|
*/
|
|
static char **columnNames(
|
|
const char *zDb, /* Database ("main" or "aux") to query */
|
|
const char *zTab, /* Name of table to return details of */
|
|
int *pnPKey, /* OUT: Number of PK columns */
|
|
int *pbRowid /* OUT: True if PK is an implicit rowid */
|
|
){
|
|
char **az = 0; /* List of column names to be returned */
|
|
int naz = 0; /* Number of entries in az[] */
|
|
sqlite3_stmt *pStmt; /* SQL statement being run */
|
|
char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */
|
|
int truePk = 0; /* PRAGMA table_info indentifies the PK to use */
|
|
int nPK = 0; /* Number of PRIMARY KEY columns */
|
|
int i, j; /* Loop counters */
|
|
|
|
if( g.bSchemaPK==0 ){
|
|
/* Normal case: Figure out what the true primary key is for the table.
|
|
** * For WITHOUT ROWID tables, the true primary key is the same as
|
|
** the schema PRIMARY KEY, which is guaranteed to be present.
|
|
** * For rowid tables with an INTEGER PRIMARY KEY, the true primary
|
|
** key is the INTEGER PRIMARY KEY.
|
|
** * For all other rowid tables, the rowid is the true primary key.
|
|
*/
|
|
pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){
|
|
zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
|
|
break;
|
|
}
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
if( zPkIdxName ){
|
|
int nKey = 0;
|
|
int nCol = 0;
|
|
truePk = 0;
|
|
pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
nCol++;
|
|
if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; }
|
|
if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1;
|
|
}
|
|
if( nCol==nKey ) truePk = 1;
|
|
if( truePk ){
|
|
nPK = nKey;
|
|
}else{
|
|
nPK = 1;
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
sqlite3_free(zPkIdxName);
|
|
}else{
|
|
truePk = 1;
|
|
nPK = 1;
|
|
}
|
|
pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
|
|
}else{
|
|
/* The g.bSchemaPK==1 case: Use whatever primary key is declared
|
|
** in the schema. The "rowid" will still be used as the primary key
|
|
** if the table definition does not contain a PRIMARY KEY.
|
|
*/
|
|
nPK = 0;
|
|
pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
if( sqlite3_column_int(pStmt,5)>0 ) nPK++;
|
|
}
|
|
sqlite3_reset(pStmt);
|
|
if( nPK==0 ) nPK = 1;
|
|
truePk = 1;
|
|
}
|
|
if( g.bSchemaCompare ){
|
|
assert( sqlite3_stricmp(zTab,"sqlite_schema")==0
|
|
|| sqlite3_stricmp(zTab,"sqlite_master")==0 );
|
|
/* For sqlite_schema, will use type and name as the PK. */
|
|
nPK = 2;
|
|
truePk = 0;
|
|
}
|
|
*pnPKey = nPK;
|
|
naz = nPK;
|
|
az = sqlite3_malloc( sizeof(char*)*(nPK+1) );
|
|
if( az==0 ) runtimeError("out of memory");
|
|
memset(az, 0, sizeof(char*)*(nPK+1));
|
|
if( g.bSchemaCompare ){
|
|
az[0] = sqlite3_mprintf("%s", "type");
|
|
az[1] = sqlite3_mprintf("%s", "name");
|
|
}
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
char * sid = safeId((char*)sqlite3_column_text(pStmt,1));
|
|
int iPKey;
|
|
if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){
|
|
az[iPKey-1] = sid;
|
|
}else{
|
|
if( !g.bSchemaCompare
|
|
|| !(strcmp(sid,"rootpage")==0
|
|
||strcmp(sid,"name")==0
|
|
||strcmp(sid,"type")==0)){
|
|
az = sqlite3_realloc(az, sizeof(char*)*(naz+2) );
|
|
if( az==0 ) runtimeError("out of memory");
|
|
az[naz++] = sid;
|
|
}
|
|
}
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
if( az ) az[naz] = 0;
|
|
|
|
/* If it is non-NULL, set *pbRowid to indicate whether or not the PK of
|
|
** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0). */
|
|
if( pbRowid ) *pbRowid = (az[0]==0);
|
|
|
|
/* If this table has an implicit rowid for a PK, figure out how to refer
|
|
** to it. There are usually three options - "rowid", "_rowid_" and "oid".
|
|
** Any of these will work, unless the table has an explicit column of the
|
|
** same name or the sqlite_schema tables are to be compared. In the latter
|
|
** case, pretend that the "true" primary key is the name column, which
|
|
** avoids extraneous diffs against the schemas due to rowid variance. */
|
|
if( az[0]==0 ){
|
|
const char *azRowid[] = { "rowid", "_rowid_", "oid" };
|
|
for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){
|
|
for(j=1; j<naz; j++){
|
|
if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break;
|
|
}
|
|
if( j>=naz ){
|
|
az[0] = sqlite3_mprintf("%s", azRowid[i]);
|
|
break;
|
|
}
|
|
}
|
|
if( az[0]==0 ){
|
|
for(i=1; i<naz; i++) sqlite3_free(az[i]);
|
|
sqlite3_free(az);
|
|
az = 0;
|
|
}
|
|
}
|
|
return az;
|
|
}
|
|
|
|
/*
|
|
** Print the sqlite3_value X as an SQL literal.
|
|
*/
|
|
static void printQuoted(FILE *out, sqlite3_value *X){
|
|
switch( sqlite3_value_type(X) ){
|
|
case SQLITE_FLOAT: {
|
|
double r1;
|
|
char zBuf[50];
|
|
r1 = sqlite3_value_double(X);
|
|
sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
|
|
fprintf(out, "%s", zBuf);
|
|
break;
|
|
}
|
|
case SQLITE_INTEGER: {
|
|
fprintf(out, "%lld", sqlite3_value_int64(X));
|
|
break;
|
|
}
|
|
case SQLITE_BLOB: {
|
|
const unsigned char *zBlob = sqlite3_value_blob(X);
|
|
int nBlob = sqlite3_value_bytes(X);
|
|
if( zBlob ){
|
|
int i;
|
|
fprintf(out, "x'");
|
|
for(i=0; i<nBlob; i++){
|
|
fprintf(out, "%02x", zBlob[i]);
|
|
}
|
|
fprintf(out, "'");
|
|
}else{
|
|
/* Could be an OOM, could be a zero-byte blob */
|
|
fprintf(out, "X''");
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_TEXT: {
|
|
const unsigned char *zArg = sqlite3_value_text(X);
|
|
|
|
if( zArg==0 ){
|
|
fprintf(out, "NULL");
|
|
}else{
|
|
int inctl = 0;
|
|
int i, j;
|
|
fprintf(out, "'");
|
|
for(i=j=0; zArg[i]; i++){
|
|
char c = zArg[i];
|
|
int ctl = iscntrl(c);
|
|
if( ctl>inctl ){
|
|
inctl = ctl;
|
|
fprintf(out, "%.*s'||X'%02x", i-j, &zArg[j], c);
|
|
j = i+1;
|
|
}else if( ctl ){
|
|
fprintf(out, "%02x", c);
|
|
j = i+1;
|
|
}else{
|
|
if( inctl ){
|
|
inctl = 0;
|
|
fprintf(out, "'\n||'");
|
|
}
|
|
if( c=='\'' ){
|
|
fprintf(out, "%.*s'", i-j+1, &zArg[j]);
|
|
j = i+1;
|
|
}
|
|
}
|
|
}
|
|
fprintf(out, "%s'", &zArg[j]);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_NULL: {
|
|
fprintf(out, "NULL");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Output SQL that will recreate the aux.zTab table.
|
|
*/
|
|
static void dump_table(const char *zTab, FILE *out){
|
|
char *zId = safeId(zTab); /* Name of the table */
|
|
char **az = 0; /* List of columns */
|
|
int nPk; /* Number of true primary key columns */
|
|
int nCol; /* Number of data columns */
|
|
int i; /* Loop counter */
|
|
sqlite3_stmt *pStmt; /* SQL statement */
|
|
const char *zSep; /* Separator string */
|
|
sqlite3_str *pIns; /* Beginning of the INSERT statement */
|
|
|
|
pStmt = db_prepare("SELECT sql FROM aux.sqlite_schema WHERE name=%Q", zTab);
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
if( !g.bSchemaOnly ){
|
|
az = columnNames("aux", zTab, &nPk, 0);
|
|
pIns = sqlite3_str_new(0);
|
|
if( az==0 ){
|
|
pStmt = db_prepare("SELECT * FROM aux.%s", zId);
|
|
sqlite3_str_appendf(pIns,"INSERT INTO %s VALUES", zId);
|
|
}else{
|
|
sqlite3_str *pSql = sqlite3_str_new(0);
|
|
zSep = "SELECT";
|
|
for(i=0; az[i]; i++){
|
|
sqlite3_str_appendf(pSql, "%s %s", zSep, az[i]);
|
|
zSep = ",";
|
|
}
|
|
sqlite3_str_appendf(pSql," FROM aux.%s", zId);
|
|
zSep = " ORDER BY";
|
|
for(i=1; i<=nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s %d", zSep, i);
|
|
zSep = ",";
|
|
}
|
|
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
|
|
strFree(pSql);
|
|
sqlite3_str_appendf(pIns, "INSERT INTO %s", zId);
|
|
zSep = "(";
|
|
for(i=0; az[i]; i++){
|
|
sqlite3_str_appendf(pIns, "%s%s", zSep, az[i]);
|
|
zSep = ",";
|
|
}
|
|
sqlite3_str_appendf(pIns,") VALUES");
|
|
namelistFree(az);
|
|
}
|
|
nCol = sqlite3_column_count(pStmt);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
Wfprintf(out, "%s",sqlite3_str_value(pIns));
|
|
zSep = "(";
|
|
for(i=0; i<nCol; i++){
|
|
Wfprintf(out, "%s",zSep);
|
|
printQuoted(out, sqlite3_column_value(pStmt,i));
|
|
zSep = ",";
|
|
}
|
|
Wfprintf(out, ");\n");
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
strFree(pIns);
|
|
} /* endif !g.bSchemaOnly */
|
|
pStmt = db_prepare("SELECT sql FROM aux.sqlite_schema"
|
|
" WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL",
|
|
zTab);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
Wfprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
sqlite3_free(zId);
|
|
}
|
|
|
|
|
|
/*
|
|
** Compute all differences for a single table, except if the
|
|
** table name is sqlite_schema, ignore the rootpage column.
|
|
*/
|
|
static void diff_one_table(const char *zTab, FILE *out){
|
|
char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
|
|
char **az = 0; /* Columns in main */
|
|
char **az2 = 0; /* Columns in aux */
|
|
int nPk; /* Primary key columns in main */
|
|
int nPk2; /* Primary key columns in aux */
|
|
int n = 0; /* Number of columns in main */
|
|
int n2; /* Number of columns in aux */
|
|
int nQ; /* Number of output columns in the diff query */
|
|
int i; /* Loop counter */
|
|
const char *zSep; /* Separator string */
|
|
sqlite3_str *pSql; /* Comparison query */
|
|
sqlite3_stmt *pStmt; /* Query statement to do the diff */
|
|
const char *zLead = /* Becomes line-comment for sqlite_schema */
|
|
(g.bSchemaCompare)? "-- " : "";
|
|
|
|
pSql = sqlite3_str_new(0);
|
|
if( g.fDebug==DEBUG_COLUMN_NAMES ){
|
|
/* Simply run columnNames() on all tables of the origin
|
|
** database and show the results. This is used for testing
|
|
** and debugging of the columnNames() function.
|
|
*/
|
|
az = columnNames("aux",zTab, &nPk, 0);
|
|
if( az==0 ){
|
|
Wfprintf(stdout, "Rowid not accessible for %s\n", zId);
|
|
}else{
|
|
Wfprintf(stdout, "%s:", zId);
|
|
for(i=0; az[i]; i++){
|
|
Wfprintf(stdout, " %s", az[i]);
|
|
if( i+1==nPk ) Wfprintf(stdout, " *");
|
|
}
|
|
Wfprintf(stdout, "\n");
|
|
}
|
|
goto end_diff_one_table;
|
|
}
|
|
|
|
if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
|
|
if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
|
|
/* Table missing from second database. */
|
|
if( g.bSchemaCompare )
|
|
Wfprintf(out, "-- 2nd DB has no %s table\n", zTab);
|
|
else
|
|
Wfprintf(out, "DROP TABLE %s;\n", zId);
|
|
}
|
|
goto end_diff_one_table;
|
|
}
|
|
|
|
if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
|
|
/* Table missing from source */
|
|
if( g.bSchemaCompare ){
|
|
Wfprintf(out, "-- 1st DB has no %s table\n", zTab);
|
|
}else{
|
|
dump_table(zTab, out);
|
|
}
|
|
goto end_diff_one_table;
|
|
}
|
|
|
|
az = columnNames("main", zTab, &nPk, 0);
|
|
az2 = columnNames("aux", zTab, &nPk2, 0);
|
|
if( az && az2 ){
|
|
for(n=0; az[n] && az2[n]; n++){
|
|
if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
|
|
}
|
|
}
|
|
if( az==0
|
|
|| az2==0
|
|
|| nPk!=nPk2
|
|
|| az[n]
|
|
){
|
|
/* Schema mismatch */
|
|
Wfprintf(out, "%sDROP TABLE %s; -- due to schema mismatch\n", zLead, zId);
|
|
dump_table(zTab, out);
|
|
goto end_diff_one_table;
|
|
}
|
|
|
|
/* Build the comparison query */
|
|
for(n2=n; az2[n2]; n2++){
|
|
char *zNTab = safeId(az2[n2]);
|
|
Wfprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, zNTab);
|
|
sqlite3_free(zNTab);
|
|
}
|
|
nQ = nPk2+1+2*(n2-nPk2);
|
|
if( n2>nPk2 ){
|
|
zSep = "SELECT ";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%sB.%s", zSep, az[i]);
|
|
zSep = ", ";
|
|
}
|
|
sqlite3_str_appendf(pSql, ", 1 /* changed row */");
|
|
while( az[i] ){
|
|
sqlite3_str_appendf(pSql, ", A.%s IS NOT B.%s, B.%s",
|
|
az[i], az2[i], az2[i]);
|
|
i++;
|
|
}
|
|
while( az2[i] ){
|
|
sqlite3_str_appendf(pSql, ", B.%s IS NOT NULL, B.%s",
|
|
az2[i], az2[i]);
|
|
i++;
|
|
}
|
|
sqlite3_str_appendf(pSql, "\n FROM main.%s A, aux.%s B\n", zId, zId);
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
|
|
zSep = " AND";
|
|
}
|
|
zSep = "\n AND (";
|
|
while( az[i] ){
|
|
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s%s\n",
|
|
zSep, az[i], az2[i], az2[i+1]==0 ? ")" : "");
|
|
zSep = " OR ";
|
|
i++;
|
|
}
|
|
while( az2[i] ){
|
|
sqlite3_str_appendf(pSql, "%sB.%s IS NOT NULL%s\n",
|
|
zSep, az2[i], az2[i+1]==0 ? ")" : "");
|
|
zSep = " OR ";
|
|
i++;
|
|
}
|
|
sqlite3_str_appendf(pSql, " UNION ALL\n");
|
|
}
|
|
zSep = "SELECT ";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%sA.%s", zSep, az[i]);
|
|
zSep = ", ";
|
|
}
|
|
sqlite3_str_appendf(pSql, ", 2 /* deleted row */");
|
|
while( az2[i] ){
|
|
sqlite3_str_appendf(pSql, ", NULL, NULL");
|
|
i++;
|
|
}
|
|
sqlite3_str_appendf(pSql, "\n FROM main.%s A\n", zId);
|
|
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
|
|
zSep = " AND";
|
|
}
|
|
sqlite3_str_appendf(pSql, ")\n");
|
|
zSep = " UNION ALL\nSELECT ";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%sB.%s", zSep, az[i]);
|
|
zSep = ", ";
|
|
}
|
|
sqlite3_str_appendf(pSql, ", 3 /* inserted row */");
|
|
while( az2[i] ){
|
|
sqlite3_str_appendf(pSql, ", 1, B.%s", az2[i]);
|
|
i++;
|
|
}
|
|
sqlite3_str_appendf(pSql, "\n FROM aux.%s B\n", zId);
|
|
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
|
|
zSep = " AND";
|
|
}
|
|
sqlite3_str_appendf(pSql, ")\n ORDER BY");
|
|
zSep = " ";
|
|
for(i=1; i<=nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s%d", zSep, i);
|
|
zSep = ", ";
|
|
}
|
|
sqlite3_str_appendf(pSql, ";\n");
|
|
|
|
if( g.fDebug & DEBUG_DIFF_SQL ){
|
|
printf("SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
|
|
goto end_diff_one_table;
|
|
}
|
|
|
|
/* Drop indexes that are missing in the destination */
|
|
pStmt = db_prepare(
|
|
"SELECT name FROM main.sqlite_schema"
|
|
" WHERE type='index' AND tbl_name=%Q"
|
|
" AND sql IS NOT NULL"
|
|
" AND sql NOT IN (SELECT sql FROM aux.sqlite_schema"
|
|
" WHERE type='index' AND tbl_name=%Q"
|
|
" AND sql IS NOT NULL)",
|
|
zTab, zTab);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
char *z = safeId((const char*)sqlite3_column_text(pStmt,0));
|
|
fprintf(out, "DROP INDEX %s;\n", z);
|
|
sqlite3_free(z);
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
|
|
/* Run the query and output differences */
|
|
if( !g.bSchemaOnly ){
|
|
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
int iType = sqlite3_column_int(pStmt, nPk);
|
|
if( iType==1 || iType==2 ){
|
|
if( iType==1 ){ /* Change the content of a row */
|
|
fprintf(out, "%sUPDATE %s", zLead, zId);
|
|
zSep = " SET";
|
|
for(i=nPk+1; i<nQ; i+=2){
|
|
if( sqlite3_column_int(pStmt,i)==0 ) continue;
|
|
fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]);
|
|
zSep = ",";
|
|
printQuoted(out, sqlite3_column_value(pStmt,i+1));
|
|
}
|
|
}else{ /* Delete a row */
|
|
fprintf(out, "%sDELETE FROM %s", zLead, zId);
|
|
}
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
fprintf(out, "%s %s=", zSep, az2[i]);
|
|
printQuoted(out, sqlite3_column_value(pStmt,i));
|
|
zSep = " AND";
|
|
}
|
|
fprintf(out, ";\n");
|
|
}else{ /* Insert a row */
|
|
fprintf(out, "%sINSERT INTO %s(%s", zLead, zId, az2[0]);
|
|
for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]);
|
|
fprintf(out, ") VALUES");
|
|
zSep = "(";
|
|
for(i=0; i<nPk2; i++){
|
|
fprintf(out, "%s", zSep);
|
|
zSep = ",";
|
|
printQuoted(out, sqlite3_column_value(pStmt,i));
|
|
}
|
|
for(i=nPk2+2; i<nQ; i+=2){
|
|
fprintf(out, ",");
|
|
printQuoted(out, sqlite3_column_value(pStmt,i));
|
|
}
|
|
fprintf(out, ");\n");
|
|
}
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
} /* endif !g.bSchemaOnly */
|
|
|
|
/* Create indexes that are missing in the source */
|
|
pStmt = db_prepare(
|
|
"SELECT sql FROM aux.sqlite_schema"
|
|
" WHERE type='index' AND tbl_name=%Q"
|
|
" AND sql IS NOT NULL"
|
|
" AND sql NOT IN (SELECT sql FROM main.sqlite_schema"
|
|
" WHERE type='index' AND tbl_name=%Q"
|
|
" AND sql IS NOT NULL)",
|
|
zTab, zTab);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
|
|
end_diff_one_table:
|
|
strFree(pSql);
|
|
sqlite3_free(zId);
|
|
namelistFree(az);
|
|
namelistFree(az2);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Check that table zTab exists and has the same schema in both the "main"
|
|
** and "aux" databases currently opened by the global db handle. If they
|
|
** do not, output an error message on stderr and exit(1). Otherwise, if
|
|
** the schemas do match, return control to the caller.
|
|
*/
|
|
static void checkSchemasMatch(const char *zTab){
|
|
sqlite3_stmt *pStmt = db_prepare(
|
|
"SELECT A.sql=B.sql FROM main.sqlite_schema A, aux.sqlite_schema B"
|
|
" WHERE A.name=%Q AND B.name=%Q", zTab, zTab
|
|
);
|
|
if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
if( sqlite3_column_int(pStmt,0)==0 ){
|
|
runtimeError("schema changes for table %s", safeId(zTab));
|
|
}
|
|
}else{
|
|
runtimeError("table %s missing from one or both databases", safeId(zTab));
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
}
|
|
|
|
/**************************************************************************
|
|
** The following code is copied from fossil. It is used to generate the
|
|
** fossil delta blobs sometimes used in RBU update records.
|
|
*/
|
|
|
|
typedef unsigned short u16;
|
|
typedef unsigned int u32;
|
|
typedef unsigned char u8;
|
|
|
|
/*
|
|
** The width of a hash window in bytes. The algorithm only works if this
|
|
** is a power of 2.
|
|
*/
|
|
#define NHASH 16
|
|
|
|
/*
|
|
** The current state of the rolling hash.
|
|
**
|
|
** z[] holds the values that have been hashed. z[] is a circular buffer.
|
|
** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of
|
|
** the window.
|
|
**
|
|
** Hash.a is the sum of all elements of hash.z[]. Hash.b is a weighted
|
|
** sum. Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1.
|
|
** (Each index for z[] should be module NHASH, of course. The %NHASH operator
|
|
** is omitted in the prior expression for brevity.)
|
|
*/
|
|
typedef struct hash hash;
|
|
struct hash {
|
|
u16 a, b; /* Hash values */
|
|
u16 i; /* Start of the hash window */
|
|
char z[NHASH]; /* The values that have been hashed */
|
|
};
|
|
|
|
/*
|
|
** Initialize the rolling hash using the first NHASH characters of z[]
|
|
*/
|
|
static void hash_init(hash *pHash, const char *z){
|
|
u16 a, b, i;
|
|
a = b = 0;
|
|
for(i=0; i<NHASH; i++){
|
|
a += z[i];
|
|
b += (NHASH-i)*z[i];
|
|
pHash->z[i] = z[i];
|
|
}
|
|
pHash->a = a & 0xffff;
|
|
pHash->b = b & 0xffff;
|
|
pHash->i = 0;
|
|
}
|
|
|
|
/*
|
|
** Advance the rolling hash by a single character "c"
|
|
*/
|
|
static void hash_next(hash *pHash, int c){
|
|
u16 old = pHash->z[pHash->i];
|
|
pHash->z[pHash->i] = (char)c;
|
|
pHash->i = (pHash->i+1)&(NHASH-1);
|
|
pHash->a = pHash->a - old + (char)c;
|
|
pHash->b = pHash->b - NHASH*old + pHash->a;
|
|
}
|
|
|
|
/*
|
|
** Return a 32-bit hash value
|
|
*/
|
|
static u32 hash_32bit(hash *pHash){
|
|
return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16);
|
|
}
|
|
|
|
/*
|
|
** Write an base-64 integer into the given buffer.
|
|
*/
|
|
static void putInt(unsigned int v, char **pz){
|
|
static const char zDigits[] =
|
|
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~";
|
|
/* 123456789 123456789 123456789 123456789 123456789 123456789 123 */
|
|
int i, j;
|
|
char zBuf[20];
|
|
if( v==0 ){
|
|
*(*pz)++ = '0';
|
|
return;
|
|
}
|
|
for(i=0; v>0; i++, v>>=6){
|
|
zBuf[i] = zDigits[v&0x3f];
|
|
}
|
|
for(j=i-1; j>=0; j--){
|
|
*(*pz)++ = zBuf[j];
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the number digits in the base-64 representation of a positive integer
|
|
*/
|
|
static int digit_count(int v){
|
|
unsigned int i, x;
|
|
for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){}
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
** Compute a 32-bit checksum on the N-byte buffer. Return the result.
|
|
*/
|
|
static unsigned int checksum(const char *zIn, size_t N){
|
|
const unsigned char *z = (const unsigned char *)zIn;
|
|
unsigned sum0 = 0;
|
|
unsigned sum1 = 0;
|
|
unsigned sum2 = 0;
|
|
unsigned sum3 = 0;
|
|
while(N >= 16){
|
|
sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
|
|
sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
|
|
sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
|
|
sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
|
|
z += 16;
|
|
N -= 16;
|
|
}
|
|
while(N >= 4){
|
|
sum0 += z[0];
|
|
sum1 += z[1];
|
|
sum2 += z[2];
|
|
sum3 += z[3];
|
|
z += 4;
|
|
N -= 4;
|
|
}
|
|
sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
|
|
switch(N){
|
|
case 3: sum3 += (z[2] << 8);
|
|
case 2: sum3 += (z[1] << 16);
|
|
case 1: sum3 += (z[0] << 24);
|
|
default: ;
|
|
}
|
|
return sum3;
|
|
}
|
|
|
|
/*
|
|
** Create a new delta.
|
|
**
|
|
** The delta is written into a preallocated buffer, zDelta, which
|
|
** should be at least 60 bytes longer than the target file, zOut.
|
|
** The delta string will be NUL-terminated, but it might also contain
|
|
** embedded NUL characters if either the zSrc or zOut files are
|
|
** binary. This function returns the length of the delta string
|
|
** in bytes, excluding the final NUL terminator character.
|
|
**
|
|
** Output Format:
|
|
**
|
|
** The delta begins with a base64 number followed by a newline. This
|
|
** number is the number of bytes in the TARGET file. Thus, given a
|
|
** delta file z, a program can compute the size of the output file
|
|
** simply by reading the first line and decoding the base-64 number
|
|
** found there. The delta_output_size() routine does exactly this.
|
|
**
|
|
** After the initial size number, the delta consists of a series of
|
|
** literal text segments and commands to copy from the SOURCE file.
|
|
** A copy command looks like this:
|
|
**
|
|
** NNN@MMM,
|
|
**
|
|
** where NNN is the number of bytes to be copied and MMM is the offset
|
|
** into the source file of the first byte (both base-64). If NNN is 0
|
|
** it means copy the rest of the input file. Literal text is like this:
|
|
**
|
|
** NNN:TTTTT
|
|
**
|
|
** where NNN is the number of bytes of text (base-64) and TTTTT is the text.
|
|
**
|
|
** The last term is of the form
|
|
**
|
|
** NNN;
|
|
**
|
|
** In this case, NNN is a 32-bit bigendian checksum of the output file
|
|
** that can be used to verify that the delta applied correctly. All
|
|
** numbers are in base-64.
|
|
**
|
|
** Pure text files generate a pure text delta. Binary files generate a
|
|
** delta that may contain some binary data.
|
|
**
|
|
** Algorithm:
|
|
**
|
|
** The encoder first builds a hash table to help it find matching
|
|
** patterns in the source file. 16-byte chunks of the source file
|
|
** sampled at evenly spaced intervals are used to populate the hash
|
|
** table.
|
|
**
|
|
** Next we begin scanning the target file using a sliding 16-byte
|
|
** window. The hash of the 16-byte window in the target is used to
|
|
** search for a matching section in the source file. When a match
|
|
** is found, a copy command is added to the delta. An effort is
|
|
** made to extend the matching section to regions that come before
|
|
** and after the 16-byte hash window. A copy command is only issued
|
|
** if the result would use less space that just quoting the text
|
|
** literally. Literal text is added to the delta for sections that
|
|
** do not match or which can not be encoded efficiently using copy
|
|
** commands.
|
|
*/
|
|
static int rbuDeltaCreate(
|
|
const char *zSrc, /* The source or pattern file */
|
|
unsigned int lenSrc, /* Length of the source file */
|
|
const char *zOut, /* The target file */
|
|
unsigned int lenOut, /* Length of the target file */
|
|
char *zDelta /* Write the delta into this buffer */
|
|
){
|
|
unsigned int i, base;
|
|
char *zOrigDelta = zDelta;
|
|
hash h;
|
|
int nHash; /* Number of hash table entries */
|
|
int *landmark; /* Primary hash table */
|
|
int *collide; /* Collision chain */
|
|
int lastRead = -1; /* Last byte of zSrc read by a COPY command */
|
|
|
|
/* Add the target file size to the beginning of the delta
|
|
*/
|
|
putInt(lenOut, &zDelta);
|
|
*(zDelta++) = '\n';
|
|
|
|
/* If the source file is very small, it means that we have no
|
|
** chance of ever doing a copy command. Just output a single
|
|
** literal segment for the entire target and exit.
|
|
*/
|
|
if( lenSrc<=NHASH ){
|
|
putInt(lenOut, &zDelta);
|
|
*(zDelta++) = ':';
|
|
memcpy(zDelta, zOut, lenOut);
|
|
zDelta += lenOut;
|
|
putInt(checksum(zOut, lenOut), &zDelta);
|
|
*(zDelta++) = ';';
|
|
return (int)(zDelta - zOrigDelta);
|
|
}
|
|
|
|
/* Compute the hash table used to locate matching sections in the
|
|
** source file.
|
|
*/
|
|
nHash = lenSrc/NHASH;
|
|
collide = sqlite3_malloc( nHash*2*sizeof(int) );
|
|
landmark = &collide[nHash];
|
|
memset(landmark, -1, nHash*sizeof(int));
|
|
memset(collide, -1, nHash*sizeof(int));
|
|
for(i=0; i<lenSrc-NHASH; i+=NHASH){
|
|
int hv;
|
|
hash_init(&h, &zSrc[i]);
|
|
hv = hash_32bit(&h) % nHash;
|
|
collide[i/NHASH] = landmark[hv];
|
|
landmark[hv] = i/NHASH;
|
|
}
|
|
|
|
/* Begin scanning the target file and generating copy commands and
|
|
** literal sections of the delta.
|
|
*/
|
|
base = 0; /* We have already generated everything before zOut[base] */
|
|
while( base+NHASH<lenOut ){
|
|
int iSrc, iBlock;
|
|
int bestCnt, bestOfst=0, bestLitsz=0;
|
|
hash_init(&h, &zOut[base]);
|
|
i = 0; /* Trying to match a landmark against zOut[base+i] */
|
|
bestCnt = 0;
|
|
while( 1 ){
|
|
int hv;
|
|
int limit = 250;
|
|
|
|
hv = hash_32bit(&h) % nHash;
|
|
iBlock = landmark[hv];
|
|
while( iBlock>=0 && (limit--)>0 ){
|
|
/*
|
|
** The hash window has identified a potential match against
|
|
** landmark block iBlock. But we need to investigate further.
|
|
**
|
|
** Look for a region in zOut that matches zSrc. Anchor the search
|
|
** at zSrc[iSrc] and zOut[base+i]. Do not include anything prior to
|
|
** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen].
|
|
**
|
|
** Set cnt equal to the length of the match and set ofst so that
|
|
** zSrc[ofst] is the first element of the match. litsz is the number
|
|
** of characters between zOut[base] and the beginning of the match.
|
|
** sz will be the overhead (in bytes) needed to encode the copy
|
|
** command. Only generate copy command if the overhead of the
|
|
** copy command is less than the amount of literal text to be copied.
|
|
*/
|
|
int cnt, ofst, litsz;
|
|
int j, k, x, y;
|
|
int sz;
|
|
|
|
/* Beginning at iSrc, match forwards as far as we can. j counts
|
|
** the number of characters that match */
|
|
iSrc = iBlock*NHASH;
|
|
for(
|
|
j=0, x=iSrc, y=base+i;
|
|
(unsigned int)x<lenSrc && (unsigned int)y<lenOut;
|
|
j++, x++, y++
|
|
){
|
|
if( zSrc[x]!=zOut[y] ) break;
|
|
}
|
|
j--;
|
|
|
|
/* Beginning at iSrc-1, match backwards as far as we can. k counts
|
|
** the number of characters that match */
|
|
for(k=1; k<iSrc && (unsigned int)k<=i; k++){
|
|
if( zSrc[iSrc-k]!=zOut[base+i-k] ) break;
|
|
}
|
|
k--;
|
|
|
|
/* Compute the offset and size of the matching region */
|
|
ofst = iSrc-k;
|
|
cnt = j+k+1;
|
|
litsz = i-k; /* Number of bytes of literal text before the copy */
|
|
/* sz will hold the number of bytes needed to encode the "insert"
|
|
** command and the copy command, not counting the "insert" text */
|
|
sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3;
|
|
if( cnt>=sz && cnt>bestCnt ){
|
|
/* Remember this match only if it is the best so far and it
|
|
** does not increase the file size */
|
|
bestCnt = cnt;
|
|
bestOfst = iSrc-k;
|
|
bestLitsz = litsz;
|
|
}
|
|
|
|
/* Check the next matching block */
|
|
iBlock = collide[iBlock];
|
|
}
|
|
|
|
/* We have a copy command that does not cause the delta to be larger
|
|
** than a literal insert. So add the copy command to the delta.
|
|
*/
|
|
if( bestCnt>0 ){
|
|
if( bestLitsz>0 ){
|
|
/* Add an insert command before the copy */
|
|
putInt(bestLitsz,&zDelta);
|
|
*(zDelta++) = ':';
|
|
memcpy(zDelta, &zOut[base], bestLitsz);
|
|
zDelta += bestLitsz;
|
|
base += bestLitsz;
|
|
}
|
|
base += bestCnt;
|
|
putInt(bestCnt, &zDelta);
|
|
*(zDelta++) = '@';
|
|
putInt(bestOfst, &zDelta);
|
|
*(zDelta++) = ',';
|
|
if( bestOfst + bestCnt -1 > lastRead ){
|
|
lastRead = bestOfst + bestCnt - 1;
|
|
}
|
|
bestCnt = 0;
|
|
break;
|
|
}
|
|
|
|
/* If we reach this point, it means no match is found so far */
|
|
if( base+i+NHASH>=lenOut ){
|
|
/* We have reached the end of the file and have not found any
|
|
** matches. Do an "insert" for everything that does not match */
|
|
putInt(lenOut-base, &zDelta);
|
|
*(zDelta++) = ':';
|
|
memcpy(zDelta, &zOut[base], lenOut-base);
|
|
zDelta += lenOut-base;
|
|
base = lenOut;
|
|
break;
|
|
}
|
|
|
|
/* Advance the hash by one character. Keep looking for a match */
|
|
hash_next(&h, zOut[base+i+NHASH]);
|
|
i++;
|
|
}
|
|
}
|
|
/* Output a final "insert" record to get all the text at the end of
|
|
** the file that does not match anything in the source file.
|
|
*/
|
|
if( base<lenOut ){
|
|
putInt(lenOut-base, &zDelta);
|
|
*(zDelta++) = ':';
|
|
memcpy(zDelta, &zOut[base], lenOut-base);
|
|
zDelta += lenOut-base;
|
|
}
|
|
/* Output the final checksum record. */
|
|
putInt(checksum(zOut, lenOut), &zDelta);
|
|
*(zDelta++) = ';';
|
|
sqlite3_free(collide);
|
|
return (int)(zDelta - zOrigDelta);
|
|
}
|
|
|
|
/*
|
|
** End of code copied from fossil.
|
|
**************************************************************************/
|
|
|
|
static void strPrintfArray(
|
|
sqlite3_str *pStr, /* String object to append to */
|
|
const char *zSep, /* Separator string */
|
|
const char *zFmt, /* Format for each entry */
|
|
char **az, int n /* Array of strings & its size (or -1) */
|
|
){
|
|
int i;
|
|
for(i=0; az[i] && (i<n || n<0); i++){
|
|
if( i!=0 ) sqlite3_str_appendf(pStr, "%s", zSep);
|
|
sqlite3_str_appendf(pStr, zFmt, az[i], az[i], az[i]);
|
|
}
|
|
}
|
|
|
|
static void getRbudiffQuery(
|
|
const char *zTab,
|
|
char **azCol,
|
|
int nPK,
|
|
int bOtaRowid,
|
|
sqlite3_str *pSql
|
|
){
|
|
int i;
|
|
|
|
/* First the newly inserted rows: **/
|
|
sqlite3_str_appendf(pSql, "SELECT ");
|
|
strPrintfArray(pSql, ", ", "%s", azCol, -1);
|
|
sqlite3_str_appendf(pSql, ", 0, "); /* Set ota_control to 0 for an insert */
|
|
strPrintfArray(pSql, ", ", "NULL", azCol, -1);
|
|
sqlite3_str_appendf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab);
|
|
sqlite3_str_appendf(pSql, " SELECT 1 FROM ", zTab);
|
|
sqlite3_str_appendf(pSql, " main.%Q AS o WHERE ", zTab);
|
|
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
|
|
sqlite3_str_appendf(pSql, "\n) AND ");
|
|
strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
|
|
|
|
/* Deleted rows: */
|
|
sqlite3_str_appendf(pSql, "\nUNION ALL\nSELECT ");
|
|
strPrintfArray(pSql, ", ", "%s", azCol, nPK);
|
|
if( azCol[nPK] ){
|
|
sqlite3_str_appendf(pSql, ", ");
|
|
strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1);
|
|
}
|
|
sqlite3_str_appendf(pSql, ", 1, "); /* Set ota_control to 1 for a delete */
|
|
strPrintfArray(pSql, ", ", "NULL", azCol, -1);
|
|
sqlite3_str_appendf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab);
|
|
sqlite3_str_appendf(pSql, " SELECT 1 FROM ", zTab);
|
|
sqlite3_str_appendf(pSql, " aux.%Q AS o WHERE ", zTab);
|
|
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
|
|
sqlite3_str_appendf(pSql, "\n) AND ");
|
|
strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
|
|
|
|
/* Updated rows. If all table columns are part of the primary key, there
|
|
** can be no updates. In this case this part of the compound SELECT can
|
|
** be omitted altogether. */
|
|
if( azCol[nPK] ){
|
|
sqlite3_str_appendf(pSql, "\nUNION ALL\nSELECT ");
|
|
strPrintfArray(pSql, ", ", "n.%s", azCol, nPK);
|
|
sqlite3_str_appendf(pSql, ",\n");
|
|
strPrintfArray(pSql, " ,\n",
|
|
" CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1
|
|
);
|
|
|
|
if( bOtaRowid==0 ){
|
|
sqlite3_str_appendf(pSql, ", '");
|
|
strPrintfArray(pSql, "", ".", azCol, nPK);
|
|
sqlite3_str_appendf(pSql, "' ||\n");
|
|
}else{
|
|
sqlite3_str_appendf(pSql, ",\n");
|
|
}
|
|
strPrintfArray(pSql, " ||\n",
|
|
" CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1
|
|
);
|
|
sqlite3_str_appendf(pSql, "\nAS ota_control, ");
|
|
strPrintfArray(pSql, ", ", "NULL", azCol, nPK);
|
|
sqlite3_str_appendf(pSql, ",\n");
|
|
strPrintfArray(pSql, " ,\n",
|
|
" CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1
|
|
);
|
|
|
|
sqlite3_str_appendf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ",
|
|
zTab, zTab);
|
|
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
|
|
sqlite3_str_appendf(pSql, " AND ota_control LIKE '%%x%%'");
|
|
}
|
|
|
|
/* Now add an ORDER BY clause to sort everything by PK. */
|
|
sqlite3_str_appendf(pSql, "\nORDER BY ");
|
|
for(i=1; i<=nPK; i++) sqlite3_str_appendf(pSql, "%s%d", ((i>1)?", ":""), i);
|
|
}
|
|
|
|
static void rbudiff_one_table(const char *zTab, FILE *out){
|
|
int bOtaRowid; /* True to use an ota_rowid column */
|
|
int nPK; /* Number of primary key columns in table */
|
|
char **azCol; /* NULL terminated array of col names */
|
|
int i;
|
|
int nCol;
|
|
sqlite3_str *pCt; /* The "CREATE TABLE data_xxx" statement */
|
|
sqlite3_str *pSql; /* Query to find differences */
|
|
sqlite3_str *pInsert; /* First part of output INSERT statement */
|
|
sqlite3_stmt *pStmt = 0;
|
|
int nRow = 0; /* Total rows in data_xxx table */
|
|
|
|
/* --rbu mode must use real primary keys. */
|
|
g.bSchemaPK = 1;
|
|
pCt = sqlite3_str_new(0);
|
|
pSql = sqlite3_str_new(0);
|
|
pInsert = sqlite3_str_new(0);
|
|
|
|
/* Check that the schemas of the two tables match. Exit early otherwise. */
|
|
checkSchemasMatch(zTab);
|
|
|
|
/* Grab the column names and PK details for the table(s). If no usable PK
|
|
** columns are found, bail out early. */
|
|
azCol = columnNames("main", zTab, &nPK, &bOtaRowid);
|
|
if( azCol==0 ){
|
|
runtimeError("table %s has no usable PK columns", zTab);
|
|
}
|
|
for(nCol=0; azCol[nCol]; nCol++);
|
|
|
|
/* Build and output the CREATE TABLE statement for the data_xxx table */
|
|
sqlite3_str_appendf(pCt, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab);
|
|
if( bOtaRowid ) sqlite3_str_appendf(pCt, "rbu_rowid, ");
|
|
strPrintfArray(pCt, ", ", "%s", &azCol[bOtaRowid], -1);
|
|
sqlite3_str_appendf(pCt, ", rbu_control);");
|
|
|
|
/* Get the SQL for the query to retrieve data from the two databases */
|
|
getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, pSql);
|
|
|
|
/* Build the first part of the INSERT statement output for each row
|
|
** in the data_xxx table. */
|
|
sqlite3_str_appendf(pInsert, "INSERT INTO 'data_%q' (", zTab);
|
|
if( bOtaRowid ) sqlite3_str_appendf(pInsert, "rbu_rowid, ");
|
|
strPrintfArray(pInsert, ", ", "%s", &azCol[bOtaRowid], -1);
|
|
sqlite3_str_appendf(pInsert, ", rbu_control) VALUES(");
|
|
|
|
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
|
|
|
|
while( sqlite3_step(pStmt)==SQLITE_ROW ){
|
|
|
|
/* If this is the first row output, print out the CREATE TABLE
|
|
** statement first. And reset pCt so that it will not be
|
|
** printed again. */
|
|
if( sqlite3_str_length(pCt) ){
|
|
fprintf(out, "%s\n", sqlite3_str_value(pCt));
|
|
sqlite3_str_reset(pCt);
|
|
}
|
|
|
|
/* Output the first part of the INSERT statement */
|
|
fprintf(out, "%s", sqlite3_str_value(pInsert));
|
|
nRow++;
|
|
|
|
if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){
|
|
for(i=0; i<=nCol; i++){
|
|
if( i>0 ) fprintf(out, ", ");
|
|
printQuoted(out, sqlite3_column_value(pStmt, i));
|
|
}
|
|
}else{
|
|
char *zOtaControl;
|
|
int nOtaControl = sqlite3_column_bytes(pStmt, nCol);
|
|
|
|
zOtaControl = (char*)sqlite3_malloc(nOtaControl+1);
|
|
memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1);
|
|
|
|
for(i=0; i<nCol; i++){
|
|
int bDone = 0;
|
|
if( i>=nPK
|
|
&& sqlite3_column_type(pStmt, i)==SQLITE_BLOB
|
|
&& sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB
|
|
){
|
|
const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i);
|
|
int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i);
|
|
const char *aFinal = sqlite3_column_blob(pStmt, i);
|
|
int nFinal = sqlite3_column_bytes(pStmt, i);
|
|
char *aDelta;
|
|
int nDelta;
|
|
|
|
aDelta = sqlite3_malloc(nFinal + 60);
|
|
nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta);
|
|
if( nDelta<nFinal ){
|
|
int j;
|
|
fprintf(out, "x'");
|
|
for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]);
|
|
fprintf(out, "'");
|
|
zOtaControl[i-bOtaRowid] = 'f';
|
|
bDone = 1;
|
|
}
|
|
sqlite3_free(aDelta);
|
|
}
|
|
|
|
if( bDone==0 ){
|
|
printQuoted(out, sqlite3_column_value(pStmt, i));
|
|
}
|
|
fprintf(out, ", ");
|
|
}
|
|
fprintf(out, "'%s'", zOtaControl);
|
|
sqlite3_free(zOtaControl);
|
|
}
|
|
|
|
/* And the closing bracket of the insert statement */
|
|
fprintf(out, ");\n");
|
|
}
|
|
|
|
sqlite3_finalize(pStmt);
|
|
if( nRow>0 ){
|
|
sqlite3_str *pCnt = sqlite3_str_new(0);
|
|
sqlite3_str_appendf(pCnt,
|
|
"INSERT INTO rbu_count VALUES('data_%q', %d);", zTab, nRow);
|
|
fprintf(out, "%s\n", sqlite3_str_value(pCnt));
|
|
strFree(pCnt);
|
|
}
|
|
|
|
strFree(pCt);
|
|
strFree(pSql);
|
|
strFree(pInsert);
|
|
}
|
|
|
|
/*
|
|
** Display a summary of differences between two versions of the same
|
|
** table table.
|
|
**
|
|
** * Number of rows changed
|
|
** * Number of rows added
|
|
** * Number of rows deleted
|
|
** * Number of identical rows
|
|
*/
|
|
static void summarize_one_table(const char *zTab, FILE *out){
|
|
char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
|
|
char **az = 0; /* Columns in main */
|
|
char **az2 = 0; /* Columns in aux */
|
|
int nPk; /* Primary key columns in main */
|
|
int nPk2; /* Primary key columns in aux */
|
|
int n = 0; /* Number of columns in main */
|
|
int n2; /* Number of columns in aux */
|
|
int i; /* Loop counter */
|
|
const char *zSep; /* Separator string */
|
|
sqlite3_str *pSql; /* Comparison query */
|
|
sqlite3_stmt *pStmt; /* Query statement to do the diff */
|
|
sqlite3_int64 nUpdate; /* Number of updated rows */
|
|
sqlite3_int64 nUnchanged; /* Number of unmodified rows */
|
|
sqlite3_int64 nDelete; /* Number of deleted rows */
|
|
sqlite3_int64 nInsert; /* Number of inserted rows */
|
|
|
|
pSql = sqlite3_str_new(0);
|
|
if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
|
|
if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
|
|
/* Table missing from second database. */
|
|
Wfprintf(out, "%s: missing from second database\n", zTab);
|
|
}
|
|
goto end_summarize_one_table;
|
|
}
|
|
|
|
if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
|
|
/* Table missing from source */
|
|
Wfprintf(out, "%s: missing from first database\n", zTab);
|
|
goto end_summarize_one_table;
|
|
}
|
|
|
|
az = columnNames("main", zTab, &nPk, 0);
|
|
az2 = columnNames("aux", zTab, &nPk2, 0);
|
|
if( az && az2 ){
|
|
for(n=0; az[n]; n++){
|
|
if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
|
|
}
|
|
}
|
|
if( az==0
|
|
|| az2==0
|
|
|| nPk!=nPk2
|
|
|| az[n]
|
|
){
|
|
/* Schema mismatch */
|
|
Wfprintf(out, "%s: incompatible schema\n", zTab);
|
|
goto end_summarize_one_table;
|
|
}
|
|
|
|
/* Build the comparison query */
|
|
for(n2=n; az[n2]; n2++){}
|
|
sqlite3_str_appendf(pSql, "SELECT 1, count(*)");
|
|
if( n2==nPk2 ){
|
|
sqlite3_str_appendf(pSql, ", 0\n");
|
|
}else{
|
|
zSep = ", sum(";
|
|
for(i=nPk; az[i]; i++){
|
|
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]);
|
|
zSep = " OR ";
|
|
}
|
|
sqlite3_str_appendf(pSql, ")\n");
|
|
}
|
|
sqlite3_str_appendf(pSql, " FROM main.%s A, aux.%s B\n", zId, zId);
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
|
|
zSep = " AND";
|
|
}
|
|
sqlite3_str_appendf(pSql, " UNION ALL\n");
|
|
sqlite3_str_appendf(pSql, "SELECT 2, count(*), 0\n");
|
|
sqlite3_str_appendf(pSql, " FROM main.%s A\n", zId);
|
|
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId);
|
|
zSep = "WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
|
|
zSep = " AND";
|
|
}
|
|
sqlite3_str_appendf(pSql, ")\n");
|
|
sqlite3_str_appendf(pSql, " UNION ALL\n");
|
|
sqlite3_str_appendf(pSql, "SELECT 3, count(*), 0\n");
|
|
sqlite3_str_appendf(pSql, " FROM aux.%s B\n", zId);
|
|
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId);
|
|
zSep = "WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
|
|
zSep = " AND";
|
|
}
|
|
sqlite3_str_appendf(pSql, ")\n ORDER BY 1;\n");
|
|
|
|
if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){
|
|
Wfprintf(stdout, "SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
|
|
goto end_summarize_one_table;
|
|
}
|
|
|
|
/* Run the query and output difference summary */
|
|
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
|
|
nUpdate = 0;
|
|
nInsert = 0;
|
|
nDelete = 0;
|
|
nUnchanged = 0;
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
switch( sqlite3_column_int(pStmt,0) ){
|
|
case 1:
|
|
nUpdate = sqlite3_column_int64(pStmt,2);
|
|
nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate;
|
|
break;
|
|
case 2:
|
|
nDelete = sqlite3_column_int64(pStmt,1);
|
|
break;
|
|
case 3:
|
|
nInsert = sqlite3_column_int64(pStmt,1);
|
|
break;
|
|
}
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
Wfprintf(out,
|
|
"%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n",
|
|
zTab, nUpdate, nInsert, nDelete, nUnchanged);
|
|
|
|
end_summarize_one_table:
|
|
strFree(pSql);
|
|
sqlite3_free(zId);
|
|
namelistFree(az);
|
|
namelistFree(az2);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
** Write a 64-bit signed integer as a varint onto out
|
|
*/
|
|
static void putsVarint(FILE *out, sqlite3_uint64 v){
|
|
int i, n;
|
|
unsigned char p[12];
|
|
if( v & (((sqlite3_uint64)0xff000000)<<32) ){
|
|
p[8] = (unsigned char)v;
|
|
v >>= 8;
|
|
for(i=7; i>=0; i--){
|
|
p[i] = (unsigned char)((v & 0x7f) | 0x80);
|
|
v >>= 7;
|
|
}
|
|
fwrite(p, 8, 1, out);
|
|
}else{
|
|
n = 9;
|
|
do{
|
|
p[n--] = (unsigned char)((v & 0x7f) | 0x80);
|
|
v >>= 7;
|
|
}while( v!=0 );
|
|
p[9] &= 0x7f;
|
|
fwrite(p+n+1, 9-n, 1, out);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Write an SQLite value onto out.
|
|
*/
|
|
static void putValue(FILE *out, sqlite3_stmt *pStmt, int k){
|
|
int iDType = sqlite3_column_type(pStmt, k);
|
|
sqlite3_int64 iX;
|
|
double rX;
|
|
sqlite3_uint64 uX;
|
|
int j;
|
|
|
|
putc(iDType, out);
|
|
switch( iDType ){
|
|
case SQLITE_INTEGER:
|
|
iX = sqlite3_column_int64(pStmt, k);
|
|
memcpy(&uX, &iX, 8);
|
|
for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
|
|
break;
|
|
case SQLITE_FLOAT:
|
|
rX = sqlite3_column_double(pStmt, k);
|
|
memcpy(&uX, &rX, 8);
|
|
for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
|
|
break;
|
|
case SQLITE_TEXT:
|
|
iX = sqlite3_column_bytes(pStmt, k);
|
|
putsVarint(out, (sqlite3_uint64)iX);
|
|
fwrite(sqlite3_column_text(pStmt, k),1,(size_t)iX,out);
|
|
break;
|
|
case SQLITE_BLOB:
|
|
iX = sqlite3_column_bytes(pStmt, k);
|
|
putsVarint(out, (sqlite3_uint64)iX);
|
|
fwrite(sqlite3_column_blob(pStmt, k),1,(size_t)iX,out);
|
|
break;
|
|
case SQLITE_NULL:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Generate a CHANGESET for all differences from main.zTab to aux.zTab.
|
|
*/
|
|
static void changeset_one_table(const char *zTab, FILE *out){
|
|
sqlite3_stmt *pStmt; /* SQL statment */
|
|
char *zId = safeId(zTab); /* Escaped name of the table */
|
|
char **azCol = 0; /* List of escaped column names */
|
|
int nCol = 0; /* Number of columns */
|
|
int *aiFlg = 0; /* 0 if column is not part of PK */
|
|
int *aiPk = 0; /* Column numbers for each PK column */
|
|
int nPk = 0; /* Number of PRIMARY KEY columns */
|
|
sqlite3_str *pSql; /* SQL for the diff query */
|
|
int i, k; /* Loop counters */
|
|
const char *zSep; /* List separator */
|
|
|
|
/* Check that the schemas of the two tables match. Exit early otherwise. */
|
|
checkSchemasMatch(zTab);
|
|
pSql = sqlite3_str_new(0);
|
|
|
|
pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab);
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
nCol++;
|
|
azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol);
|
|
if( azCol==0 ) runtimeError("out of memory");
|
|
aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol);
|
|
if( aiFlg==0 ) runtimeError("out of memory");
|
|
azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1));
|
|
aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5);
|
|
if( i>0 ){
|
|
if( i>nPk ){
|
|
nPk = i;
|
|
aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk);
|
|
if( aiPk==0 ) runtimeError("out of memory");
|
|
}
|
|
aiPk[i-1] = nCol-1;
|
|
}
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
if( nPk==0 ) goto end_changeset_one_table;
|
|
if( nCol>nPk ){
|
|
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_UPDATE);
|
|
for(i=0; i<nCol; i++){
|
|
if( aiFlg[i] ){
|
|
sqlite3_str_appendf(pSql, ",\n A.%s", azCol[i]);
|
|
}else{
|
|
sqlite3_str_appendf(pSql, ",\n A.%s IS NOT B.%s, A.%s, B.%s",
|
|
azCol[i], azCol[i], azCol[i], azCol[i]);
|
|
}
|
|
}
|
|
sqlite3_str_appendf(pSql,"\n FROM main.%s A, aux.%s B\n", zId, zId);
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
|
|
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
|
|
zSep = " AND";
|
|
}
|
|
zSep = "\n AND (";
|
|
for(i=0; i<nCol; i++){
|
|
if( aiFlg[i] ) continue;
|
|
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]);
|
|
zSep = " OR\n ";
|
|
}
|
|
sqlite3_str_appendf(pSql,")\n UNION ALL\n");
|
|
}
|
|
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_DELETE);
|
|
for(i=0; i<nCol; i++){
|
|
if( aiFlg[i] ){
|
|
sqlite3_str_appendf(pSql, ",\n A.%s", azCol[i]);
|
|
}else{
|
|
sqlite3_str_appendf(pSql, ",\n 1, A.%s, NULL", azCol[i]);
|
|
}
|
|
}
|
|
sqlite3_str_appendf(pSql, "\n FROM main.%s A\n", zId);
|
|
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
|
|
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
|
|
zSep = " AND";
|
|
}
|
|
sqlite3_str_appendf(pSql, ")\n UNION ALL\n");
|
|
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_INSERT);
|
|
for(i=0; i<nCol; i++){
|
|
if( aiFlg[i] ){
|
|
sqlite3_str_appendf(pSql, ",\n B.%s", azCol[i]);
|
|
}else{
|
|
sqlite3_str_appendf(pSql, ",\n 1, NULL, B.%s", azCol[i]);
|
|
}
|
|
}
|
|
sqlite3_str_appendf(pSql, "\n FROM aux.%s B\n", zId);
|
|
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
|
|
zSep = " WHERE";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
|
|
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
|
|
zSep = " AND";
|
|
}
|
|
sqlite3_str_appendf(pSql, ")\n");
|
|
sqlite3_str_appendf(pSql, " ORDER BY");
|
|
zSep = " ";
|
|
for(i=0; i<nPk; i++){
|
|
sqlite3_str_appendf(pSql, "%s %d", zSep, aiPk[i]+2);
|
|
zSep = ",";
|
|
}
|
|
sqlite3_str_appendf(pSql, ";\n");
|
|
|
|
if( g.fDebug & DEBUG_DIFF_SQL ){
|
|
Wfprintf(stdout, "SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
|
|
goto end_changeset_one_table;
|
|
}
|
|
|
|
putc('T', out);
|
|
putsVarint(out, (sqlite3_uint64)nCol);
|
|
for(i=0; i<nCol; i++) putc(aiFlg[i], out);
|
|
fwrite(zTab, 1, strlen(zTab), out);
|
|
putc(0, out);
|
|
|
|
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
int iType = sqlite3_column_int(pStmt,0);
|
|
putc(iType, out);
|
|
putc(0, out);
|
|
switch( sqlite3_column_int(pStmt,0) ){
|
|
case SQLITE_UPDATE: {
|
|
for(k=1, i=0; i<nCol; i++){
|
|
if( aiFlg[i] ){
|
|
putValue(out, pStmt, k);
|
|
k++;
|
|
}else if( sqlite3_column_int(pStmt,k) ){
|
|
putValue(out, pStmt, k+1);
|
|
k += 3;
|
|
}else{
|
|
putc(0, out);
|
|
k += 3;
|
|
}
|
|
}
|
|
for(k=1, i=0; i<nCol; i++){
|
|
if( aiFlg[i] ){
|
|
putc(0, out);
|
|
k++;
|
|
}else if( sqlite3_column_int(pStmt,k) ){
|
|
putValue(out, pStmt, k+2);
|
|
k += 3;
|
|
}else{
|
|
putc(0, out);
|
|
k += 3;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_INSERT: {
|
|
for(k=1, i=0; i<nCol; i++){
|
|
if( aiFlg[i] ){
|
|
putValue(out, pStmt, k);
|
|
k++;
|
|
}else{
|
|
putValue(out, pStmt, k+2);
|
|
k += 3;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_DELETE: {
|
|
for(k=1, i=0; i<nCol; i++){
|
|
if( aiFlg[i] ){
|
|
putValue(out, pStmt, k);
|
|
k++;
|
|
}else{
|
|
putValue(out, pStmt, k+1);
|
|
k += 3;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
|
|
end_changeset_one_table:
|
|
while( nCol>0 ) sqlite3_free(azCol[--nCol]);
|
|
sqlite3_free(azCol);
|
|
sqlite3_free(aiPk);
|
|
sqlite3_free(zId);
|
|
sqlite3_free(aiFlg);
|
|
strFree(pSql);
|
|
}
|
|
|
|
/*
|
|
** Return true if the ascii character passed as the only argument is a
|
|
** whitespace character. Otherwise return false.
|
|
*/
|
|
static int is_whitespace(char x){
|
|
return (x==' ' || x=='\t' || x=='\n' || x=='\r');
|
|
}
|
|
|
|
/*
|
|
** Extract the next SQL keyword or quoted string from buffer zIn and copy it
|
|
** (or a prefix of it if it will not fit) into buffer zBuf, size nBuf bytes.
|
|
** Return a pointer to the character within zIn immediately following
|
|
** the token or quoted string just extracted.
|
|
*/
|
|
static const char *gobble_token(const char *zIn, char *zBuf, int nBuf){
|
|
const char *p = zIn;
|
|
char *pOut = zBuf;
|
|
char *pEnd = &pOut[nBuf-1];
|
|
char q = 0; /* quote character, if any */
|
|
|
|
if( p==0 ) return 0;
|
|
while( is_whitespace(*p) ) p++;
|
|
switch( *p ){
|
|
case '"': q = '"'; break;
|
|
case '\'': q = '\''; break;
|
|
case '`': q = '`'; break;
|
|
case '[': q = ']'; break;
|
|
}
|
|
|
|
if( q ){
|
|
p++;
|
|
while( *p && pOut<pEnd ){
|
|
if( *p==q ){
|
|
p++;
|
|
if( *p!=q ) break;
|
|
}
|
|
if( pOut<pEnd ) *pOut++ = *p;
|
|
p++;
|
|
}
|
|
}else{
|
|
while( *p && !is_whitespace(*p) && *p!='(' ){
|
|
if( pOut<pEnd ) *pOut++ = *p;
|
|
p++;
|
|
}
|
|
}
|
|
|
|
*pOut = '\0';
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** This function is the implementation of SQL scalar function "module_name":
|
|
**
|
|
** module_name(SQL)
|
|
**
|
|
** The only argument should be an SQL statement of the type that may appear
|
|
** in the sqlite_schema table. If the statement is a "CREATE VIRTUAL TABLE"
|
|
** statement, then the value returned is the name of the module that it
|
|
** uses. Otherwise, if the statement is not a CVT, NULL is returned.
|
|
*/
|
|
static void module_name_func(
|
|
sqlite3_context *pCtx,
|
|
int nVal, sqlite3_value **apVal
|
|
){
|
|
const char *zSql;
|
|
char zToken[32];
|
|
|
|
assert( nVal==1 );
|
|
zSql = (const char*)sqlite3_value_text(apVal[0]);
|
|
|
|
zSql = gobble_token(zSql, zToken, sizeof(zToken));
|
|
if( zSql==0 || sqlite3_stricmp(zToken, "create") ) return;
|
|
zSql = gobble_token(zSql, zToken, sizeof(zToken));
|
|
if( zSql==0 || sqlite3_stricmp(zToken, "virtual") ) return;
|
|
zSql = gobble_token(zSql, zToken, sizeof(zToken));
|
|
if( zSql==0 || sqlite3_stricmp(zToken, "table") ) return;
|
|
zSql = gobble_token(zSql, zToken, sizeof(zToken));
|
|
if( zSql==0 ) return;
|
|
zSql = gobble_token(zSql, zToken, sizeof(zToken));
|
|
if( zSql==0 || sqlite3_stricmp(zToken, "using") ) return;
|
|
zSql = gobble_token(zSql, zToken, sizeof(zToken));
|
|
|
|
sqlite3_result_text(pCtx, zToken, -1, SQLITE_TRANSIENT);
|
|
}
|
|
|
|
/*
|
|
** Return the text of an SQL statement that itself returns the list of
|
|
** tables to process within the database.
|
|
*/
|
|
const char *all_tables_sql(){
|
|
if( g.bHandleVtab ){
|
|
int rc;
|
|
|
|
rc = sqlite3_exec(g.db,
|
|
"CREATE TEMP TABLE tblmap(module COLLATE nocase, postfix);"
|
|
"INSERT INTO temp.tblmap VALUES"
|
|
"('fts3', '_content'), ('fts3', '_segments'), ('fts3', '_segdir'),"
|
|
|
|
"('fts4', '_content'), ('fts4', '_segments'), ('fts4', '_segdir'),"
|
|
"('fts4', '_docsize'), ('fts4', '_stat'),"
|
|
|
|
"('fts5', '_data'), ('fts5', '_idx'), ('fts5', '_content'),"
|
|
"('fts5', '_docsize'), ('fts5', '_config'),"
|
|
|
|
"('rtree', '_node'), ('rtree', '_rowid'), ('rtree', '_parent');"
|
|
, 0, 0, 0
|
|
);
|
|
assert( rc==SQLITE_OK );
|
|
|
|
rc = sqlite3_create_function(
|
|
g.db, "module_name", 1, SQLITE_UTF8, 0, module_name_func, 0, 0
|
|
);
|
|
assert( rc==SQLITE_OK );
|
|
|
|
return
|
|
"SELECT name FROM main.sqlite_schema\n"
|
|
" WHERE type='table' AND (\n"
|
|
" module_name(sql) IS NULL OR \n"
|
|
" module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
|
|
" ) AND name NOT IN (\n"
|
|
" SELECT a.name || b.postfix \n"
|
|
"FROM main.sqlite_schema AS a, temp.tblmap AS b \n"
|
|
"WHERE module_name(a.sql) = b.module\n"
|
|
" )\n"
|
|
"UNION \n"
|
|
"SELECT name FROM aux.sqlite_schema\n"
|
|
" WHERE type='table' AND (\n"
|
|
" module_name(sql) IS NULL OR \n"
|
|
" module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
|
|
" ) AND name NOT IN (\n"
|
|
" SELECT a.name || b.postfix \n"
|
|
"FROM aux.sqlite_schema AS a, temp.tblmap AS b \n"
|
|
"WHERE module_name(a.sql) = b.module\n"
|
|
" )\n"
|
|
" ORDER BY name";
|
|
}else{
|
|
return
|
|
"SELECT name FROM main.sqlite_schema\n"
|
|
" WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
|
|
" UNION\n"
|
|
"SELECT name FROM aux.sqlite_schema\n"
|
|
" WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
|
|
" ORDER BY name";
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Print sketchy documentation for this utility program
|
|
*/
|
|
static void showHelp(void){
|
|
Wfprintf(stdout, "Usage: %s [options] DB1 DB2\n", g.zArgv0);
|
|
Wfprintf(stdout,
|
|
"Output SQL text that would transform DB1 into DB2.\n"
|
|
"Options:\n"
|
|
" --changeset FILE Write a CHANGESET into FILE\n"
|
|
" -L|--lib LIBRARY Load an SQLite extension library\n"
|
|
" --primarykey Use schema-defined PRIMARY KEYs\n"
|
|
" --rbu Output SQL to create/populate RBU table(s)\n"
|
|
" --schema Show only differences in the schema\n"
|
|
" --summary Show only a summary of the differences\n"
|
|
" --table TAB Show only differences in table TAB\n"
|
|
" --transaction Show SQL output inside a transaction\n"
|
|
" --vtab Handle fts3, fts4, fts5 and rtree tables\n"
|
|
"See https://sqlite.org/sqldiff.html for detailed explanation.\n"
|
|
);
|
|
}
|
|
|
|
int main(int argc, char **argv){
|
|
const char *zDb1 = 0;
|
|
const char *zDb2 = 0;
|
|
int i;
|
|
int rc;
|
|
char *zErrMsg = 0;
|
|
char *zSql;
|
|
sqlite3_stmt *pStmt;
|
|
char *zTab = 0;
|
|
FILE *out = stdout;
|
|
void (*xDiff)(const char*,FILE*) = diff_one_table;
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
int nExt = 0;
|
|
char **azExt = 0;
|
|
#endif
|
|
int useTransaction = 0;
|
|
int neverUseTransaction = 0;
|
|
|
|
g.zArgv0 = argv[0];
|
|
sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
|
|
for(i=1; i<argc; i++){
|
|
const char *z = argv[i];
|
|
if( z[0]=='-' ){
|
|
z++;
|
|
if( z[0]=='-' ) z++;
|
|
if( strcmp(z,"changeset")==0 ){
|
|
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
|
|
out = fopen(argv[++i], "wb");
|
|
if( out==0 ) cmdlineError("cannot open: %s", argv[i]);
|
|
xDiff = changeset_one_table;
|
|
neverUseTransaction = 1;
|
|
}else
|
|
if( strcmp(z,"debug")==0 ){
|
|
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
|
|
g.fDebug = strtol(argv[++i], 0, 0);
|
|
}else
|
|
if( strcmp(z,"help")==0 ){
|
|
showHelp();
|
|
return 0;
|
|
}else
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){
|
|
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
|
|
azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1));
|
|
if( azExt==0 ) cmdlineError("out of memory");
|
|
azExt[nExt++] = argv[++i];
|
|
}else
|
|
#endif
|
|
if( strcmp(z,"primarykey")==0 ){
|
|
g.bSchemaPK = 1;
|
|
}else
|
|
if( strcmp(z,"rbu")==0 ){
|
|
xDiff = rbudiff_one_table;
|
|
}else
|
|
if( strcmp(z,"schema")==0 ){
|
|
g.bSchemaOnly = 1;
|
|
}else
|
|
if( strcmp(z,"summary")==0 ){
|
|
xDiff = summarize_one_table;
|
|
}else
|
|
if( strcmp(z,"table")==0 ){
|
|
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
|
|
zTab = argv[++i];
|
|
g.bSchemaCompare =
|
|
sqlite3_stricmp(zTab, "sqlite_schema")==0
|
|
|| sqlite3_stricmp(zTab, "sqlite_master")==0;
|
|
}else
|
|
if( strcmp(z,"transaction")==0 ){
|
|
useTransaction = 1;
|
|
}else
|
|
if( strcmp(z,"vtab")==0 ){
|
|
g.bHandleVtab = 1;
|
|
}else
|
|
{
|
|
cmdlineError("unknown option: %s", argv[i]);
|
|
}
|
|
}else if( zDb1==0 ){
|
|
zDb1 = argv[i];
|
|
}else if( zDb2==0 ){
|
|
zDb2 = argv[i];
|
|
}else{
|
|
cmdlineError("unknown argument: %s", argv[i]);
|
|
}
|
|
}
|
|
if( zDb2==0 ){
|
|
cmdlineError("two database arguments required");
|
|
}
|
|
if( g.bSchemaOnly && g.bSchemaCompare ){
|
|
cmdlineError("The --schema option is useless with --table %s .", zTab);
|
|
}
|
|
rc = sqlite3_open(zDb1, &g.db);
|
|
if( rc ){
|
|
cmdlineError("cannot open database file \"%s\"", zDb1);
|
|
}
|
|
rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_schema", 0, 0, &zErrMsg);
|
|
if( rc || zErrMsg ){
|
|
cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1);
|
|
}
|
|
#ifndef SQLITE_OMIT_LOAD_EXTENSION
|
|
sqlite3_enable_load_extension(g.db, 1);
|
|
for(i=0; i<nExt; i++){
|
|
rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg);
|
|
if( rc || zErrMsg ){
|
|
cmdlineError("error loading %s: %s", azExt[i], zErrMsg);
|
|
}
|
|
}
|
|
free(azExt);
|
|
#endif
|
|
zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2);
|
|
rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg);
|
|
sqlite3_free(zSql);
|
|
zSql = 0;
|
|
if( rc || zErrMsg ){
|
|
cmdlineError("cannot attach database \"%s\"", zDb2);
|
|
}
|
|
rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_schema", 0, 0, &zErrMsg);
|
|
if( rc || zErrMsg ){
|
|
cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2);
|
|
}
|
|
|
|
if( neverUseTransaction ) useTransaction = 0;
|
|
if( useTransaction ) Wfprintf(out, "BEGIN TRANSACTION;\n");
|
|
if( xDiff==rbudiff_one_table ){
|
|
Wfprintf(out, "CREATE TABLE IF NOT EXISTS rbu_count"
|
|
"(tbl TEXT PRIMARY KEY COLLATE NOCASE, cnt INTEGER) "
|
|
"WITHOUT ROWID;\n"
|
|
);
|
|
}
|
|
if( zTab ){
|
|
xDiff(zTab, out);
|
|
}else{
|
|
/* Handle tables one by one */
|
|
pStmt = db_prepare("%s", all_tables_sql() );
|
|
while( SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
xDiff((const char*)sqlite3_column_text(pStmt,0), out);
|
|
}
|
|
sqlite3_finalize(pStmt);
|
|
}
|
|
if( useTransaction ) Wfprintf(stdout,"COMMIT;\n");
|
|
|
|
/* TBD: Handle trigger differences */
|
|
/* TBD: Handle view differences */
|
|
sqlite3_close(g.db);
|
|
return 0;
|
|
}
|