# 2010 May 5 # # The author disclaims copyright to this source code. In place of # a legal notice, here is a blessing: # # May you do good and not evil. # May you find forgiveness for yourself and forgive others. # May you share freely, never taking more than you give. # #*********************************************************************** # This file implements regression tests for SQLite library. The # focus of this file is testing the operation of the library in # "PRAGMA journal_mode=WAL" mode. # set testdir [file dirname $argv0] source $testdir/tester.tcl source $testdir/lock_common.tcl source $testdir/malloc_common.tcl source $testdir/wal_common.tcl set testprefix wal2 ifcapable !wal {finish_test ; return } set sqlite_sync_count 0 proc cond_incr_sync_count {adj} { global sqlite_sync_count if {$::tcl_platform(platform) == "windows"} { incr sqlite_sync_count $adj } { ifcapable !dirsync { incr sqlite_sync_count $adj } } } proc set_tvfs_hdr {file args} { # Set $nHdr to the number of bytes in the wal-index header: set nHdr 48 set nInt [expr {$nHdr/4}] if {[llength $args]>2} { error {wrong # args: should be "set_tvfs_hdr fileName ?val1? ?val2?"} } set blob [tvfs shm $file] if {$::tcl_platform(byteOrder)=="bigEndian"} {set fmt I} {set fmt i} if {[llength $args]} { set ia [lindex $args 0] set ib $ia if {[llength $args]==2} { set ib [lindex $args 1] } binary scan $blob a[expr $nHdr*2]a* dummy tail set blob [binary format ${fmt}${nInt}${fmt}${nInt}a* $ia $ib $tail] tvfs shm $file $blob } binary scan $blob ${fmt}${nInt} ints return $ints } proc incr_tvfs_hdr {file idx incrval} { set ints [set_tvfs_hdr $file] set v [lindex $ints $idx] incr v $incrval lset ints $idx $v set_tvfs_hdr $file $ints } #------------------------------------------------------------------------- # Test case wal2-1.*: # # Set up a small database containing a single table. The database is not # checkpointed during the test - all content resides in the log file. # # Two connections are established to the database file - a writer ([db]) # and a reader ([db2]). For each of the 8 integer fields in the wal-index # header (6 fields and 2 checksum values), do the following: # # 1. Modify the database using the writer. # # 2. Attempt to read the database using the reader. Before the reader # has a chance to snapshot the wal-index header, increment one # of the integer fields (so that the reader ends up with a corrupted # header). # # 3. Check that the reader recovers the wal-index and reads the correct # database content. # do_test wal2-1.0 { proc tvfs_cb {method filename args} { set ::filename $filename return SQLITE_OK } testvfs tvfs tvfs script tvfs_cb tvfs filter xShmOpen sqlite3 db test.db -vfs tvfs sqlite3 db2 test.db -vfs tvfs execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a); } db2 execsql { INSERT INTO t1 VALUES(1); INSERT INTO t1 VALUES(2); INSERT INTO t1 VALUES(3); INSERT INTO t1 VALUES(4); SELECT count(a), sum(a) FROM t1; } } {4 10} do_test wal2-1.1 { execsql { SELECT count(a), sum(a) FROM t1 } db2 } {4 10} set RECOVER [list \ {0 1 lock exclusive} {1 2 lock exclusive} \ {4 1 lock exclusive} {4 1 unlock exclusive} \ {5 1 lock exclusive} {5 1 unlock exclusive} \ {6 1 lock exclusive} {6 1 unlock exclusive} \ {7 1 lock exclusive} {7 1 unlock exclusive} \ {1 2 unlock exclusive} {0 1 unlock exclusive} \ ] set READ [list \ {4 1 lock shared} {4 1 unlock shared} \ ] set INITSLOT [list \ {4 1 lock exclusive} {4 1 unlock exclusive} \ ] foreach {tn iInsert res wal_index_hdr_mod wal_locks} " 2 5 {5 15} 0 {$RECOVER $READ} 3 6 {6 21} 1 {$RECOVER $READ} 4 7 {7 28} 2 {$RECOVER $READ} 5 8 {8 36} 3 {$RECOVER $READ} 6 9 {9 45} 4 {$RECOVER $READ} 7 10 {10 55} 5 {$RECOVER $READ} 8 11 {11 66} 6 {$RECOVER $READ} 9 12 {12 78} 7 {$RECOVER $READ} 10 13 {13 91} 8 {$RECOVER $READ} 11 14 {14 105} 9 {$RECOVER $READ} 12 15 {15 120} -1 {$INITSLOT $READ} " { do_test wal2-1.$tn.1 { execsql { INSERT INTO t1 VALUES($iInsert) } set ::locks [list] proc tvfs_cb {method args} { lappend ::locks [lindex $args 2] return SQLITE_OK } tvfs filter xShmLock if {$::wal_index_hdr_mod >= 0} { incr_tvfs_hdr $::filename $::wal_index_hdr_mod 1 } execsql { SELECT count(a), sum(a) FROM t1 } db2 } $res do_test wal2-1.$tn.2 { set ::locks } $wal_locks } db close db2 close tvfs delete forcedelete test.db test.db-wal test.db-journal #------------------------------------------------------------------------- # This test case is very similar to the previous one, except, after # the reader reads the corrupt wal-index header, but before it has # a chance to re-read it under the cover of the RECOVER lock, the # wal-index header is replaced with a valid, but out-of-date, header. # # Because the header checksum looks Ok, the reader does not run recovery, # it simply drops back to a READ lock and proceeds. But because the # header is out-of-date, the reader reads the out-of-date snapshot. # # After this, the header is corrupted again and the reader is allowed # to run recovery. This time, it sees an up-to-date snapshot of the # database file. # set WRITER [list 0 1 lock exclusive] set LOCKS [list \ {0 1 lock exclusive} {0 1 unlock exclusive} \ {4 1 lock exclusive} {4 1 unlock exclusive} \ {4 1 lock shared} {4 1 unlock shared} \ ] do_test wal2-2.0 { testvfs tvfs tvfs script tvfs_cb tvfs filter xShmOpen proc tvfs_cb {method args} { set ::filename [lindex $args 0] return SQLITE_OK } sqlite3 db test.db -vfs tvfs sqlite3 db2 test.db -vfs tvfs execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a); } db2 execsql { INSERT INTO t1 VALUES(1); INSERT INTO t1 VALUES(2); INSERT INTO t1 VALUES(3); INSERT INTO t1 VALUES(4); SELECT count(a), sum(a) FROM t1; } } {4 10} do_test wal2-2.1 { execsql { SELECT count(a), sum(a) FROM t1 } db2 } {4 10} foreach {tn iInsert res0 res1 wal_index_hdr_mod} { 2 5 {4 10} {5 15} 0 3 6 {5 15} {6 21} 1 4 7 {6 21} {7 28} 2 5 8 {7 28} {8 36} 3 6 9 {8 36} {9 45} 4 7 10 {9 45} {10 55} 5 8 11 {10 55} {11 66} 6 9 12 {11 66} {12 78} 7 } { tvfs filter xShmLock do_test wal2-2.$tn.1 { set oldhdr [set_tvfs_hdr $::filename] execsql { INSERT INTO t1 VALUES($iInsert) } execsql { SELECT count(a), sum(a) FROM t1 } } $res1 do_test wal2-2.$tn.2 { set ::locks [list] proc tvfs_cb {method args} { set lock [lindex $args 2] lappend ::locks $lock if {$lock == $::WRITER} { set_tvfs_hdr $::filename $::oldhdr } return SQLITE_OK } if {$::wal_index_hdr_mod >= 0} { incr_tvfs_hdr $::filename $::wal_index_hdr_mod 1 } execsql { SELECT count(a), sum(a) FROM t1 } db2 } $res0 do_test wal2-2.$tn.3 { set ::locks } $LOCKS do_test wal2-2.$tn.4 { set ::locks [list] proc tvfs_cb {method args} { set lock [lindex $args 2] lappend ::locks $lock return SQLITE_OK } if {$::wal_index_hdr_mod >= 0} { incr_tvfs_hdr $::filename $::wal_index_hdr_mod 1 } execsql { SELECT count(a), sum(a) FROM t1 } db2 } $res1 } db close db2 close tvfs delete forcedelete test.db test.db-wal test.db-journal if 0 { #------------------------------------------------------------------------- # This test case - wal2-3.* - tests the response of the library to an # SQLITE_BUSY when attempting to obtain a READ or RECOVER lock. # # wal2-3.0 - 2: SQLITE_BUSY when obtaining a READ lock # wal2-3.3 - 6: SQLITE_BUSY when obtaining a RECOVER lock # do_test wal2-3.0 { proc tvfs_cb {method args} { if {$method == "xShmLock"} { if {[info exists ::locked]} { return SQLITE_BUSY } } return SQLITE_OK } proc busyhandler x { if {$x>3} { unset -nocomplain ::locked } return 0 } testvfs tvfs tvfs script tvfs_cb sqlite3 db test.db -vfs tvfs db busy busyhandler execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a); INSERT INTO t1 VALUES(1); INSERT INTO t1 VALUES(2); INSERT INTO t1 VALUES(3); INSERT INTO t1 VALUES(4); } set ::locked 1 info exists ::locked } {1} do_test wal2-3.1 { execsql { SELECT count(a), sum(a) FROM t1 } } {4 10} do_test wal2-3.2 { info exists ::locked } {0} do_test wal2-3.3 { proc tvfs_cb {method args} { if {$method == "xShmLock"} { if {[info exists ::sabotage]} { unset -nocomplain ::sabotage incr_tvfs_hdr [lindex $args 0] 1 1 } if {[info exists ::locked] && [lindex $args 2] == "RECOVER"} { return SQLITE_BUSY } } return SQLITE_OK } set ::sabotage 1 set ::locked 1 list [info exists ::sabotage] [info exists ::locked] } {1 1} do_test wal2-3.4 { execsql { SELECT count(a), sum(a) FROM t1 } } {4 10} do_test wal2-3.5 { list [info exists ::sabotage] [info exists ::locked] } {0 0} db close tvfs delete forcedelete test.db test.db-wal test.db-journal } #------------------------------------------------------------------------- # Test that a database connection using a VFS that does not support the # xShmXXX interfaces cannot open a WAL database. # do_test wal2-4.1 { sqlite3 db test.db execsql { PRAGMA auto_vacuum = 0; PRAGMA journal_mode = WAL; CREATE TABLE data(x); INSERT INTO data VALUES('need xShmOpen to see this'); PRAGMA wal_checkpoint; } # Three pages in the WAL file at this point: One copy of page 1 and two # of the root page for table "data". } {wal 0 3 3} do_test wal2-4.2 { db close testvfs tvfs -noshm 1 sqlite3 db test.db -vfs tvfs catchsql { SELECT * FROM data } } {1 {unable to open database file}} do_test wal2-4.3 { db close testvfs tvfs sqlite3 db test.db -vfs tvfs catchsql { SELECT * FROM data } } {0 {{need xShmOpen to see this}}} db close tvfs delete #------------------------------------------------------------------------- # Test that if a database connection is forced to run recovery before it # can perform a checkpoint, it does not transition into RECOVER state. # # UPDATE: This has now changed. When running a checkpoint, if recovery is # required the client grabs all exclusive locks (just as it would for a # recovery performed as a pre-cursor to a normal database transaction). # set expected_locks [list] lappend expected_locks {1 1 lock exclusive} ;# Lock checkpoint lappend expected_locks {0 1 lock exclusive} ;# Lock writer lappend expected_locks {2 1 lock exclusive} ;# Lock recovery # lappend expected_locks {4 4 lock exclusive} ;# Lock all aReadMark[] lappend expected_locks {4 1 lock exclusive} ;# Lock aReadMark[1] lappend expected_locks {4 1 unlock exclusive} ;# Unlock aReadMark[1] lappend expected_locks {5 1 lock exclusive} lappend expected_locks {5 1 unlock exclusive} lappend expected_locks {6 1 lock exclusive} lappend expected_locks {6 1 unlock exclusive} lappend expected_locks {7 1 lock exclusive} lappend expected_locks {7 1 unlock exclusive} lappend expected_locks {2 1 unlock exclusive} ;# Unlock recovery # lappend expected_locks {4 4 unlock exclusive} ;# Unlock all aReadMark[] lappend expected_locks {0 1 unlock exclusive} ;# Unlock writer lappend expected_locks {3 1 lock exclusive} ;# Lock aReadMark[0] lappend expected_locks {3 1 unlock exclusive} ;# Unlock aReadMark[0] lappend expected_locks {1 1 unlock exclusive} ;# Unlock checkpoint do_test wal2-5.1 { proc tvfs_cb {method args} { set ::shm_file [lindex $args 0] if {$method == "xShmLock"} { lappend ::locks [lindex $args 2] } return $::tvfs_cb_return } set tvfs_cb_return SQLITE_OK testvfs tvfs tvfs script tvfs_cb sqlite3 db test.db -vfs tvfs execsql { PRAGMA journal_mode = WAL; CREATE TABLE x(y); INSERT INTO x VALUES(1); } incr_tvfs_hdr $::shm_file 1 1 set ::locks [list] execsql { PRAGMA wal_checkpoint } set ::locks } $expected_locks db close tvfs delete #------------------------------------------------------------------------- # This block, test cases wal2-6.*, tests the operation of WAL with # "PRAGMA locking_mode=EXCLUSIVE" set. # # wal2-6.1.*: Changing to WAL mode before setting locking_mode=exclusive. # # wal2-6.2.*: Changing to WAL mode after setting locking_mode=exclusive. # # wal2-6.3.*: Changing back to rollback mode from WAL mode after setting # locking_mode=exclusive. # # wal2-6.4.*: Check that xShmLock calls are omitted in exclusive locking # mode. # # wal2-6.5.*: # # wal2-6.6.*: Check that if the xShmLock() to reaquire a WAL read-lock when # exiting exclusive mode fails (i.e. SQLITE_IOERR), then the # connection silently remains in exclusive mode. # do_test wal2-6.1.1 { forcedelete test.db test.db-wal test.db-journal sqlite3 db test.db execsql { Pragma Journal_Mode = Wal; } } {wal} do_test wal2-6.1.2 { execsql { PRAGMA lock_status } } {main unlocked temp closed} do_test wal2-6.1.3 { execsql { SELECT * FROM sqlite_master; Pragma Locking_Mode = Exclusive; } execsql { BEGIN; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); COMMIT; PRAGMA lock_status; } } {main exclusive temp closed} do_test wal2-6.1.4 { execsql { PRAGMA locking_mode = normal; PRAGMA lock_status; } } {normal main exclusive temp closed} do_test wal2-6.1.5 { execsql { SELECT * FROM t1; PRAGMA lock_status; } } {1 2 main shared temp closed} do_test wal2-6.1.6 { execsql { INSERT INTO t1 VALUES(3, 4); PRAGMA lock_status; } } {main shared temp closed} db close do_test wal2-6.2.1 { forcedelete test.db test.db-wal test.db-journal sqlite3 db test.db execsql { Pragma Locking_Mode = Exclusive; Pragma Journal_Mode = Wal; Pragma Lock_Status; } } {exclusive wal main exclusive temp closed} do_test wal2-6.2.2 { execsql { BEGIN; CREATE TABLE t1(a, b); INSERT INTO t1 VALUES(1, 2); COMMIT; Pragma loCK_STATus; } } {main exclusive temp closed} do_test wal2-6.2.3 { db close sqlite3 db test.db execsql { SELECT * FROM sqlite_master } execsql { PRAGMA LOCKING_MODE = EXCLUSIVE } } {exclusive} do_test wal2-6.2.4 { execsql { SELECT * FROM t1; pragma lock_status; } } {1 2 main shared temp closed} do_test wal2-6.2.5 { execsql { INSERT INTO t1 VALUES(3, 4); pragma lock_status; } } {main exclusive temp closed} do_test wal2-6.2.6 { execsql { PRAGMA locking_mode = NORMAL; pragma lock_status; } } {normal main exclusive temp closed} do_test wal2-6.2.7 { execsql { BEGIN IMMEDIATE; COMMIT; pragma lock_status; } } {main shared temp closed} do_test wal2-6.2.8 { execsql { PRAGMA locking_mode = EXCLUSIVE; BEGIN IMMEDIATE; COMMIT; PRAGMA locking_mode = NORMAL; } execsql { SELECT * FROM t1; pragma lock_status; } } {1 2 3 4 main shared temp closed} do_test wal2-6.2.9 { execsql { INSERT INTO t1 VALUES(5, 6); SELECT * FROM t1; pragma lock_status; } } {1 2 3 4 5 6 main shared temp closed} db close do_test wal2-6.3.1 { forcedelete test.db test.db-wal test.db-journal sqlite3 db test.db execsql { PRAGMA journal_mode = WAL; PRAGMA locking_mode = exclusive; BEGIN; CREATE TABLE t1(x); INSERT INTO t1 VALUES('Chico'); INSERT INTO t1 VALUES('Harpo'); COMMIT; } list [file exists test.db-wal] [file exists test.db-journal] } {1 0} do_test wal2-6.3.2 { execsql { PRAGMA journal_mode = DELETE } file exists test.db-wal } {0} do_test wal2-6.3.3 { execsql { PRAGMA lock_status } } {main exclusive temp closed} do_test wal2-6.3.4 { execsql { BEGIN; INSERT INTO t1 VALUES('Groucho'); } } {} if {[atomic_batch_write test.db]==0} { do_test wal2-6.3.4.1 { list [file exists test.db-wal] [file exists test.db-journal] } {0 1} } do_test wal2-6.3.5 { execsql { PRAGMA lock_status } } {main exclusive temp closed} do_test wal2-6.3.6 { execsql { COMMIT } } {} if {[atomic_batch_write test.db]==0} { do_test wal2-6.3.6.1 { list [file exists test.db-wal] [file exists test.db-journal] } {0 1} } do_test wal2-6.3.7 { execsql { PRAGMA lock_status } } {main exclusive temp closed} db close # This test - wal2-6.4.* - uses a single database connection and the # [testvfs] instrumentation to test that xShmLock() is being called # as expected when a WAL database is used with locking_mode=exclusive. # do_test wal2-6.4.1 { forcedelete test.db test.db-wal test.db-journal proc tvfs_cb {method args} { set ::shm_file [lindex $args 0] if {$method == "xShmLock"} { lappend ::locks [lindex $args 2] } return "SQLITE_OK" } testvfs tvfs tvfs script tvfs_cb sqlite3 db test.db -vfs tvfs set {} {} } {} set RECOVERY { {0 1 lock exclusive} {1 2 lock exclusive} {4 1 lock exclusive} {4 1 unlock exclusive} {5 1 lock exclusive} {5 1 unlock exclusive} {6 1 lock exclusive} {6 1 unlock exclusive} {7 1 lock exclusive} {7 1 unlock exclusive} {1 2 unlock exclusive} {0 1 unlock exclusive} } set READMARK0_READ { {3 1 lock shared} {3 1 unlock shared} } set READMARK0_WRITE { {3 1 lock shared} {0 1 lock exclusive} {3 1 unlock shared} {4 1 lock exclusive} {4 1 unlock exclusive} {4 1 lock shared} {0 1 unlock exclusive} {4 1 unlock shared} } set READMARK1_SET { {4 1 lock exclusive} {4 1 unlock exclusive} } set READMARK1_READ { {4 1 lock shared} {4 1 unlock shared} } set READMARK1_WRITE { {4 1 lock shared} {0 1 lock exclusive} {0 1 unlock exclusive} {4 1 unlock shared} } foreach {tn sql res expected_locks} { 2 { PRAGMA auto_vacuum = 0; PRAGMA journal_mode = WAL; BEGIN; CREATE TABLE t1(x); INSERT INTO t1 VALUES('Leonard'); INSERT INTO t1 VALUES('Arthur'); COMMIT; } {wal} { $RECOVERY $READMARK0_WRITE } 3 { # This test should do the READMARK1_SET locking to populate the # aReadMark[1] slot with the current mxFrame value. Followed by # READMARK1_READ to read the database. # SELECT * FROM t1 } {Leonard Arthur} { $READMARK1_SET $READMARK1_READ } 4 { # aReadMark[1] is already set to mxFrame. So just READMARK1_READ # this time, not READMARK1_SET. # SELECT * FROM t1 ORDER BY x } {Arthur Leonard} { $READMARK1_READ } 5 { PRAGMA locking_mode = exclusive } {exclusive} { } 6 { INSERT INTO t1 VALUES('Julius Henry'); SELECT * FROM t1; } {Leonard Arthur {Julius Henry}} { $READMARK1_READ } 7 { INSERT INTO t1 VALUES('Karl'); SELECT * FROM t1; } {Leonard Arthur {Julius Henry} Karl} { } 8 { PRAGMA locking_mode = normal } {normal} { } 9 { SELECT * FROM t1 ORDER BY x } {Arthur {Julius Henry} Karl Leonard} $READMARK1_READ 10 { DELETE FROM t1 } {} $READMARK1_WRITE 11 { SELECT * FROM t1 } {} { $READMARK1_SET $READMARK1_READ } } { set L [list] foreach el [subst $expected_locks] { lappend L $el } set S "" foreach sq [split $sql "\n"] { set sq [string trim $sq] if {[string match {#*} $sq]==0} {append S "$sq\n"} } set ::locks [list] do_test wal2-6.4.$tn.1 { execsql $S } $res do_test wal2-6.4.$tn.2 { set ::locks } $L } db close tvfs delete do_test wal2-6.5.1 { sqlite3 db test.db execsql { PRAGMA auto_vacuum = 0; PRAGMA journal_mode = wal; PRAGMA locking_mode = exclusive; CREATE TABLE t2(a, b); PRAGMA wal_checkpoint; INSERT INTO t2 VALUES('I', 'II'); PRAGMA journal_mode; } } {wal exclusive 0 2 2 wal} do_test wal2-6.5.2 { execsql { PRAGMA locking_mode = normal; INSERT INTO t2 VALUES('III', 'IV'); PRAGMA locking_mode = exclusive; SELECT * FROM t2; } } {normal exclusive I II III IV} do_test wal2-6.5.3 { execsql { PRAGMA wal_checkpoint } } {0 2 2} db close proc lock_control {method filename handle spec} { foreach {start n op type} $spec break if {$op == "lock"} { return SQLITE_IOERR } return SQLITE_OK } do_test wal2-6.6.1 { testvfs T T script lock_control T filter {} sqlite3 db test.db -vfs T execsql { SELECT * FROM sqlite_master } execsql { PRAGMA locking_mode = exclusive } execsql { INSERT INTO t2 VALUES('V', 'VI') } } {} do_test wal2-6.6.2 { execsql { PRAGMA locking_mode = normal } T filter xShmLock execsql { INSERT INTO t2 VALUES('VII', 'VIII') } } {} do_test wal2-6.6.3 { # At this point the connection should still be in exclusive-mode, even # though it tried to exit exclusive-mode when committing the INSERT # statement above. To exit exclusive mode, SQLite has to take a read-lock # on the WAL file using xShmLock(). Since that call failed, it remains # in exclusive mode. # sqlite3 db2 test.db -vfs T catchsql { SELECT * FROM t2 } db2 } {1 {database is locked}} do_test wal2-6.6.2 { db2 close T filter {} execsql { INSERT INTO t2 VALUES('IX', 'X') } } {} do_test wal2-6.6.4 { # This time, we have successfully exited exclusive mode. So the second # connection can read the database. sqlite3 db2 test.db -vfs T catchsql { SELECT * FROM t2 } db2 } {0 {I II III IV V VI VII VIII IX X}} db close db2 close T delete #------------------------------------------------------------------------- # Test a theory about the checksum algorithm. Theory was false and this # test did not provoke a bug. # forcedelete test.db test.db-wal test.db-journal do_test wal2-7.1.1 { sqlite3 db test.db execsql { PRAGMA page_size = 4096; PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b); } file size test.db } {4096} do_test wal2-7.1.2 { forcecopy test.db test2.db forcecopy test.db-wal test2.db-wal # The first 32 bytes of the WAL file contain the WAL header. Offset 48 # is the first byte of the checksum for the first frame in the WAL. # The following three lines replaces the contents of that byte with # a different value. set newval FF if {$newval == [hexio_read test2.db-wal 48 1]} { set newval 00 } hexio_write test2.db-wal 48 $newval } {1} do_test wal2-7.1.3 { sqlite3 db2 test2.db execsql { PRAGMA wal_checkpoint } db2 execsql { SELECT * FROM sqlite_master } db2 } {} db close db2 close forcedelete test.db test.db-wal test.db-journal do_test wal2-8.1.2 { sqlite3 db test.db execsql { PRAGMA auto_vacuum=OFF; PRAGMA page_size = 1024; PRAGMA journal_mode = WAL; CREATE TABLE t1(x); INSERT INTO t1 VALUES(zeroblob(8188*1020)); CREATE TABLE t2(y); PRAGMA wal_checkpoint; } execsql { SELECT rootpage>=8192 FROM sqlite_master WHERE tbl_name = 't2'; } } {1} do_test wal2-8.1.3 { execsql { PRAGMA cache_size = 10; CREATE TABLE t3(z); BEGIN; INSERT INTO t3 VALUES(randomblob(900)); INSERT INTO t3 SELECT randomblob(900) FROM t3; INSERT INTO t2 VALUES('hello'); INSERT INTO t3 SELECT randomblob(900) FROM t3; INSERT INTO t3 SELECT randomblob(900) FROM t3; INSERT INTO t3 SELECT randomblob(900) FROM t3; INSERT INTO t3 SELECT randomblob(900) FROM t3; INSERT INTO t3 SELECT randomblob(900) FROM t3; INSERT INTO t3 SELECT randomblob(900) FROM t3; ROLLBACK; } execsql { INSERT INTO t2 VALUES('goodbye'); INSERT INTO t3 SELECT randomblob(900) FROM t3; INSERT INTO t3 SELECT randomblob(900) FROM t3; } } {} do_test wal2-8.1.4 { sqlite3 db2 test.db execsql { SELECT * FROM t2 } } {goodbye} db2 close db close #------------------------------------------------------------------------- # Test that even if the checksums for both are valid, if the two copies # of the wal-index header in the wal-index do not match, the client # runs (or at least tries to run) database recovery. # # proc get_name {method args} { set ::filename [lindex $args 0] ; tvfs filter {} } testvfs tvfs tvfs script get_name tvfs filter xShmOpen forcedelete test.db test.db-wal test.db-journal do_test wal2-9.1 { sqlite3 db test.db -vfs tvfs execsql { PRAGMA journal_mode = WAL; CREATE TABLE x(y); INSERT INTO x VALUES('Barton'); INSERT INTO x VALUES('Deakin'); } # Set $wih(1) to the contents of the wal-index header after # the frames associated with the first two rows in table 'x' have # been inserted. Then insert one more row and set $wih(2) # to the new value of the wal-index header. # # If the $wih(1) is written into the wal-index before running # a read operation, the client will see only the first two rows. If # $wih(2) is written into the wal-index, the client will see # three rows. If an invalid header is written into the wal-index, then # the client will run recovery and see three rows. # set wih(1) [set_tvfs_hdr $::filename] execsql { INSERT INTO x VALUES('Watson') } set wih(2) [set_tvfs_hdr $::filename] sqlite3 db2 test.db -vfs tvfs execsql { SELECT * FROM x } db2 } {Barton Deakin Watson} foreach {tn hdr1 hdr2 res} [list \ 3 $wih(1) $wih(1) {Barton Deakin} \ 4 $wih(1) $wih(2) {Barton Deakin Watson} \ 5 $wih(2) $wih(1) {Barton Deakin Watson} \ 6 $wih(2) $wih(2) {Barton Deakin Watson} \ 7 $wih(1) $wih(1) {Barton Deakin} \ 8 {0 0 0 0 0 0 0 0 0 0 0 0} {0 0 0 0 0 0 0 0 0 0 0 0} {Barton Deakin Watson} ] { do_test wal2-9.$tn { set_tvfs_hdr $::filename $hdr1 $hdr2 execsql { SELECT * FROM x } db2 } $res } db2 close db close #------------------------------------------------------------------------- # This block of tests - wal2-10.* - focus on the libraries response to # new versions of the wal or wal-index formats. # # wal2-10.1.*: Test that the library refuses to "recover" a new WAL # format. # # wal2-10.2.*: Test that the library refuses to read or write a database # if the wal-index version is newer than it understands. # # At time of writing, the only versions of the wal and wal-index formats # that exist are versions 3007000 (corresponding to SQLite version 3.7.0, # the first version of SQLite to feature wal mode). # do_test wal2-10.1.1 { faultsim_delete_and_reopen execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b); PRAGMA wal_checkpoint; INSERT INTO t1 VALUES(1, 2); INSERT INTO t1 VALUES(3, 4); } faultsim_save_and_close } {} do_test wal2-10.1.2 { faultsim_restore_and_reopen execsql { SELECT * FROM t1 } } {1 2 3 4} do_test wal2-10.1.3 { faultsim_restore_and_reopen set hdr [wal_set_walhdr test.db-wal] lindex $hdr 1 } {3007000} do_test wal2-10.1.4 { lset hdr 1 3007001 wal_set_walhdr test.db-wal $hdr catchsql { SELECT * FROM t1 } } {1 {unable to open database file}} testvfs tvfs -default 1 do_test wal2-10.2.1 { faultsim_restore_and_reopen execsql { SELECT * FROM t1 } } {1 2 3 4} do_test wal2-10.2.2 { set hdr [set_tvfs_hdr $::filename] lindex $hdr 0 } {3007000} do_test wal2-10.2.3 { lset hdr 0 3007001 wal_fix_walindex_cksum hdr set_tvfs_hdr $::filename $hdr catchsql { SELECT * FROM t1 } } {1 {unable to open database file}} db close tvfs delete #------------------------------------------------------------------------- # This block of tests - wal2-11.* - tests that it is not possible to put # the library into an infinite loop by presenting it with a corrupt # hash table (one that appears to contain a single chain of infinite # length). # # wal2-11.1.*: While reading the hash-table. # # wal2-11.2.*: While writing the hash-table. # testvfs tvfs -default 1 do_test wal2-11.0 { faultsim_delete_and_reopen execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b, c); INSERT INTO t1 VALUES(1, 2, 3); INSERT INTO t1 VALUES(4, 5, 6); INSERT INTO t1 VALUES(7, 8, 9); SELECT * FROM t1; } } {wal 1 2 3 4 5 6 7 8 9} do_test wal2-11.1.1 { sqlite3 db2 test.db execsql { SELECT name FROM sqlite_master } db2 } {t1} if {$::tcl_version>=8.5} { # Set all zeroed slots in the first hash table to invalid values. # set blob [string range [tvfs shm $::filename] 0 16383] set I [string range [tvfs shm $::filename] 16384 end] binary scan $I t* L set I [list] foreach p $L { lappend I [expr $p ? $p : 400] } append blob [binary format t* $I] tvfs shm $::filename $blob do_test wal2-11.2 { catchsql { INSERT INTO t1 VALUES(10, 11, 12) } } {1 {database disk image is malformed}} # Fill up the hash table on the first page of shared memory with 0x55 bytes. # set blob [string range [tvfs shm $::filename] 0 16383] append blob [string repeat [binary format c 55] 16384] tvfs shm $::filename $blob do_test wal2-11.3 { catchsql { SELECT * FROM t1 } db2 } {1 {database disk image is malformed}} } db close db2 close tvfs delete #------------------------------------------------------------------------- # If a connection is required to create a WAL or SHM file, it creates # the new files with the same file-system permissions as the database # file itself. Test this. # if {$::tcl_platform(platform) == "unix"} { faultsim_delete_and_reopen # Changed on 2012-02-13: umask is deliberately ignored for -wal files. #set umask [exec /bin/sh -c umask] set umask 0 do_test wal2-12.1 { sqlite3 db test.db execsql { CREATE TABLE tx(y, z); PRAGMA journal_mode = WAL; } db close list [file exists test.db-wal] [file exists test.db-shm] } {0 0} foreach {tn permissions} { 1 00644 2 00666 3 00600 4 00755 } { if {$tcl_version>=9.0} { set effective [format %.5d [expr $permissions & ~$umask]] } else { set effective [format %.5o [expr $permissions & ~$umask]] } do_test wal2-12.2.$tn.1 { file attributes test.db -permissions $permissions string map {o 0} [file attributes test.db -permissions] } $permissions do_test wal2-12.2.$tn.2 { list [file exists test.db-wal] [file exists test.db-shm] } {0 0} do_test wal2-12.2.$tn.3 { sqlite3 db test.db execsql { INSERT INTO tx DEFAULT VALUES } list [file exists test.db-wal] [file exists test.db-shm] } {1 1} do_test wal2-12.2.$tn.4 { set x [list [file attr test.db-wal -perm] [file attr test.db-shm -perm]] string map {o 0} $x } [list $effective $effective] do_test wal2-12.2.$tn.5 { db close list [file exists test.db-wal] [file exists test.db-shm] } {0 0} } } #------------------------------------------------------------------------- # Test the libraries response to discovering that one or more of the # database, wal or shm files cannot be opened, or can only be opened # read-only. # if {$::tcl_platform(platform) == "unix"} { proc perm {} { set L [list] foreach f {test.db test.db-wal test.db-shm} { if {[file exists $f]} { lappend L [file attr $f -perm] } else { lappend L {} } } set L } faultsim_delete_and_reopen execsql { PRAGMA journal_mode = WAL; CREATE TABLE t1(a, b); PRAGMA wal_checkpoint; INSERT INTO t1 VALUES('3.14', '2.72'); } do_test wal2-13.1.1 { list [file exists test.db-shm] [file exists test.db-wal] } {1 1} faultsim_save_and_close foreach {tn db_perm wal_perm shm_perm can_open can_read can_write} { 2 00644 00644 00644 1 1 1 3 00644 00400 00644 1 1 0 4 00644 00644 00400 1 1 0 5 00400 00644 00644 1 1 0 7 00644 00000 00644 1 0 0 8 00644 00644 00000 1 0 0 9 00000 00644 00644 0 0 0 } { faultsim_restore do_test wal2-13.$tn.1 { file attr test.db -perm $db_perm file attr test.db-wal -perm $wal_perm file attr test.db-shm -perm $shm_perm set L [file attr test.db -perm] lappend L [file attr test.db-wal -perm] lappend L [file attr test.db-shm -perm] string map {o 0} $L } [list $db_perm $wal_perm $shm_perm] # If $can_open is true, then it should be possible to open a database # handle. Otherwise, if $can_open is 0, attempting to open the db # handle throws an "unable to open database file" exception. # set r(1) {0 ok} set r(0) {1 {unable to open database file}} do_test wal2-13.$tn.2 { list [catch {sqlite3 db test.db ; set {} ok} msg] $msg } $r($can_open) if {$can_open} { # If $can_read is true, then the client should be able to read from # the database file. If $can_read is false, attempting to read should # throw the "unable to open database file" exception. # set a(0) {1 {unable to open database file}} set a(1) {0 {3.14 2.72}} do_test wal2-13.$tn.3 { catchsql { SELECT * FROM t1 } } $a($can_read) # Now try to write to the db file. If the client can read but not # write, then it should throw the familiar "unable to open db file" # exception. If it can read but not write, the exception should # be "attempt to write a read only database". # # If the client can read and write, the operation should succeed. # set b(0,0) {1 {unable to open database file}} set b(1,0) {1 {attempt to write a readonly database}} set b(1,1) {0 {}} do_test wal2-13.$tn.4 { catchsql { INSERT INTO t1 DEFAULT VALUES } } $b($can_read,$can_write) } catch { db close } } } #------------------------------------------------------------------------- # Test that "PRAGMA checkpoint_fullsync" appears to be working. # foreach {tn sql reslist} { 1 { } {10 0 4 0 6 0} 2 { PRAGMA checkpoint_fullfsync = 1 } {10 6 4 3 6 3} 3 { PRAGMA checkpoint_fullfsync = 0 } {10 0 4 0 6 0} } { ifcapable default_ckptfullfsync { if {[string trim $sql]==""} continue } faultsim_delete_and_reopen execsql {PRAGMA auto_vacuum = 0; PRAGMA synchronous = FULL;} execsql $sql do_execsql_test wal2-14.$tn.0 { PRAGMA page_size = 4096 } {} do_execsql_test wal2-14.$tn.1 { PRAGMA journal_mode = WAL } {wal} set sqlite_sync_count 0 set sqlite_fullsync_count 0 do_execsql_test wal2-14.$tn.2 { PRAGMA wal_autocheckpoint = 10; CREATE TABLE t1(a, b); -- 2 wal syncs INSERT INTO t1 VALUES(1, 2); -- 2 wal sync PRAGMA wal_checkpoint; -- 1 wal sync, 1 db sync BEGIN; INSERT INTO t1 VALUES(3, 4); INSERT INTO t1 VALUES(5, 6); COMMIT; -- 2 wal sync PRAGMA wal_checkpoint; -- 1 wal sync, 1 db sync } {10 0 3 3 0 1 1} do_test wal2-14.$tn.3 { cond_incr_sync_count 1 list $sqlite_sync_count $sqlite_fullsync_count } [lrange $reslist 0 1] set sqlite_sync_count 0 set sqlite_fullsync_count 0 do_test wal2-14.$tn.4 { execsql { INSERT INTO t1 VALUES(7, zeroblob(12*4096)) } list $sqlite_sync_count $sqlite_fullsync_count } [lrange $reslist 2 3] set sqlite_sync_count 0 set sqlite_fullsync_count 0 do_test wal2-14.$tn.5 { execsql { PRAGMA wal_autocheckpoint = 1000 } execsql { INSERT INTO t1 VALUES(9, 10) } execsql { INSERT INTO t1 VALUES(11, 12) } execsql { INSERT INTO t1 VALUES(13, 14) } db close list $sqlite_sync_count $sqlite_fullsync_count } [lrange $reslist 4 5] } catch { db close } # PRAGMA checkpoint_fullsync # PRAGMA fullfsync # PRAGMA synchronous # foreach {tn settings restart_sync commit_sync ckpt_sync} { 1 {0 0 off} {0 0} {0 0} {0 0} 2 {0 0 normal} {1 0} {0 0} {2 0} 3 {0 0 full} {2 0} {1 0} {2 0} 4 {0 1 off} {0 0} {0 0} {0 0} 5 {0 1 normal} {0 1} {0 0} {0 2} 6 {0 1 full} {0 2} {0 1} {0 2} 7 {1 0 off} {0 0} {0 0} {0 0} 8 {1 0 normal} {0 1} {0 0} {0 2} 9 {1 0 full} {1 1} {1 0} {0 2} 10 {1 1 off} {0 0} {0 0} {0 0} 11 {1 1 normal} {0 1} {0 0} {0 2} 12 {1 1 full} {0 2} {0 1} {0 2} } { forcedelete test.db testvfs tvfs -default 1 tvfs filter xSync tvfs script xSyncCb proc xSyncCb {method file fileid flags} { incr ::sync($flags) } sqlite3 db test.db do_execsql_test 15.$tn.1 " PRAGMA page_size = 4096; CREATE TABLE t1(x); PRAGMA wal_autocheckpoint = OFF; PRAGMA journal_mode = WAL; PRAGMA checkpoint_fullfsync = [lindex $settings 0]; PRAGMA fullfsync = [lindex $settings 1]; PRAGMA synchronous = [lindex $settings 2]; " {0 wal} do_test 15.$tn.2 { set sync(normal) 0 set sync(full) 0 execsql { INSERT INTO t1 VALUES('abc') } list $::sync(normal) $::sync(full) } $restart_sync do_test 15.$tn.3 { set sync(normal) 0 set sync(full) 0 execsql { INSERT INTO t1 VALUES('abc') } list $::sync(normal) $::sync(full) } $commit_sync do_test 15.$tn.4 { set sync(normal) 0 set sync(full) 0 execsql { INSERT INTO t1 VALUES('def') } list $::sync(normal) $::sync(full) } $commit_sync do_test 15.$tn.5 { set sync(normal) 0 set sync(full) 0 execsql { PRAGMA wal_checkpoint } list $::sync(normal) $::sync(full) } $ckpt_sync db close tvfs delete } finish_test