/* ** 2009 Nov 12 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ****************************************************************************** ** */ #ifndef _FTSINT_H #define _FTSINT_H #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif /* ** FTS4 is really an extension for FTS3. It is enabled using the ** SQLITE_ENABLE_FTS3 macro. But to avoid confusion we also all ** the SQLITE_ENABLE_FTS4 macro to serve as an alisse for SQLITE_ENABLE_FTS3. */ #if defined(SQLITE_ENABLE_FTS4) && !defined(SQLITE_ENABLE_FTS3) # define SQLITE_ENABLE_FTS3 #endif #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) /* If not building as part of the core, include sqlite3ext.h. */ #ifndef SQLITE_CORE # include "sqlite3ext.h" SQLITE_EXTENSION_INIT3 #endif #include "sqlite3.h" #include "fts3_tokenizer.h" #include "fts3_hash.h" /* ** This constant determines the maximum depth of an FTS expression tree ** that the library will create and use. FTS uses recursion to perform ** various operations on the query tree, so the disadvantage of a large ** limit is that it may allow very large queries to use large amounts ** of stack space (perhaps causing a stack overflow). */ #ifndef SQLITE_FTS3_MAX_EXPR_DEPTH # define SQLITE_FTS3_MAX_EXPR_DEPTH 12 #endif /* ** This constant controls how often segments are merged. Once there are ** FTS3_MERGE_COUNT segments of level N, they are merged into a single ** segment of level N+1. */ #define FTS3_MERGE_COUNT 16 /* ** This is the maximum amount of data (in bytes) to store in the ** Fts3Table.pendingTerms hash table. Normally, the hash table is ** populated as documents are inserted/updated/deleted in a transaction ** and used to create a new segment when the transaction is committed. ** However if this limit is reached midway through a transaction, a new ** segment is created and the hash table cleared immediately. */ #define FTS3_MAX_PENDING_DATA (1*1024*1024) /* ** Macro to return the number of elements in an array. SQLite has a ** similar macro called ArraySize(). Use a different name to avoid ** a collision when building an amalgamation with built-in FTS3. */ #define SizeofArray(X) ((int)(sizeof(X)/sizeof(X[0]))) #ifndef MIN # define MIN(x,y) ((x)<(y)?(x):(y)) #endif #ifndef MAX # define MAX(x,y) ((x)>(y)?(x):(y)) #endif /* ** Maximum length of a varint encoded integer. The varint format is different ** from that used by SQLite, so the maximum length is 10, not 9. */ #define FTS3_VARINT_MAX 10 /* ** FTS4 virtual tables may maintain multiple indexes - one index of all terms ** in the document set and zero or more prefix indexes. All indexes are stored ** as one or more b+-trees in the %_segments and %_segdir tables. ** ** It is possible to determine which index a b+-tree belongs to based on the ** value stored in the "%_segdir.level" column. Given this value L, the index ** that the b+-tree belongs to is (L<<10). In other words, all b+-trees with ** level values between 0 and 1023 (inclusive) belong to index 0, all levels ** between 1024 and 2047 to index 1, and so on. ** ** It is considered impossible for an index to use more than 1024 levels. In ** theory though this may happen, but only after at least ** (FTS3_MERGE_COUNT^1024) separate flushes of the pending-terms tables. */ #define FTS3_SEGDIR_MAXLEVEL 1024 #define FTS3_SEGDIR_MAXLEVEL_STR "1024" /* ** The testcase() macro is only used by the amalgamation. If undefined, ** make it a no-op. */ #ifndef testcase # define testcase(X) #endif /* ** Terminator values for position-lists and column-lists. */ #define POS_COLUMN (1) /* Column-list terminator */ #define POS_END (0) /* Position-list terminator */ /* ** This section provides definitions to allow the ** FTS3 extension to be compiled outside of the ** amalgamation. */ #ifndef SQLITE_AMALGAMATION /* ** Macros indicating that conditional expressions are always true or ** false. */ #ifdef SQLITE_COVERAGE_TEST # define ALWAYS(x) (1) # define NEVER(X) (0) #else # define ALWAYS(x) (x) # define NEVER(x) (x) #endif /* ** Internal types used by SQLite. */ typedef unsigned char u8; /* 1-byte (or larger) unsigned integer */ typedef short int i16; /* 2-byte (or larger) signed integer */ typedef unsigned int u32; /* 4-byte unsigned integer */ typedef sqlite3_uint64 u64; /* 8-byte unsigned integer */ typedef sqlite3_int64 i64; /* 8-byte signed integer */ /* ** Macro used to suppress compiler warnings for unused parameters. */ #define UNUSED_PARAMETER(x) (void)(x) /* ** Activate assert() only if SQLITE_TEST is enabled. */ #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) # define NDEBUG 1 #endif /* ** The TESTONLY macro is used to enclose variable declarations or ** other bits of code that are needed to support the arguments ** within testcase() and assert() macros. */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) # define TESTONLY(X) X #else # define TESTONLY(X) #endif #endif /* SQLITE_AMALGAMATION */ #ifdef SQLITE_DEBUG int sqlite3Fts3Corrupt(void); # define FTS_CORRUPT_VTAB sqlite3Fts3Corrupt() #else # define FTS_CORRUPT_VTAB SQLITE_CORRUPT_VTAB #endif typedef struct Fts3Table Fts3Table; typedef struct Fts3Cursor Fts3Cursor; typedef struct Fts3Expr Fts3Expr; typedef struct Fts3Phrase Fts3Phrase; typedef struct Fts3PhraseToken Fts3PhraseToken; typedef struct Fts3Doclist Fts3Doclist; typedef struct Fts3SegFilter Fts3SegFilter; typedef struct Fts3DeferredToken Fts3DeferredToken; typedef struct Fts3SegReader Fts3SegReader; typedef struct Fts3MultiSegReader Fts3MultiSegReader; /* ** A connection to a fulltext index is an instance of the following ** structure. The xCreate and xConnect methods create an instance ** of this structure and xDestroy and xDisconnect free that instance. ** All other methods receive a pointer to the structure as one of their ** arguments. */ struct Fts3Table { sqlite3_vtab base; /* Base class used by SQLite core */ sqlite3 *db; /* The database connection */ const char *zDb; /* logical database name */ const char *zName; /* virtual table name */ int nColumn; /* number of named columns in virtual table */ char **azColumn; /* column names. malloced */ u8 *abNotindexed; /* True for 'notindexed' columns */ sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ char *zContentTbl; /* content=xxx option, or NULL */ char *zLanguageid; /* languageid=xxx option, or NULL */ int nAutoincrmerge; /* Value configured by 'automerge' */ u32 nLeafAdd; /* Number of leaf blocks added this trans */ /* Precompiled statements used by the implementation. Each of these ** statements is run and reset within a single virtual table API call. */ sqlite3_stmt *aStmt[40]; char *zReadExprlist; char *zWriteExprlist; int nNodeSize; /* Soft limit for node size */ u8 bFts4; /* True for FTS4, false for FTS3 */ u8 bHasStat; /* True if %_stat table exists (2==unknown) */ u8 bHasDocsize; /* True if %_docsize table exists */ u8 bDescIdx; /* True if doclists are in reverse order */ u8 bIgnoreSavepoint; /* True to ignore xSavepoint invocations */ int nPgsz; /* Page size for host database */ char *zSegmentsTbl; /* Name of %_segments table */ sqlite3_blob *pSegments; /* Blob handle open on %_segments table */ /* ** The following array of hash tables is used to buffer pending index ** updates during transactions. All pending updates buffered at any one ** time must share a common language-id (see the FTS4 langid= feature). ** The current language id is stored in variable iPrevLangid. ** ** A single FTS4 table may have multiple full-text indexes. For each index ** there is an entry in the aIndex[] array. Index 0 is an index of all the ** terms that appear in the document set. Each subsequent index in aIndex[] ** is an index of prefixes of a specific length. ** ** Variable nPendingData contains an estimate the memory consumed by the ** pending data structures, including hash table overhead, but not including ** malloc overhead. When nPendingData exceeds nMaxPendingData, all hash ** tables are flushed to disk. Variable iPrevDocid is the docid of the most ** recently inserted record. */ int nIndex; /* Size of aIndex[] */ struct Fts3Index { int nPrefix; /* Prefix length (0 for main terms index) */ Fts3Hash hPending; /* Pending terms table for this index */ } *aIndex; int nMaxPendingData; /* Max pending data before flush to disk */ int nPendingData; /* Current bytes of pending data */ sqlite_int64 iPrevDocid; /* Docid of most recently inserted document */ int iPrevLangid; /* Langid of recently inserted document */ #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) /* State variables used for validating that the transaction control ** methods of the virtual table are called at appropriate times. These ** values do not contribute to FTS functionality; they are used for ** verifying the operation of the SQLite core. */ int inTransaction; /* True after xBegin but before xCommit/xRollback */ int mxSavepoint; /* Largest valid xSavepoint integer */ #endif #ifdef SQLITE_TEST /* True to disable the incremental doclist optimization. This is controled ** by special insert command 'test-no-incr-doclist'. */ int bNoIncrDoclist; #endif }; /* ** When the core wants to read from the virtual table, it creates a ** virtual table cursor (an instance of the following structure) using ** the xOpen method. Cursors are destroyed using the xClose method. */ struct Fts3Cursor { sqlite3_vtab_cursor base; /* Base class used by SQLite core */ i16 eSearch; /* Search strategy (see below) */ u8 isEof; /* True if at End Of Results */ u8 isRequireSeek; /* True if must seek pStmt to %_content row */ sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ Fts3Expr *pExpr; /* Parsed MATCH query string */ int iLangid; /* Language being queried for */ int nPhrase; /* Number of matchable phrases in query */ Fts3DeferredToken *pDeferred; /* Deferred search tokens, if any */ sqlite3_int64 iPrevId; /* Previous id read from aDoclist */ char *pNextId; /* Pointer into the body of aDoclist */ char *aDoclist; /* List of docids for full-text queries */ int nDoclist; /* Size of buffer at aDoclist */ u8 bDesc; /* True to sort in descending order */ int eEvalmode; /* An FTS3_EVAL_XX constant */ int nRowAvg; /* Average size of database rows, in pages */ sqlite3_int64 nDoc; /* Documents in table */ i64 iMinDocid; /* Minimum docid to return */ i64 iMaxDocid; /* Maximum docid to return */ int isMatchinfoNeeded; /* True when aMatchinfo[] needs filling in */ u32 *aMatchinfo; /* Information about most recent match */ int nMatchinfo; /* Number of elements in aMatchinfo[] */ char *zMatchinfo; /* Matchinfo specification */ }; #define FTS3_EVAL_FILTER 0 #define FTS3_EVAL_NEXT 1 #define FTS3_EVAL_MATCHINFO 2 /* ** The Fts3Cursor.eSearch member is always set to one of the following. ** Actualy, Fts3Cursor.eSearch can be greater than or equal to ** FTS3_FULLTEXT_SEARCH. If so, then Fts3Cursor.eSearch - 2 is the index ** of the column to be searched. For example, in ** ** CREATE VIRTUAL TABLE ex1 USING fts3(a,b,c,d); ** SELECT docid FROM ex1 WHERE b MATCH 'one two three'; ** ** Because the LHS of the MATCH operator is 2nd column "b", ** Fts3Cursor.eSearch will be set to FTS3_FULLTEXT_SEARCH+1. (+0 for a, ** +1 for b, +2 for c, +3 for d.) If the LHS of MATCH were "ex1" ** indicating that all columns should be searched, ** then eSearch would be set to FTS3_FULLTEXT_SEARCH+4. */ #define FTS3_FULLSCAN_SEARCH 0 /* Linear scan of %_content table */ #define FTS3_DOCID_SEARCH 1 /* Lookup by rowid on %_content table */ #define FTS3_FULLTEXT_SEARCH 2 /* Full-text index search */ /* ** The lower 16-bits of the sqlite3_index_info.idxNum value set by ** the xBestIndex() method contains the Fts3Cursor.eSearch value described ** above. The upper 16-bits contain a combination of the following ** bits, used to describe extra constraints on full-text searches. */ #define FTS3_HAVE_LANGID 0x00010000 /* languageid=? */ #define FTS3_HAVE_DOCID_GE 0x00020000 /* docid>=? */ #define FTS3_HAVE_DOCID_LE 0x00040000 /* docid<=? */ struct Fts3Doclist { char *aAll; /* Array containing doclist (or NULL) */ int nAll; /* Size of a[] in bytes */ char *pNextDocid; /* Pointer to next docid */ sqlite3_int64 iDocid; /* Current docid (if pList!=0) */ int bFreeList; /* True if pList should be sqlite3_free()d */ char *pList; /* Pointer to position list following iDocid */ int nList; /* Length of position list */ }; /* ** A "phrase" is a sequence of one or more tokens that must match in ** sequence. A single token is the base case and the most common case. ** For a sequence of tokens contained in double-quotes (i.e. "one two three") ** nToken will be the number of tokens in the string. */ struct Fts3PhraseToken { char *z; /* Text of the token */ int n; /* Number of bytes in buffer z */ int isPrefix; /* True if token ends with a "*" character */ int bFirst; /* True if token must appear at position 0 */ /* Variables above this point are populated when the expression is ** parsed (by code in fts3_expr.c). Below this point the variables are ** used when evaluating the expression. */ Fts3DeferredToken *pDeferred; /* Deferred token object for this token */ Fts3MultiSegReader *pSegcsr; /* Segment-reader for this token */ }; struct Fts3Phrase { /* Cache of doclist for this phrase. */ Fts3Doclist doclist; int bIncr; /* True if doclist is loaded incrementally */ int iDoclistToken; /* Variables below this point are populated by fts3_expr.c when parsing ** a MATCH expression. Everything above is part of the evaluation phase. */ int nToken; /* Number of tokens in the phrase */ int iColumn; /* Index of column this phrase must match */ Fts3PhraseToken aToken[1]; /* One entry for each token in the phrase */ }; /* ** A tree of these objects forms the RHS of a MATCH operator. ** ** If Fts3Expr.eType is FTSQUERY_PHRASE and isLoaded is true, then aDoclist ** points to a malloced buffer, size nDoclist bytes, containing the results ** of this phrase query in FTS3 doclist format. As usual, the initial ** "Length" field found in doclists stored on disk is omitted from this ** buffer. ** ** Variable aMI is used only for FTSQUERY_NEAR nodes to store the global ** matchinfo data. If it is not NULL, it points to an array of size nCol*3, ** where nCol is the number of columns in the queried FTS table. The array ** is populated as follows: ** ** aMI[iCol*3 + 0] = Undefined ** aMI[iCol*3 + 1] = Number of occurrences ** aMI[iCol*3 + 2] = Number of rows containing at least one instance ** ** The aMI array is allocated using sqlite3_malloc(). It should be freed ** when the expression node is. */ struct Fts3Expr { int eType; /* One of the FTSQUERY_XXX values defined below */ int nNear; /* Valid if eType==FTSQUERY_NEAR */ Fts3Expr *pParent; /* pParent->pLeft==this or pParent->pRight==this */ Fts3Expr *pLeft; /* Left operand */ Fts3Expr *pRight; /* Right operand */ Fts3Phrase *pPhrase; /* Valid if eType==FTSQUERY_PHRASE */ /* The following are used by the fts3_eval.c module. */ sqlite3_int64 iDocid; /* Current docid */ u8 bEof; /* True this expression is at EOF already */ u8 bStart; /* True if iDocid is valid */ u8 bDeferred; /* True if this expression is entirely deferred */ u32 *aMI; }; /* ** Candidate values for Fts3Query.eType. Note that the order of the first ** four values is in order of precedence when parsing expressions. For ** example, the following: ** ** "a OR b AND c NOT d NEAR e" ** ** is equivalent to: ** ** "a OR (b AND (c NOT (d NEAR e)))" */ #define FTSQUERY_NEAR 1 #define FTSQUERY_NOT 2 #define FTSQUERY_AND 3 #define FTSQUERY_OR 4 #define FTSQUERY_PHRASE 5 /* fts3_write.c */ int sqlite3Fts3UpdateMethod(sqlite3_vtab*,int,sqlite3_value**,sqlite3_int64*); int sqlite3Fts3PendingTermsFlush(Fts3Table *); void sqlite3Fts3PendingTermsClear(Fts3Table *); int sqlite3Fts3Optimize(Fts3Table *); int sqlite3Fts3SegReaderNew(int, int, sqlite3_int64, sqlite3_int64, sqlite3_int64, const char *, int, Fts3SegReader**); int sqlite3Fts3SegReaderPending( Fts3Table*,int,const char*,int,int,Fts3SegReader**); void sqlite3Fts3SegReaderFree(Fts3SegReader *); int sqlite3Fts3AllSegdirs(Fts3Table*, int, int, int, sqlite3_stmt **); int sqlite3Fts3ReadBlock(Fts3Table*, sqlite3_int64, char **, int*, int*); int sqlite3Fts3SelectDoctotal(Fts3Table *, sqlite3_stmt **); int sqlite3Fts3SelectDocsize(Fts3Table *, sqlite3_int64, sqlite3_stmt **); #ifndef SQLITE_DISABLE_FTS4_DEFERRED void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *); int sqlite3Fts3DeferToken(Fts3Cursor *, Fts3PhraseToken *, int); int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *); void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *); int sqlite3Fts3DeferredTokenList(Fts3DeferredToken *, char **, int *); #else # define sqlite3Fts3FreeDeferredTokens(x) # define sqlite3Fts3DeferToken(x,y,z) SQLITE_OK # define sqlite3Fts3CacheDeferredDoclists(x) SQLITE_OK # define sqlite3Fts3FreeDeferredDoclists(x) # define sqlite3Fts3DeferredTokenList(x,y,z) SQLITE_OK #endif void sqlite3Fts3SegmentsClose(Fts3Table *); int sqlite3Fts3MaxLevel(Fts3Table *, int *); /* Special values interpreted by sqlite3SegReaderCursor() */ #define FTS3_SEGCURSOR_PENDING -1 #define FTS3_SEGCURSOR_ALL -2 int sqlite3Fts3SegReaderStart(Fts3Table*, Fts3MultiSegReader*, Fts3SegFilter*); int sqlite3Fts3SegReaderStep(Fts3Table *, Fts3MultiSegReader *); void sqlite3Fts3SegReaderFinish(Fts3MultiSegReader *); int sqlite3Fts3SegReaderCursor(Fts3Table *, int, int, int, const char *, int, int, int, Fts3MultiSegReader *); /* Flags allowed as part of the 4th argument to SegmentReaderIterate() */ #define FTS3_SEGMENT_REQUIRE_POS 0x00000001 #define FTS3_SEGMENT_IGNORE_EMPTY 0x00000002 #define FTS3_SEGMENT_COLUMN_FILTER 0x00000004 #define FTS3_SEGMENT_PREFIX 0x00000008 #define FTS3_SEGMENT_SCAN 0x00000010 #define FTS3_SEGMENT_FIRST 0x00000020 /* Type passed as 4th argument to SegmentReaderIterate() */ struct Fts3SegFilter { const char *zTerm; int nTerm; int iCol; int flags; }; struct Fts3MultiSegReader { /* Used internally by sqlite3Fts3SegReaderXXX() calls */ Fts3SegReader **apSegment; /* Array of Fts3SegReader objects */ int nSegment; /* Size of apSegment array */ int nAdvance; /* How many seg-readers to advance */ Fts3SegFilter *pFilter; /* Pointer to filter object */ char *aBuffer; /* Buffer to merge doclists in */ int nBuffer; /* Allocated size of aBuffer[] in bytes */ int iColFilter; /* If >=0, filter for this column */ int bRestart; /* Used by fts3.c only. */ int nCost; /* Cost of running iterator */ int bLookup; /* True if a lookup of a single entry. */ /* Output values. Valid only after Fts3SegReaderStep() returns SQLITE_ROW. */ char *zTerm; /* Pointer to term buffer */ int nTerm; /* Size of zTerm in bytes */ char *aDoclist; /* Pointer to doclist buffer */ int nDoclist; /* Size of aDoclist[] in bytes */ }; int sqlite3Fts3Incrmerge(Fts3Table*,int,int); #define fts3GetVarint32(p, piVal) ( \ (*(u8*)(p)&0x80) ? sqlite3Fts3GetVarint32(p, piVal) : (*piVal=*(u8*)(p), 1) \ ) /* fts3.c */ int sqlite3Fts3PutVarint(char *, sqlite3_int64); int sqlite3Fts3GetVarint(const char *, sqlite_int64 *); int sqlite3Fts3GetVarint32(const char *, int *); int sqlite3Fts3VarintLen(sqlite3_uint64); void sqlite3Fts3Dequote(char *); void sqlite3Fts3DoclistPrev(int,char*,int,char**,sqlite3_int64*,int*,u8*); int sqlite3Fts3EvalPhraseStats(Fts3Cursor *, Fts3Expr *, u32 *); int sqlite3Fts3FirstFilter(sqlite3_int64, char *, int, char *); void sqlite3Fts3CreateStatTable(int*, Fts3Table*); /* fts3_tokenizer.c */ const char *sqlite3Fts3NextToken(const char *, int *); int sqlite3Fts3InitHashTable(sqlite3 *, Fts3Hash *, const char *); int sqlite3Fts3InitTokenizer(Fts3Hash *pHash, const char *, sqlite3_tokenizer **, char ** ); int sqlite3Fts3IsIdChar(char); /* fts3_snippet.c */ void sqlite3Fts3Offsets(sqlite3_context*, Fts3Cursor*); void sqlite3Fts3Snippet(sqlite3_context *, Fts3Cursor *, const char *, const char *, const char *, int, int ); void sqlite3Fts3Matchinfo(sqlite3_context *, Fts3Cursor *, const char *); /* fts3_expr.c */ int sqlite3Fts3ExprParse(sqlite3_tokenizer *, int, char **, int, int, int, const char *, int, Fts3Expr **, char ** ); void sqlite3Fts3ExprFree(Fts3Expr *); #ifdef SQLITE_TEST int sqlite3Fts3ExprInitTestInterface(sqlite3 *db); int sqlite3Fts3InitTerm(sqlite3 *db); #endif int sqlite3Fts3OpenTokenizer(sqlite3_tokenizer *, int, const char *, int, sqlite3_tokenizer_cursor ** ); /* fts3_aux.c */ int sqlite3Fts3InitAux(sqlite3 *db); void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *); int sqlite3Fts3MsrIncrStart( Fts3Table*, Fts3MultiSegReader*, int, const char*, int); int sqlite3Fts3MsrIncrNext( Fts3Table *, Fts3MultiSegReader *, sqlite3_int64 *, char **, int *); int sqlite3Fts3EvalPhrasePoslist(Fts3Cursor *, Fts3Expr *, int iCol, char **); int sqlite3Fts3MsrOvfl(Fts3Cursor *, Fts3MultiSegReader *, int *); int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr); /* fts3_tokenize_vtab.c */ int sqlite3Fts3InitTok(sqlite3*, Fts3Hash *); /* fts3_unicode2.c (functions generated by parsing unicode text files) */ #ifdef SQLITE_ENABLE_FTS4_UNICODE61 int sqlite3FtsUnicodeFold(int, int); int sqlite3FtsUnicodeIsalnum(int); int sqlite3FtsUnicodeIsdiacritic(int); #endif #endif /* !SQLITE_CORE || SQLITE_ENABLE_FTS3 */ #endif /* _FTSINT_H */