/* ** 2003 April 6 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** This file contains code used to implement the VACUUM command. ** ** Most of the code in this file may be omitted by defining the ** SQLITE_OMIT_VACUUM macro. */ #include "sqliteInt.h" #include "vdbeInt.h" #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH) /* ** Execute zSql on database db. ** ** If zSql returns rows, then each row will have exactly one ** column. (This will only happen if zSql begins with "SELECT".) ** Take each row of result and call execSql() again recursively. ** ** The execSqlF() routine does the same thing, except it accepts ** a format string as its third argument */ static int execSql(sqlite3 *db, char **pzErrMsg, const char *zSql){ sqlite3_stmt *pStmt; int rc; /* printf("SQL: [%s]\n", zSql); fflush(stdout); */ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); if( rc!=SQLITE_OK ) return rc; while( SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ const char *zSubSql = (const char*)sqlite3_column_text(pStmt,0); assert( sqlite3_strnicmp(zSql,"SELECT",6)==0 ); /* The secondary SQL must be one of CREATE TABLE, CREATE INDEX, ** or INSERT. Historically there have been attacks that first ** corrupt the sqlite_schema.sql field with other kinds of statements ** then run VACUUM to get those statements to execute at inappropriate ** times. */ if( zSubSql && (strncmp(zSubSql,"CRE",3)==0 || strncmp(zSubSql,"INS",3)==0) ){ rc = execSql(db, pzErrMsg, zSubSql); if( rc!=SQLITE_OK ) break; } } assert( rc!=SQLITE_ROW ); if( rc==SQLITE_DONE ) rc = SQLITE_OK; if( rc ){ sqlite3SetString(pzErrMsg, db, sqlite3_errmsg(db)); } (void)sqlite3_finalize(pStmt); return rc; } static int execSqlF(sqlite3 *db, char **pzErrMsg, const char *zSql, ...){ char *z; va_list ap; int rc; va_start(ap, zSql); z = sqlite3VMPrintf(db, zSql, ap); va_end(ap); if( z==0 ) return SQLITE_NOMEM; rc = execSql(db, pzErrMsg, z); sqlite3DbFree(db, z); return rc; } /* ** The VACUUM command is used to clean up the database, ** collapse free space, etc. It is modelled after the VACUUM command ** in PostgreSQL. The VACUUM command works as follows: ** ** (1) Create a new transient database file ** (2) Copy all content from the database being vacuumed into ** the new transient database file ** (3) Copy content from the transient database back into the ** original database. ** ** The transient database requires temporary disk space approximately ** equal to the size of the original database. The copy operation of ** step (3) requires additional temporary disk space approximately equal ** to the size of the original database for the rollback journal. ** Hence, temporary disk space that is approximately 2x the size of the ** original database is required. Every page of the database is written ** approximately 3 times: Once for step (2) and twice for step (3). ** Two writes per page are required in step (3) because the original ** database content must be written into the rollback journal prior to ** overwriting the database with the vacuumed content. ** ** Only 1x temporary space and only 1x writes would be required if ** the copy of step (3) were replaced by deleting the original database ** and renaming the transient database as the original. But that will ** not work if other processes are attached to the original database. ** And a power loss in between deleting the original and renaming the ** transient would cause the database file to appear to be deleted ** following reboot. */ void sqlite3Vacuum(Parse *pParse, Token *pNm, Expr *pInto){ Vdbe *v = sqlite3GetVdbe(pParse); int iDb = 0; if( v==0 ) goto build_vacuum_end; if( pParse->nErr ) goto build_vacuum_end; if( pNm ){ #ifndef SQLITE_BUG_COMPATIBLE_20160819 /* Default behavior: Report an error if the argument to VACUUM is ** not recognized */ iDb = sqlite3TwoPartName(pParse, pNm, pNm, &pNm); if( iDb<0 ) goto build_vacuum_end; #else /* When SQLITE_BUG_COMPATIBLE_20160819 is defined, unrecognized arguments ** to VACUUM are silently ignored. This is a back-out of a bug fix that ** occurred on 2016-08-19 (https://www.sqlite.org/src/info/083f9e6270). ** The buggy behavior is required for binary compatibility with some ** legacy applications. */ iDb = sqlite3FindDb(pParse->db, pNm); if( iDb<0 ) iDb = 0; #endif } if( iDb!=1 ){ int iIntoReg = 0; if( pInto && sqlite3ResolveSelfReference(pParse,0,0,pInto,0)==0 ){ iIntoReg = ++pParse->nMem; sqlite3ExprCode(pParse, pInto, iIntoReg); } sqlite3VdbeAddOp2(v, OP_Vacuum, iDb, iIntoReg); sqlite3VdbeUsesBtree(v, iDb); } build_vacuum_end: sqlite3ExprDelete(pParse->db, pInto); return; } /* ** This routine implements the OP_Vacuum opcode of the VDBE. */ SQLITE_NOINLINE int sqlite3RunVacuum( char **pzErrMsg, /* Write error message here */ sqlite3 *db, /* Database connection */ int iDb, /* Which attached DB to vacuum */ sqlite3_value *pOut /* Write results here, if not NULL. VACUUM INTO */ ){ int rc = SQLITE_OK; /* Return code from service routines */ Btree *pMain; /* The database being vacuumed */ Btree *pTemp; /* The temporary database we vacuum into */ u32 saved_mDbFlags; /* Saved value of db->mDbFlags */ u64 saved_flags; /* Saved value of db->flags */ i64 saved_nChange; /* Saved value of db->nChange */ i64 saved_nTotalChange; /* Saved value of db->nTotalChange */ u32 saved_openFlags; /* Saved value of db->openFlags */ u8 saved_mTrace; /* Saved trace settings */ Db *pDb = 0; /* Database to detach at end of vacuum */ int isMemDb; /* True if vacuuming a :memory: database */ int nRes; /* Bytes of reserved space at the end of each page */ int nDb; /* Number of attached databases */ const char *zDbMain; /* Schema name of database to vacuum */ const char *zOut; /* Name of output file */ u32 pgflags = PAGER_SYNCHRONOUS_OFF; /* sync flags for output db */ u64 iRandom; /* Random value used for zDbVacuum[] */ char zDbVacuum[42]; /* Name of the ATTACH-ed database used for vacuum */ if( !db->autoCommit ){ sqlite3SetString(pzErrMsg, db, "cannot VACUUM from within a transaction"); return SQLITE_ERROR; /* IMP: R-12218-18073 */ } if( db->nVdbeActive>1 ){ sqlite3SetString(pzErrMsg, db,"cannot VACUUM - SQL statements in progress"); return SQLITE_ERROR; /* IMP: R-15610-35227 */ } saved_openFlags = db->openFlags; if( pOut ){ if( sqlite3_value_type(pOut)!=SQLITE_TEXT ){ sqlite3SetString(pzErrMsg, db, "non-text filename"); return SQLITE_ERROR; } zOut = (const char*)sqlite3_value_text(pOut); db->openFlags &= ~SQLITE_OPEN_READONLY; db->openFlags |= SQLITE_OPEN_CREATE|SQLITE_OPEN_READWRITE; }else{ zOut = ""; } /* Save the current value of the database flags so that it can be ** restored before returning. Then set the writable-schema flag, and ** disable CHECK and foreign key constraints. */ saved_flags = db->flags; saved_mDbFlags = db->mDbFlags; saved_nChange = db->nChange; saved_nTotalChange = db->nTotalChange; saved_mTrace = db->mTrace; db->flags |= SQLITE_WriteSchema | SQLITE_IgnoreChecks; db->mDbFlags |= DBFLAG_PreferBuiltin | DBFLAG_Vacuum; db->flags &= ~(u64)(SQLITE_ForeignKeys | SQLITE_ReverseOrder | SQLITE_Defensive | SQLITE_CountRows); db->mTrace = 0; zDbMain = db->aDb[iDb].zDbSName; pMain = db->aDb[iDb].pBt; isMemDb = sqlite3PagerIsMemdb(sqlite3BtreePager(pMain)); /* Attach the temporary database as 'vacuum_XXXXXX'. The synchronous pragma ** can be set to 'off' for this file, as it is not recovered if a crash ** occurs anyway. The integrity of the database is maintained by a ** (possibly synchronous) transaction opened on the main database before ** sqlite3BtreeCopyFile() is called. ** ** An optimization would be to use a non-journaled pager. ** (Later:) I tried setting "PRAGMA vacuum_XXXXXX.journal_mode=OFF" but ** that actually made the VACUUM run slower. Very little journalling ** actually occurs when doing a vacuum since the vacuum_db is initially ** empty. Only the journal header is written. Apparently it takes more ** time to parse and run the PRAGMA to turn journalling off than it does ** to write the journal header file. */ sqlite3_randomness(sizeof(iRandom),&iRandom); sqlite3_snprintf(sizeof(zDbVacuum), zDbVacuum, "vacuum_%016llx", iRandom); nDb = db->nDb; rc = execSqlF(db, pzErrMsg, "ATTACH %Q AS %s", zOut, zDbVacuum); db->openFlags = saved_openFlags; if( rc!=SQLITE_OK ) goto end_of_vacuum; assert( (db->nDb-1)==nDb ); pDb = &db->aDb[nDb]; assert( strcmp(pDb->zDbSName,zDbVacuum)==0 ); pTemp = pDb->pBt; if( pOut ){ sqlite3_file *id = sqlite3PagerFile(sqlite3BtreePager(pTemp)); i64 sz = 0; if( id->pMethods!=0 && (sqlite3OsFileSize(id, &sz)!=SQLITE_OK || sz>0) ){ rc = SQLITE_ERROR; sqlite3SetString(pzErrMsg, db, "output file already exists"); goto end_of_vacuum; } db->mDbFlags |= DBFLAG_VacuumInto; /* For a VACUUM INTO, the pager-flags are set to the same values as ** they are for the database being vacuumed, except that PAGER_CACHESPILL ** is always set. */ pgflags = db->aDb[iDb].safety_level | (db->flags & PAGER_FLAGS_MASK); } nRes = sqlite3BtreeGetRequestedReserve(pMain); sqlite3BtreeSetCacheSize(pTemp, db->aDb[iDb].pSchema->cache_size); sqlite3BtreeSetSpillSize(pTemp, sqlite3BtreeSetSpillSize(pMain,0)); sqlite3BtreeSetPagerFlags(pTemp, pgflags|PAGER_CACHESPILL); /* Begin a transaction and take an exclusive lock on the main database ** file. This is done before the sqlite3BtreeGetPageSize(pMain) call below, ** to ensure that we do not try to change the page-size on a WAL database. */ rc = execSql(db, pzErrMsg, "BEGIN"); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = sqlite3BtreeBeginTrans(pMain, pOut==0 ? 2 : 0, 0); if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Do not attempt to change the page size for a WAL database */ if( sqlite3PagerGetJournalMode(sqlite3BtreePager(pMain)) ==PAGER_JOURNALMODE_WAL && pOut==0 ){ db->nextPagesize = 0; } if( sqlite3BtreeSetPageSize(pTemp, sqlite3BtreeGetPageSize(pMain), nRes, 0) || (!isMemDb && sqlite3BtreeSetPageSize(pTemp, db->nextPagesize, nRes, 0)) || NEVER(db->mallocFailed) ){ rc = SQLITE_NOMEM_BKPT; goto end_of_vacuum; } #ifndef SQLITE_OMIT_AUTOVACUUM sqlite3BtreeSetAutoVacuum(pTemp, db->nextAutovac>=0 ? db->nextAutovac : sqlite3BtreeGetAutoVacuum(pMain)); #endif /* Query the schema of the main database. Create a mirror schema ** in the temporary database. */ db->init.iDb = nDb; /* force new CREATE statements into vacuum_db */ rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_schema" " WHERE type='table'AND name<>'sqlite_sequence'" " AND coalesce(rootpage,1)>0", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; rc = execSqlF(db, pzErrMsg, "SELECT sql FROM \"%w\".sqlite_schema" " WHERE type='index'", zDbMain ); if( rc!=SQLITE_OK ) goto end_of_vacuum; db->init.iDb = 0; /* Loop through the tables in the main database. For each, do ** an "INSERT INTO vacuum_db.xxx SELECT * FROM main.xxx;" to copy ** the contents to the temporary database. */ rc = execSqlF(db, pzErrMsg, "SELECT'INSERT INTO %s.'||quote(name)" "||' SELECT*FROM\"%w\".'||quote(name)" "FROM %s.sqlite_schema " "WHERE type='table'AND coalesce(rootpage,1)>0", zDbVacuum, zDbMain, zDbVacuum ); assert( (db->mDbFlags & DBFLAG_Vacuum)!=0 ); db->mDbFlags &= ~DBFLAG_Vacuum; if( rc!=SQLITE_OK ) goto end_of_vacuum; /* Copy the triggers, views, and virtual tables from the main database ** over to the temporary database. None of these objects has any ** associated storage, so all we have to do is copy their entries ** from the schema table. */ rc = execSqlF(db, pzErrMsg, "INSERT INTO %s.sqlite_schema" " SELECT*FROM \"%w\".sqlite_schema" " WHERE type IN('view','trigger')" " OR(type='table'AND rootpage=0)", zDbVacuum, zDbMain ); if( rc ) goto end_of_vacuum; /* At this point, there is a write transaction open on both the ** vacuum database and the main database. Assuming no error occurs, ** both transactions are closed by this block - the main database ** transaction by sqlite3BtreeCopyFile() and the other by an explicit ** call to sqlite3BtreeCommit(). */ { u32 meta; int i; /* This array determines which meta meta values are preserved in the ** vacuum. Even entries are the meta value number and odd entries ** are an increment to apply to the meta value after the vacuum. ** The increment is used to increase the schema cookie so that other ** connections to the same database will know to reread the schema. */ static const unsigned char aCopy[] = { BTREE_SCHEMA_VERSION, 1, /* Add one to the old schema cookie */ BTREE_DEFAULT_CACHE_SIZE, 0, /* Preserve the default page cache size */ BTREE_TEXT_ENCODING, 0, /* Preserve the text encoding */ BTREE_USER_VERSION, 0, /* Preserve the user version */ BTREE_APPLICATION_ID, 0, /* Preserve the application id */ }; assert( SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pTemp) ); assert( pOut!=0 || SQLITE_TXN_WRITE==sqlite3BtreeTxnState(pMain) ); /* Copy Btree meta values */ for(i=0; iflags */ db->init.iDb = 0; db->mDbFlags = saved_mDbFlags; db->flags = saved_flags; db->nChange = saved_nChange; db->nTotalChange = saved_nTotalChange; db->mTrace = saved_mTrace; sqlite3BtreeSetPageSize(pMain, -1, 0, 1); /* Currently there is an SQL level transaction open on the vacuum ** database. No locks are held on any other files (since the main file ** was committed at the btree level). So it safe to end the transaction ** by manually setting the autoCommit flag to true and detaching the ** vacuum database. The vacuum_db journal file is deleted when the pager ** is closed by the DETACH. */ db->autoCommit = 1; if( pDb ){ sqlite3BtreeClose(pDb->pBt); pDb->pBt = 0; pDb->pSchema = 0; } /* This both clears the schemas and reduces the size of the db->aDb[] ** array. */ sqlite3ResetAllSchemasOfConnection(db); return rc; } #endif /* SQLITE_OMIT_VACUUM && SQLITE_OMIT_ATTACH */