/* ** 2010 October 28 ** ** The author disclaims copyright to this source code. In place of ** a legal notice, here is a blessing: ** ** May you do good and not evil. ** May you find forgiveness for yourself and forgive others. ** May you share freely, never taking more than you give. ** ************************************************************************* ** ** This file contains a VFS "shim" - a layer that sits in between the ** pager and the real VFS - that breaks up a very large database file ** into two or more smaller files on disk. This is useful, for example, ** in order to support large, multi-gigabyte databases on older filesystems ** that limit the maximum file size to 2 GiB. ** ** USAGE: ** ** Compile this source file and link it with your application. Then ** at start-time, invoke the following procedure: ** ** int sqlite3_multiplex_initialize( ** const char *zOrigVfsName, // The underlying real VFS ** int makeDefault // True to make multiplex the default VFS ** ); ** ** The procedure call above will create and register a new VFS shim named ** "multiplex". The multiplex VFS will use the VFS named by zOrigVfsName to ** do the actual disk I/O. (The zOrigVfsName parameter may be NULL, in ** which case the default VFS at the moment sqlite3_multiplex_initialize() ** is called will be used as the underlying real VFS.) ** ** If the makeDefault parameter is TRUE then multiplex becomes the new ** default VFS. Otherwise, you can use the multiplex VFS by specifying ** "multiplex" as the 4th parameter to sqlite3_open_v2() or by employing ** URI filenames and adding "vfs=multiplex" as a parameter to the filename ** URI. ** ** The multiplex VFS allows databases up to 32 GiB in size. But it splits ** the files up into smaller pieces, so that they will work even on ** filesystems that do not support large files. The default chunk size ** is 2147418112 bytes (which is 64KiB less than 2GiB) but this can be ** changed at compile-time by defining the SQLITE_MULTIPLEX_CHUNK_SIZE ** macro. Use the "chunksize=NNNN" query parameter with a URI filename ** in order to select an alternative chunk size for individual connections ** at run-time. */ #include "sqlite3.h" #include #include #include #include "test_multiplex.h" #ifndef SQLITE_CORE #define SQLITE_CORE 1 /* Disable the API redefinition in sqlite3ext.h */ #endif #include "sqlite3ext.h" /* ** These should be defined to be the same as the values in ** sqliteInt.h. They are defined separately here so that ** the multiplex VFS shim can be built as a loadable ** module. */ #define UNUSED_PARAMETER(x) (void)(x) #define MAX_PAGE_SIZE 0x10000 #define DEFAULT_SECTOR_SIZE 0x1000 /* Maximum chunk number */ #define MX_CHUNK_NUMBER 299 /* First chunk for rollback journal files */ #define SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET 400 #define SQLITE_MULTIPLEX_WAL_8_3_OFFSET 700 /************************ Shim Definitions ******************************/ #ifndef SQLITE_MULTIPLEX_VFS_NAME # define SQLITE_MULTIPLEX_VFS_NAME "multiplex" #endif /* This is the limit on the chunk size. It may be changed by calling ** the xFileControl() interface. It will be rounded up to a ** multiple of MAX_PAGE_SIZE. We default it here to 2GiB less 64KiB. */ #ifndef SQLITE_MULTIPLEX_CHUNK_SIZE # define SQLITE_MULTIPLEX_CHUNK_SIZE 2147418112 #endif /* This used to be the default limit on number of chunks, but ** it is no longer enforced. There is currently no limit to the ** number of chunks. ** ** May be changed by calling the xFileControl() interface. */ #ifndef SQLITE_MULTIPLEX_MAX_CHUNKS # define SQLITE_MULTIPLEX_MAX_CHUNKS 12 #endif /************************ Object Definitions ******************************/ /* Forward declaration of all object types */ typedef struct multiplexGroup multiplexGroup; typedef struct multiplexConn multiplexConn; /* ** A "multiplex group" is a collection of files that collectively ** makeup a single SQLite DB file. This allows the size of the DB ** to exceed the limits imposed by the file system. ** ** There is an instance of the following object for each defined multiplex ** group. */ struct multiplexGroup { struct multiplexReal { /* For each chunk */ sqlite3_file *p; /* Handle for the chunk */ char *z; /* Name of this chunk */ } *aReal; /* list of all chunks */ int nReal; /* Number of chunks */ char *zName; /* Base filename of this group */ int nName; /* Length of base filename */ int flags; /* Flags used for original opening */ unsigned int szChunk; /* Chunk size used for this group */ unsigned char bEnabled; /* TRUE to use Multiplex VFS for this file */ unsigned char bTruncate; /* TRUE to enable truncation of databases */ }; /* ** An instance of the following object represents each open connection ** to a file that is multiplex'ed. This object is a ** subclass of sqlite3_file. The sqlite3_file object for the underlying ** VFS is appended to this structure. */ struct multiplexConn { sqlite3_file base; /* Base class - must be first */ multiplexGroup *pGroup; /* The underlying group of files */ }; /************************* Global Variables **********************************/ /* ** All global variables used by this file are containing within the following ** gMultiplex structure. */ static struct { /* The pOrigVfs is the real, original underlying VFS implementation. ** Most operations pass-through to the real VFS. This value is read-only ** during operation. It is only modified at start-time and thus does not ** require a mutex. */ sqlite3_vfs *pOrigVfs; /* The sThisVfs is the VFS structure used by this shim. It is initialized ** at start-time and thus does not require a mutex */ sqlite3_vfs sThisVfs; /* The sIoMethods defines the methods used by sqlite3_file objects ** associated with this shim. It is initialized at start-time and does ** not require a mutex. ** ** When the underlying VFS is called to open a file, it might return ** either a version 1 or a version 2 sqlite3_file object. This shim ** has to create a wrapper sqlite3_file of the same version. Hence ** there are two I/O method structures, one for version 1 and the other ** for version 2. */ sqlite3_io_methods sIoMethodsV1; sqlite3_io_methods sIoMethodsV2; /* True when this shim has been initialized. */ int isInitialized; } gMultiplex; /************************* Utility Routines *********************************/ /* ** Compute a string length that is limited to what can be stored in ** lower 30 bits of a 32-bit signed integer. ** ** The value returned will never be negative. Nor will it ever be greater ** than the actual length of the string. For very long strings (greater ** than 1GiB) the value returned might be less than the true string length. */ static int multiplexStrlen30(const char *z){ const char *z2 = z; if( z==0 ) return 0; while( *z2 ){ z2++; } return 0x3fffffff & (int)(z2 - z); } /* ** Generate the file-name for chunk iChunk of the group with base name ** zBase. The file-name is written to buffer zOut before returning. Buffer ** zOut must be allocated by the caller so that it is at least (nBase+5) ** bytes in size, where nBase is the length of zBase, not including the ** nul-terminator. ** ** If iChunk is 0 (or 400 - the number for the first journal file chunk), ** the output is a copy of the input string. Otherwise, if ** SQLITE_ENABLE_8_3_NAMES is not defined or the input buffer does not contain ** a "." character, then the output is a copy of the input string with the ** three-digit zero-padded decimal representation if iChunk appended to it. ** For example: ** ** zBase="test.db", iChunk=4 -> zOut="test.db004" ** ** Or, if SQLITE_ENABLE_8_3_NAMES is defined and the input buffer contains ** a "." character, then everything after the "." is replaced by the ** three-digit representation of iChunk. ** ** zBase="test.db", iChunk=4 -> zOut="test.004" ** ** The output buffer string is terminated by 2 0x00 bytes. This makes it safe ** to pass to sqlite3_uri_parameter() and similar. */ static void multiplexFilename( const char *zBase, /* Filename for chunk 0 */ int nBase, /* Size of zBase in bytes (without \0) */ int flags, /* Flags used to open file */ int iChunk, /* Chunk to generate filename for */ char *zOut /* Buffer to write generated name to */ ){ int n = nBase; memcpy(zOut, zBase, n+1); if( iChunk!=0 && iChunk<=MX_CHUNK_NUMBER ){ #ifdef SQLITE_ENABLE_8_3_NAMES int i; for(i=n-1; i>0 && i>=n-4 && zOut[i]!='.'; i--){} if( i>=n-4 ) n = i+1; if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ /* The extensions on overflow files for main databases are 001, 002, ** 003 and so forth. To avoid name collisions, add 400 to the ** extensions of journal files so that they are 401, 402, 403, .... */ iChunk += SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET; }else if( flags & SQLITE_OPEN_WAL ){ /* To avoid name collisions, add 700 to the ** extensions of WAL files so that they are 701, 702, 703, .... */ iChunk += SQLITE_MULTIPLEX_WAL_8_3_OFFSET; } #endif sqlite3_snprintf(4,&zOut[n],"%03d",iChunk); n += 3; } assert( zOut[n]=='\0' ); zOut[n+1] = '\0'; } /* Compute the filename for the iChunk-th chunk */ static int multiplexSubFilename(multiplexGroup *pGroup, int iChunk){ if( iChunk>=pGroup->nReal ){ struct multiplexReal *p; p = sqlite3_realloc64(pGroup->aReal, (iChunk+1)*sizeof(*p)); if( p==0 ){ return SQLITE_NOMEM; } memset(&p[pGroup->nReal], 0, sizeof(p[0])*(iChunk+1-pGroup->nReal)); pGroup->aReal = p; pGroup->nReal = iChunk+1; } if( pGroup->zName && pGroup->aReal[iChunk].z==0 ){ char *z; int n = pGroup->nName; z = sqlite3_malloc64( n+5 ); if( z==0 ){ return SQLITE_NOMEM; } multiplexFilename(pGroup->zName, pGroup->nName, pGroup->flags, iChunk, z); pGroup->aReal[iChunk].z = (char*)sqlite3_create_filename(z,"","",0,0); sqlite3_free(z); if( pGroup->aReal[iChunk].z==0 ) return SQLITE_NOMEM; } return SQLITE_OK; } /* Translate an sqlite3_file* that is really a multiplexGroup* into ** the sqlite3_file* for the underlying original VFS. ** ** For chunk 0, the pGroup->flags determines whether or not a new file ** is created if it does not already exist. For chunks 1 and higher, the ** file is created only if createFlag is 1. */ static sqlite3_file *multiplexSubOpen( multiplexGroup *pGroup, /* The multiplexor group */ int iChunk, /* Which chunk to open. 0==original file */ int *rc, /* Result code in and out */ int *pOutFlags, /* Output flags */ int createFlag /* True to create if iChunk>0 */ ){ sqlite3_file *pSubOpen = 0; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ #ifdef SQLITE_ENABLE_8_3_NAMES /* If JOURNAL_8_3_OFFSET is set to (say) 400, then any overflow files are ** part of a database journal are named db.401, db.402, and so on. A ** database may therefore not grow to larger than 400 chunks. Attempting ** to open chunk 401 indicates the database is full. */ if( iChunk>=SQLITE_MULTIPLEX_JOURNAL_8_3_OFFSET ){ sqlite3_log(SQLITE_FULL, "multiplexed chunk overflow: %s", pGroup->zName); *rc = SQLITE_FULL; return 0; } #endif *rc = multiplexSubFilename(pGroup, iChunk); if( (*rc)==SQLITE_OK && (pSubOpen = pGroup->aReal[iChunk].p)==0 ){ int flags, bExists; flags = pGroup->flags; if( createFlag ){ flags |= SQLITE_OPEN_CREATE; }else if( iChunk==0 ){ /* Fall through */ }else if( pGroup->aReal[iChunk].z==0 ){ return 0; }else{ *rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z, SQLITE_ACCESS_EXISTS, &bExists); if( *rc || !bExists ){ if( *rc ){ sqlite3_log(*rc, "multiplexor.xAccess failure on %s", pGroup->aReal[iChunk].z); } return 0; } flags &= ~SQLITE_OPEN_CREATE; } pSubOpen = sqlite3_malloc64( pOrigVfs->szOsFile ); if( pSubOpen==0 ){ *rc = SQLITE_IOERR_NOMEM; return 0; } pGroup->aReal[iChunk].p = pSubOpen; *rc = pOrigVfs->xOpen(pOrigVfs, pGroup->aReal[iChunk].z, pSubOpen, flags, pOutFlags); if( (*rc)!=SQLITE_OK ){ sqlite3_log(*rc, "multiplexor.xOpen failure on %s", pGroup->aReal[iChunk].z); sqlite3_free(pSubOpen); pGroup->aReal[iChunk].p = 0; return 0; } } return pSubOpen; } /* ** Return the size, in bytes, of chunk number iChunk. If that chunk ** does not exist, then return 0. This function does not distinguish between ** non-existent files and zero-length files. */ static sqlite3_int64 multiplexSubSize( multiplexGroup *pGroup, /* The multiplexor group */ int iChunk, /* Which chunk to open. 0==original file */ int *rc /* Result code in and out */ ){ sqlite3_file *pSub; sqlite3_int64 sz = 0; if( *rc ) return 0; pSub = multiplexSubOpen(pGroup, iChunk, rc, NULL, 0); if( pSub==0 ) return 0; *rc = pSub->pMethods->xFileSize(pSub, &sz); return sz; } /* ** This is the implementation of the multiplex_control() SQL function. */ static void multiplexControlFunc( sqlite3_context *context, int argc, sqlite3_value **argv ){ int rc = SQLITE_OK; sqlite3 *db = sqlite3_context_db_handle(context); int op = 0; int iVal; if( !db || argc!=2 ){ rc = SQLITE_ERROR; }else{ /* extract params */ op = sqlite3_value_int(argv[0]); iVal = sqlite3_value_int(argv[1]); /* map function op to file_control op */ switch( op ){ case 1: op = MULTIPLEX_CTRL_ENABLE; break; case 2: op = MULTIPLEX_CTRL_SET_CHUNK_SIZE; break; case 3: op = MULTIPLEX_CTRL_SET_MAX_CHUNKS; break; default: rc = SQLITE_NOTFOUND; break; } } if( rc==SQLITE_OK ){ rc = sqlite3_file_control(db, 0, op, &iVal); } sqlite3_result_error_code(context, rc); } /* ** This is the entry point to register the auto-extension for the ** multiplex_control() function. */ static int multiplexFuncInit( sqlite3 *db, char **pzErrMsg, const sqlite3_api_routines *pApi ){ int rc; rc = sqlite3_create_function(db, "multiplex_control", 2, SQLITE_ANY, 0, multiplexControlFunc, 0, 0); return rc; } /* ** Close a single sub-file in the connection group. */ static void multiplexSubClose( multiplexGroup *pGroup, int iChunk, sqlite3_vfs *pOrigVfs ){ sqlite3_file *pSubOpen = pGroup->aReal[iChunk].p; if( pSubOpen ){ pSubOpen->pMethods->xClose(pSubOpen); if( pOrigVfs && pGroup->aReal[iChunk].z ){ pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); } sqlite3_free(pGroup->aReal[iChunk].p); } sqlite3_free_filename(pGroup->aReal[iChunk].z); memset(&pGroup->aReal[iChunk], 0, sizeof(pGroup->aReal[iChunk])); } /* ** Deallocate memory held by a multiplexGroup */ static void multiplexFreeComponents(multiplexGroup *pGroup){ int i; for(i=0; inReal; i++){ multiplexSubClose(pGroup, i, 0); } sqlite3_free(pGroup->aReal); pGroup->aReal = 0; pGroup->nReal = 0; } /************************* VFS Method Wrappers *****************************/ /* ** This is the xOpen method used for the "multiplex" VFS. ** ** Most of the work is done by the underlying original VFS. This method ** simply links the new file into the appropriate multiplex group if it is a ** file that needs to be tracked. */ static int multiplexOpen( sqlite3_vfs *pVfs, /* The multiplex VFS */ const char *zName, /* Name of file to be opened */ sqlite3_file *pConn, /* Fill in this file descriptor */ int flags, /* Flags to control the opening */ int *pOutFlags /* Flags showing results of opening */ ){ int rc = SQLITE_OK; /* Result code */ multiplexConn *pMultiplexOpen; /* The new multiplex file descriptor */ multiplexGroup *pGroup = 0; /* Corresponding multiplexGroup object */ sqlite3_file *pSubOpen = 0; /* Real file descriptor */ sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ int nName = 0; int sz = 0; char *zToFree = 0; UNUSED_PARAMETER(pVfs); memset(pConn, 0, pVfs->szOsFile); assert( zName || (flags & SQLITE_OPEN_DELETEONCLOSE) ); /* We need to create a group structure and manage ** access to this group of files. */ pMultiplexOpen = (multiplexConn*)pConn; if( rc==SQLITE_OK ){ /* allocate space for group */ nName = zName ? multiplexStrlen30(zName) : 0; sz = sizeof(multiplexGroup) /* multiplexGroup */ + nName + 1; /* zName */ pGroup = sqlite3_malloc64( sz ); if( pGroup==0 ){ rc = SQLITE_NOMEM; } } if( rc==SQLITE_OK ){ const char *zUri = (flags & SQLITE_OPEN_URI) ? zName : 0; /* assign pointers to extra space allocated */ memset(pGroup, 0, sz); pMultiplexOpen->pGroup = pGroup; pGroup->bEnabled = (unsigned char)-1; pGroup->bTruncate = (unsigned char)sqlite3_uri_boolean(zUri, "truncate", (flags & SQLITE_OPEN_MAIN_DB)==0); pGroup->szChunk = (int)sqlite3_uri_int64(zUri, "chunksize", SQLITE_MULTIPLEX_CHUNK_SIZE); pGroup->szChunk = (pGroup->szChunk+0xffff)&~0xffff; if( zName ){ char *p = (char *)&pGroup[1]; pGroup->zName = p; memcpy(pGroup->zName, zName, nName+1); pGroup->nName = nName; } if( pGroup->bEnabled ){ /* Make sure that the chunksize is such that the pending byte does not ** falls at the end of a chunk. A region of up to 64K following ** the pending byte is never written, so if the pending byte occurs ** near the end of a chunk, that chunk will be too small. */ #ifndef SQLITE_OMIT_WSD extern int sqlite3PendingByte; #else int sqlite3PendingByte = 0x40000000; #endif while( (sqlite3PendingByte % pGroup->szChunk)>=(pGroup->szChunk-65536) ){ pGroup->szChunk += 65536; } } pGroup->flags = (flags & ~SQLITE_OPEN_URI); rc = multiplexSubFilename(pGroup, 1); if( rc==SQLITE_OK ){ pSubOpen = multiplexSubOpen(pGroup, 0, &rc, pOutFlags, 0); if( pSubOpen==0 && rc==SQLITE_OK ) rc = SQLITE_CANTOPEN; } if( rc==SQLITE_OK ){ sqlite3_int64 sz64; rc = pSubOpen->pMethods->xFileSize(pSubOpen, &sz64); if( rc==SQLITE_OK && zName ){ int bExists; if( flags & SQLITE_OPEN_SUPER_JOURNAL ){ pGroup->bEnabled = 0; }else if( sz64==0 ){ if( flags & SQLITE_OPEN_MAIN_JOURNAL ){ /* If opening a main journal file and the first chunk is zero ** bytes in size, delete any subsequent chunks from the ** file-system. */ int iChunk = 1; do { rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[iChunk].z, SQLITE_ACCESS_EXISTS, &bExists ); if( rc==SQLITE_OK && bExists ){ rc = pOrigVfs->xDelete(pOrigVfs, pGroup->aReal[iChunk].z, 0); if( rc==SQLITE_OK ){ rc = multiplexSubFilename(pGroup, ++iChunk); } } }while( rc==SQLITE_OK && bExists ); } }else{ /* If the first overflow file exists and if the size of the main file ** is different from the chunk size, that means the chunk size is set ** set incorrectly. So fix it. ** ** Or, if the first overflow file does not exist and the main file is ** larger than the chunk size, that means the chunk size is too small. ** But we have no way of determining the intended chunk size, so ** just disable the multiplexor all together. */ rc = pOrigVfs->xAccess(pOrigVfs, pGroup->aReal[1].z, SQLITE_ACCESS_EXISTS, &bExists); bExists = multiplexSubSize(pGroup, 1, &rc)>0; if( rc==SQLITE_OK && bExists && sz64==(sz64&0xffff0000) && sz64>0 && sz64!=pGroup->szChunk ){ pGroup->szChunk = (int)sz64; }else if( rc==SQLITE_OK && !bExists && sz64>pGroup->szChunk ){ pGroup->bEnabled = 0; } } } } if( rc==SQLITE_OK ){ if( pSubOpen->pMethods->iVersion==1 ){ pConn->pMethods = &gMultiplex.sIoMethodsV1; }else{ pConn->pMethods = &gMultiplex.sIoMethodsV2; } }else{ multiplexFreeComponents(pGroup); sqlite3_free(pGroup); } } sqlite3_free(zToFree); return rc; } /* ** This is the xDelete method used for the "multiplex" VFS. ** It attempts to delete the filename specified. */ static int multiplexDelete( sqlite3_vfs *pVfs, /* The multiplex VFS */ const char *zName, /* Name of file to delete */ int syncDir ){ int rc; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ rc = pOrigVfs->xDelete(pOrigVfs, zName, syncDir); if( rc==SQLITE_OK ){ /* If the main chunk was deleted successfully, also delete any subsequent ** chunks - starting with the last (highest numbered). */ int nName = (int)strlen(zName); char *z; z = sqlite3_malloc64(nName + 5); if( z==0 ){ rc = SQLITE_IOERR_NOMEM; }else{ int iChunk = 0; int bExists; do{ multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, ++iChunk, z); rc = pOrigVfs->xAccess(pOrigVfs, z, SQLITE_ACCESS_EXISTS, &bExists); }while( rc==SQLITE_OK && bExists ); while( rc==SQLITE_OK && iChunk>1 ){ multiplexFilename(zName, nName, SQLITE_OPEN_MAIN_JOURNAL, --iChunk, z); rc = pOrigVfs->xDelete(pOrigVfs, z, syncDir); } if( rc==SQLITE_OK ){ iChunk = 0; do{ multiplexFilename(zName, nName, SQLITE_OPEN_WAL, ++iChunk, z); rc = pOrigVfs->xAccess(pOrigVfs, z, SQLITE_ACCESS_EXISTS, &bExists); }while( rc==SQLITE_OK && bExists ); while( rc==SQLITE_OK && iChunk>1 ){ multiplexFilename(zName, nName, SQLITE_OPEN_WAL, --iChunk, z); rc = pOrigVfs->xDelete(pOrigVfs, z, syncDir); } } } sqlite3_free(z); } return rc; } static int multiplexAccess(sqlite3_vfs *a, const char *b, int c, int *d){ return gMultiplex.pOrigVfs->xAccess(gMultiplex.pOrigVfs, b, c, d); } static int multiplexFullPathname(sqlite3_vfs *a, const char *b, int c, char *d){ return gMultiplex.pOrigVfs->xFullPathname(gMultiplex.pOrigVfs, b, c, d); } static void *multiplexDlOpen(sqlite3_vfs *a, const char *b){ return gMultiplex.pOrigVfs->xDlOpen(gMultiplex.pOrigVfs, b); } static void multiplexDlError(sqlite3_vfs *a, int b, char *c){ gMultiplex.pOrigVfs->xDlError(gMultiplex.pOrigVfs, b, c); } static void (*multiplexDlSym(sqlite3_vfs *a, void *b, const char *c))(void){ return gMultiplex.pOrigVfs->xDlSym(gMultiplex.pOrigVfs, b, c); } static void multiplexDlClose(sqlite3_vfs *a, void *b){ gMultiplex.pOrigVfs->xDlClose(gMultiplex.pOrigVfs, b); } static int multiplexRandomness(sqlite3_vfs *a, int b, char *c){ return gMultiplex.pOrigVfs->xRandomness(gMultiplex.pOrigVfs, b, c); } static int multiplexSleep(sqlite3_vfs *a, int b){ return gMultiplex.pOrigVfs->xSleep(gMultiplex.pOrigVfs, b); } static int multiplexCurrentTime(sqlite3_vfs *a, double *b){ return gMultiplex.pOrigVfs->xCurrentTime(gMultiplex.pOrigVfs, b); } static int multiplexGetLastError(sqlite3_vfs *a, int b, char *c){ if( gMultiplex.pOrigVfs->xGetLastError ){ return gMultiplex.pOrigVfs->xGetLastError(gMultiplex.pOrigVfs, b, c); }else{ return 0; } } static int multiplexCurrentTimeInt64(sqlite3_vfs *a, sqlite3_int64 *b){ return gMultiplex.pOrigVfs->xCurrentTimeInt64(gMultiplex.pOrigVfs, b); } /************************ I/O Method Wrappers *******************************/ /* xClose requests get passed through to the original VFS. ** We loop over all open chunk handles and close them. ** The group structure for this file is unlinked from ** our list of groups and freed. */ static int multiplexClose(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; multiplexFreeComponents(pGroup); sqlite3_free(pGroup); return rc; } /* Pass xRead requests thru to the original VFS after ** determining the correct chunk to operate on. ** Break up reads across chunk boundaries. */ static int multiplexRead( sqlite3_file *pConn, void *pBuf, int iAmt, sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_READ; }else{ rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst); } }else{ while( iAmt > 0 ){ int i = (int)(iOfst / pGroup->szChunk); sqlite3_file *pSubOpen; pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); if( pSubOpen ){ int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; if( extra<0 ) extra = 0; iAmt -= extra; rc = pSubOpen->pMethods->xRead(pSubOpen, pBuf, iAmt, iOfst % pGroup->szChunk); if( rc!=SQLITE_OK ) break; pBuf = (char *)pBuf + iAmt; iOfst += iAmt; iAmt = extra; }else{ rc = SQLITE_IOERR_READ; break; } } } return rc; } /* Pass xWrite requests thru to the original VFS after ** determining the correct chunk to operate on. ** Break up writes across chunk boundaries. */ static int multiplexWrite( sqlite3_file *pConn, const void *pBuf, int iAmt, sqlite3_int64 iOfst ){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_WRITE; }else{ rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst); } }else{ while( rc==SQLITE_OK && iAmt>0 ){ int i = (int)(iOfst / pGroup->szChunk); sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, i, &rc, NULL, 1); if( pSubOpen ){ int extra = ((int)(iOfst % pGroup->szChunk) + iAmt) - pGroup->szChunk; if( extra<0 ) extra = 0; iAmt -= extra; rc = pSubOpen->pMethods->xWrite(pSubOpen, pBuf, iAmt, iOfst % pGroup->szChunk); pBuf = (char *)pBuf + iAmt; iOfst += iAmt; iAmt = extra; } } } return rc; } /* Pass xTruncate requests thru to the original VFS after ** determining the correct chunk to operate on. Delete any ** chunks above the truncate mark. */ static int multiplexTruncate(sqlite3_file *pConn, sqlite3_int64 size){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_TRUNCATE; }else{ rc = pSubOpen->pMethods->xTruncate(pSubOpen, size); } }else{ int i; int iBaseGroup = (int)(size / pGroup->szChunk); sqlite3_file *pSubOpen; sqlite3_vfs *pOrigVfs = gMultiplex.pOrigVfs; /* Real VFS */ /* delete the chunks above the truncate limit */ for(i = pGroup->nReal-1; i>iBaseGroup && rc==SQLITE_OK; i--){ if( pGroup->bTruncate ){ multiplexSubClose(pGroup, i, pOrigVfs); }else{ pSubOpen = multiplexSubOpen(pGroup, i, &rc, 0, 0); if( pSubOpen ){ rc = pSubOpen->pMethods->xTruncate(pSubOpen, 0); } } } if( rc==SQLITE_OK ){ pSubOpen = multiplexSubOpen(pGroup, iBaseGroup, &rc, 0, 0); if( pSubOpen ){ rc = pSubOpen->pMethods->xTruncate(pSubOpen, size % pGroup->szChunk); } } if( rc ) rc = SQLITE_IOERR_TRUNCATE; } return rc; } /* Pass xSync requests through to the original VFS without change */ static int multiplexSync(sqlite3_file *pConn, int flags){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; int i; for(i=0; inReal; i++){ sqlite3_file *pSubOpen = pGroup->aReal[i].p; if( pSubOpen ){ int rc2 = pSubOpen->pMethods->xSync(pSubOpen, flags); if( rc2!=SQLITE_OK ) rc = rc2; } } return rc; } /* Pass xFileSize requests through to the original VFS. ** Aggregate the size of all the chunks before returning. */ static int multiplexFileSize(sqlite3_file *pConn, sqlite3_int64 *pSize){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_OK; int i; if( !pGroup->bEnabled ){ sqlite3_file *pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen==0 ){ rc = SQLITE_IOERR_FSTAT; }else{ rc = pSubOpen->pMethods->xFileSize(pSubOpen, pSize); } }else{ *pSize = 0; for(i=0; rc==SQLITE_OK; i++){ sqlite3_int64 sz = multiplexSubSize(pGroup, i, &rc); if( sz==0 ) break; *pSize = i*(sqlite3_int64)pGroup->szChunk + sz; } } return rc; } /* Pass xLock requests through to the original VFS unchanged. */ static int multiplexLock(sqlite3_file *pConn, int lock){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xLock(pSubOpen, lock); } return SQLITE_BUSY; } /* Pass xUnlock requests through to the original VFS unchanged. */ static int multiplexUnlock(sqlite3_file *pConn, int lock){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xUnlock(pSubOpen, lock); } return SQLITE_IOERR_UNLOCK; } /* Pass xCheckReservedLock requests through to the original VFS unchanged. */ static int multiplexCheckReservedLock(sqlite3_file *pConn, int *pResOut){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xCheckReservedLock(pSubOpen, pResOut); } return SQLITE_IOERR_CHECKRESERVEDLOCK; } /* Pass xFileControl requests through to the original VFS unchanged, ** except for any MULTIPLEX_CTRL_* requests here. */ static int multiplexFileControl(sqlite3_file *pConn, int op, void *pArg){ multiplexConn *p = (multiplexConn*)pConn; multiplexGroup *pGroup = p->pGroup; int rc = SQLITE_ERROR; sqlite3_file *pSubOpen; if( !gMultiplex.isInitialized ) return SQLITE_MISUSE; switch( op ){ case MULTIPLEX_CTRL_ENABLE: if( pArg ) { int bEnabled = *(int *)pArg; pGroup->bEnabled = (unsigned char)bEnabled; rc = SQLITE_OK; } break; case MULTIPLEX_CTRL_SET_CHUNK_SIZE: if( pArg ) { unsigned int szChunk = *(unsigned*)pArg; if( szChunk<1 ){ rc = SQLITE_MISUSE; }else{ /* Round up to nearest multiple of MAX_PAGE_SIZE. */ szChunk = (szChunk + (MAX_PAGE_SIZE-1)); szChunk &= ~(MAX_PAGE_SIZE-1); pGroup->szChunk = szChunk; rc = SQLITE_OK; } } break; case MULTIPLEX_CTRL_SET_MAX_CHUNKS: rc = SQLITE_OK; break; case SQLITE_FCNTL_SIZE_HINT: case SQLITE_FCNTL_CHUNK_SIZE: /* no-op these */ rc = SQLITE_OK; break; case SQLITE_FCNTL_PRAGMA: { char **aFcntl = (char**)pArg; /* ** EVIDENCE-OF: R-29875-31678 The argument to the SQLITE_FCNTL_PRAGMA ** file control is an array of pointers to strings (char**) in which the ** second element of the array is the name of the pragma and the third ** element is the argument to the pragma or NULL if the pragma has no ** argument. */ if( aFcntl[1] && sqlite3_strnicmp(aFcntl[1],"multiplex_",10)==0 ){ sqlite3_int64 sz = 0; (void)multiplexFileSize(pConn, &sz); /* ** PRAGMA multiplex_truncate=BOOLEAN; ** PRAGMA multiplex_truncate; ** ** Turn the multiplexor truncate feature on or off. Return either ** "on" or "off" to indicate the new setting. If the BOOLEAN argument ** is omitted, just return the current value for the truncate setting. */ if( sqlite3_stricmp(aFcntl[1],"multiplex_truncate")==0 ){ if( aFcntl[2] && aFcntl[2][0] ){ if( sqlite3_stricmp(aFcntl[2], "on")==0 || sqlite3_stricmp(aFcntl[2], "1")==0 ){ pGroup->bTruncate = 1; }else if( sqlite3_stricmp(aFcntl[2], "off")==0 || sqlite3_stricmp(aFcntl[2], "0")==0 ){ pGroup->bTruncate = 0; } } /* EVIDENCE-OF: R-27806-26076 The handler for an SQLITE_FCNTL_PRAGMA ** file control can optionally make the first element of the char** ** argument point to a string obtained from sqlite3_mprintf() or the ** equivalent and that string will become the result of the pragma ** or the error message if the pragma fails. */ aFcntl[0] = sqlite3_mprintf(pGroup->bTruncate ? "on" : "off"); rc = SQLITE_OK; break; } /* ** PRAGMA multiplex_enabled; ** ** Return 0 or 1 depending on whether the multiplexor is enabled or ** disabled, respectively. */ if( sqlite3_stricmp(aFcntl[1],"multiplex_enabled")==0 ){ aFcntl[0] = sqlite3_mprintf("%d", pGroup->bEnabled!=0); rc = SQLITE_OK; break; } /* ** PRAGMA multiplex_chunksize; ** ** Return the chunksize for the multiplexor, or no-op if the ** multiplexor is not active. */ if( sqlite3_stricmp(aFcntl[1],"multiplex_chunksize")==0 && pGroup->bEnabled ){ aFcntl[0] = sqlite3_mprintf("%u", pGroup->szChunk); rc = SQLITE_OK; break; } /* ** PRAGMA multiplex_filecount; ** ** Return the number of disk files currently in use by the ** multiplexor. This should be the total database size size ** divided by the chunksize and rounded up. */ if( sqlite3_stricmp(aFcntl[1],"multiplex_filecount")==0 ){ int n = 0; int ii; for(ii=0; iinReal; ii++){ if( pGroup->aReal[ii].p!=0 ) n++; } aFcntl[0] = sqlite3_mprintf("%d", n); rc = SQLITE_OK; break; } } /* If the multiplexor does not handle the pragma, pass it through ** into the default case. */ } default: pSubOpen = multiplexSubOpen(pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ rc = pSubOpen->pMethods->xFileControl(pSubOpen, op, pArg); if( op==SQLITE_FCNTL_VFSNAME && rc==SQLITE_OK ){ *(char**)pArg = sqlite3_mprintf("multiplex/%z", *(char**)pArg); } } break; } return rc; } /* Pass xSectorSize requests through to the original VFS unchanged. */ static int multiplexSectorSize(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen && pSubOpen->pMethods->xSectorSize ){ return pSubOpen->pMethods->xSectorSize(pSubOpen); } return DEFAULT_SECTOR_SIZE; } /* Pass xDeviceCharacteristics requests through to the original VFS unchanged. */ static int multiplexDeviceCharacteristics(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xDeviceCharacteristics(pSubOpen); } return 0; } /* Pass xShmMap requests through to the original VFS unchanged. */ static int multiplexShmMap( sqlite3_file *pConn, /* Handle open on database file */ int iRegion, /* Region to retrieve */ int szRegion, /* Size of regions */ int bExtend, /* True to extend file if necessary */ void volatile **pp /* OUT: Mapped memory */ ){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xShmMap(pSubOpen, iRegion, szRegion, bExtend,pp); } return SQLITE_IOERR; } /* Pass xShmLock requests through to the original VFS unchanged. */ static int multiplexShmLock( sqlite3_file *pConn, /* Database file holding the shared memory */ int ofst, /* First lock to acquire or release */ int n, /* Number of locks to acquire or release */ int flags /* What to do with the lock */ ){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xShmLock(pSubOpen, ofst, n, flags); } return SQLITE_BUSY; } /* Pass xShmBarrier requests through to the original VFS unchanged. */ static void multiplexShmBarrier(sqlite3_file *pConn){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ pSubOpen->pMethods->xShmBarrier(pSubOpen); } } /* Pass xShmUnmap requests through to the original VFS unchanged. */ static int multiplexShmUnmap(sqlite3_file *pConn, int deleteFlag){ multiplexConn *p = (multiplexConn*)pConn; int rc; sqlite3_file *pSubOpen = multiplexSubOpen(p->pGroup, 0, &rc, NULL, 0); if( pSubOpen ){ return pSubOpen->pMethods->xShmUnmap(pSubOpen, deleteFlag); } return SQLITE_OK; } /************************** Public Interfaces *****************************/ /* ** CAPI: Initialize the multiplex VFS shim - sqlite3_multiplex_initialize() ** ** Use the VFS named zOrigVfsName as the VFS that does the actual work. ** Use the default if zOrigVfsName==NULL. ** ** The multiplex VFS shim is named "multiplex". It will become the default ** VFS if makeDefault is non-zero. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once ** during start-up. */ int sqlite3_multiplex_initialize(const char *zOrigVfsName, int makeDefault){ sqlite3_vfs *pOrigVfs; if( gMultiplex.isInitialized ) return SQLITE_MISUSE; pOrigVfs = sqlite3_vfs_find(zOrigVfsName); if( pOrigVfs==0 ) return SQLITE_ERROR; assert( pOrigVfs!=&gMultiplex.sThisVfs ); gMultiplex.isInitialized = 1; gMultiplex.pOrigVfs = pOrigVfs; gMultiplex.sThisVfs = *pOrigVfs; gMultiplex.sThisVfs.szOsFile += sizeof(multiplexConn); gMultiplex.sThisVfs.zName = SQLITE_MULTIPLEX_VFS_NAME; gMultiplex.sThisVfs.xOpen = multiplexOpen; gMultiplex.sThisVfs.xDelete = multiplexDelete; gMultiplex.sThisVfs.xAccess = multiplexAccess; gMultiplex.sThisVfs.xFullPathname = multiplexFullPathname; gMultiplex.sThisVfs.xDlOpen = multiplexDlOpen; gMultiplex.sThisVfs.xDlError = multiplexDlError; gMultiplex.sThisVfs.xDlSym = multiplexDlSym; gMultiplex.sThisVfs.xDlClose = multiplexDlClose; gMultiplex.sThisVfs.xRandomness = multiplexRandomness; gMultiplex.sThisVfs.xSleep = multiplexSleep; gMultiplex.sThisVfs.xCurrentTime = multiplexCurrentTime; gMultiplex.sThisVfs.xGetLastError = multiplexGetLastError; gMultiplex.sThisVfs.xCurrentTimeInt64 = multiplexCurrentTimeInt64; gMultiplex.sIoMethodsV1.iVersion = 1; gMultiplex.sIoMethodsV1.xClose = multiplexClose; gMultiplex.sIoMethodsV1.xRead = multiplexRead; gMultiplex.sIoMethodsV1.xWrite = multiplexWrite; gMultiplex.sIoMethodsV1.xTruncate = multiplexTruncate; gMultiplex.sIoMethodsV1.xSync = multiplexSync; gMultiplex.sIoMethodsV1.xFileSize = multiplexFileSize; gMultiplex.sIoMethodsV1.xLock = multiplexLock; gMultiplex.sIoMethodsV1.xUnlock = multiplexUnlock; gMultiplex.sIoMethodsV1.xCheckReservedLock = multiplexCheckReservedLock; gMultiplex.sIoMethodsV1.xFileControl = multiplexFileControl; gMultiplex.sIoMethodsV1.xSectorSize = multiplexSectorSize; gMultiplex.sIoMethodsV1.xDeviceCharacteristics = multiplexDeviceCharacteristics; gMultiplex.sIoMethodsV2 = gMultiplex.sIoMethodsV1; gMultiplex.sIoMethodsV2.iVersion = 2; gMultiplex.sIoMethodsV2.xShmMap = multiplexShmMap; gMultiplex.sIoMethodsV2.xShmLock = multiplexShmLock; gMultiplex.sIoMethodsV2.xShmBarrier = multiplexShmBarrier; gMultiplex.sIoMethodsV2.xShmUnmap = multiplexShmUnmap; sqlite3_vfs_register(&gMultiplex.sThisVfs, makeDefault); sqlite3_auto_extension((void(*)(void))multiplexFuncInit); return SQLITE_OK; } /* ** CAPI: Shutdown the multiplex system - sqlite3_multiplex_shutdown() ** ** All SQLite database connections must be closed before calling this ** routine. ** ** THIS ROUTINE IS NOT THREADSAFE. Call this routine exactly once while ** shutting down in order to free all remaining multiplex groups. */ int sqlite3_multiplex_shutdown(int eForce){ int rc = SQLITE_OK; if( gMultiplex.isInitialized==0 ) return SQLITE_MISUSE; gMultiplex.isInitialized = 0; sqlite3_vfs_unregister(&gMultiplex.sThisVfs); memset(&gMultiplex, 0, sizeof(gMultiplex)); return rc; } /***************************** Test Code ***********************************/ #ifdef SQLITE_TEST #include "tclsqlite.h" extern const char *sqlite3ErrName(int); /* ** tclcmd: sqlite3_multiplex_initialize NAME MAKEDEFAULT */ static int SQLITE_TCLAPI test_multiplex_initialize( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ const char *zName; /* Name of new multiplex VFS */ int makeDefault; /* True to make the new VFS the default */ int rc; /* Value returned by multiplex_initialize() */ UNUSED_PARAMETER(clientData); /* Process arguments */ if( objc!=3 ){ Tcl_WrongNumArgs(interp, 1, objv, "NAME MAKEDEFAULT"); return TCL_ERROR; } zName = Tcl_GetString(objv[1]); if( Tcl_GetBooleanFromObj(interp, objv[2], &makeDefault) ) return TCL_ERROR; if( zName[0]=='\0' ) zName = 0; /* Call sqlite3_multiplex_initialize() */ rc = sqlite3_multiplex_initialize(zName, makeDefault); Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); return TCL_OK; } /* ** tclcmd: sqlite3_multiplex_shutdown */ static int SQLITE_TCLAPI test_multiplex_shutdown( void * clientData, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ int rc; /* Value returned by multiplex_shutdown() */ UNUSED_PARAMETER(clientData); if( objc==2 && strcmp(Tcl_GetString(objv[1]),"-force")!=0 ){ objc = 3; } if( (objc!=1 && objc!=2) ){ Tcl_WrongNumArgs(interp, 1, objv, "?-force?"); return TCL_ERROR; } /* Call sqlite3_multiplex_shutdown() */ rc = sqlite3_multiplex_shutdown(objc==2); Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); return TCL_OK; } /* ** Tclcmd: test_multiplex_control HANDLE DBNAME SUB-COMMAND ?INT-VALUE? */ static int SQLITE_TCLAPI test_multiplex_control( ClientData cd, Tcl_Interp *interp, int objc, Tcl_Obj *CONST objv[] ){ int rc; /* Return code from file_control() */ int idx; /* Index in aSub[] */ Tcl_CmdInfo cmdInfo; /* Command info structure for HANDLE */ sqlite3 *db; /* Underlying db handle for HANDLE */ int iValue = 0; void *pArg = 0; struct SubCommand { const char *zName; int op; int argtype; } aSub[] = { { "enable", MULTIPLEX_CTRL_ENABLE, 1 }, { "chunk_size", MULTIPLEX_CTRL_SET_CHUNK_SIZE, 1 }, { "max_chunks", MULTIPLEX_CTRL_SET_MAX_CHUNKS, 1 }, { 0, 0, 0 } }; if( objc!=5 ){ Tcl_WrongNumArgs(interp, 1, objv, "HANDLE DBNAME SUB-COMMAND INT-VALUE"); return TCL_ERROR; } if( 0==Tcl_GetCommandInfo(interp, Tcl_GetString(objv[1]), &cmdInfo) ){ Tcl_AppendResult(interp, "expected database handle, got \"", 0); Tcl_AppendResult(interp, Tcl_GetString(objv[1]), "\"", 0); return TCL_ERROR; }else{ db = *(sqlite3 **)cmdInfo.objClientData; } rc = Tcl_GetIndexFromObjStruct( interp, objv[3], aSub, sizeof(aSub[0]), "sub-command", 0, &idx ); if( rc!=TCL_OK ) return rc; switch( aSub[idx].argtype ){ case 1: if( Tcl_GetIntFromObj(interp, objv[4], &iValue) ){ return TCL_ERROR; } pArg = (void *)&iValue; break; default: Tcl_WrongNumArgs(interp, 4, objv, "SUB-COMMAND"); return TCL_ERROR; } rc = sqlite3_file_control(db, Tcl_GetString(objv[2]), aSub[idx].op, pArg); Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); return (rc==SQLITE_OK) ? TCL_OK : TCL_ERROR; } /* ** This routine registers the custom TCL commands defined in this ** module. This should be the only procedure visible from outside ** of this module. */ int Sqlitemultiplex_Init(Tcl_Interp *interp){ static struct { char *zName; Tcl_ObjCmdProc *xProc; } aCmd[] = { { "sqlite3_multiplex_initialize", test_multiplex_initialize }, { "sqlite3_multiplex_shutdown", test_multiplex_shutdown }, { "sqlite3_multiplex_control", test_multiplex_control }, }; int i; for(i=0; i