0
0
mirror of https://github.com/PostHog/posthog.git synced 2024-11-22 08:40:03 +01:00
posthog/gunicorn.config.py
Tom Owers 5513be7731
chore: upgraded Ruff linter (#18188)
* Upgraded Ruff linter

* Formatted whole codebase with new ruff rules

* Revert import removal

* Fixed mypi issues or added ignores

* Fixed schema formatting

* Fixed hogvm failing tests

* Remove duplicate key in list
2023-10-26 12:38:15 +02:00

255 lines
8.0 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import logging
import os
import socket
import struct
import sys
import threading
import time
import structlog
from prometheus_client import CollectorRegistry, Gauge, multiprocess, start_http_server
loglevel = "error"
keepalive = 120
# Set the timeout to something lower than any downstreams, such that if the
# timeout is hit, then the worker will be killed and respawned, which will then
# we able to pick up any connections that were previously pending on the socket
# and serve the requests before the downstream timeout.
timeout = 15
grateful_timeout = 120
METRICS_UPDATE_INTERVAL_SECONDS = int(os.getenv("GUNICORN_METRICS_UPDATE_SECONDS", 5))
def when_ready(server):
"""
To ease being able to hide the /metrics endpoint when running in production,
we serve the metrics on a separate port, using the
prometheus_client.multiprocess Collector to pull in data from the worker
processes.
"""
registry = CollectorRegistry()
multiprocess.MultiProcessCollector(registry)
port = int(os.environ.get("PROMETHEUS_METRICS_EXPORT_PORT", 8001))
start_http_server(port=port, registry=registry)
# Start a thread in the Arbiter that will monitor the backlog on the sockets
# Gunicorn is listening on.
socket_monitor = SocketMonitor(server=server, registry=registry)
socket_monitor.start()
def post_fork(server, worker):
"""
Within each worker process, start a thread that will monitor the thread and
connection pool.
"""
worker_monitor = WorkerMonitor(worker=worker)
worker_monitor.start()
def worker_exit(server, worker):
"""
Ensure that we mark workers as dead with the prometheus_client such that
any cleanup can happen.
"""
multiprocess.mark_process_dead(worker.pid)
class SocketMonitor(threading.Thread):
"""
We have enabled the statsd collector for Gunicorn, but this doesn't include
the backlog due to concerns over portability, see
https://github.com/benoitc/gunicorn/pull/2407
Instead, we expose to Prometheus a gauge that will report the backlog size.
We can then:
1. use this to monitor how well the Gunicorn instances are keeping up with
requests.
2. use this metric to handle HPA scaling e.g. in Kubernetes
"""
def __init__(self, server, registry):
super().__init__()
self.daemon = True
self.server = server
self.registry = registry
def run(self):
"""
Every X seconds, check to see how many connections are pending for each
server socket.
We label each individually, as limits such as `--backlog` will apply to
each individually.
"""
if sys.platform != "linux":
# We use the assumption that we are on Linux to be able to get the
# socket backlog, so if we're not on Linux, we return immediately.
return
backlog_gauge = Gauge(
"gunicorn_pending_connections",
"The number of pending connections on all sockets. Linux only.",
registry=self.registry,
labelnames=["listener"],
)
while True:
for sock in self.server.LISTENERS:
backlog = self.get_backlog(sock=sock)
backlog_gauge.labels(listener=str(sock)).set(backlog)
time.sleep(METRICS_UPDATE_INTERVAL_SECONDS)
def get_backlog(self, sock):
# tcp_info struct from include/uapi/linux/tcp.h
fmt = "B" * 8 + "I" * 24
tcp_info_struct = sock.getsockopt(socket.IPPROTO_TCP, socket.TCP_INFO, 104)
# 12 is tcpi_unacked
return struct.unpack(fmt, tcp_info_struct)[12]
class WorkerMonitor(threading.Thread):
"""
There is a statsd logger support in Gunicorn that allows us to gather
metrics e.g. on the number of workers, requests, request duration etc. See
https://docs.gunicorn.org/en/stable/instrumentation.html for details.
To get a better understanding of the pool utilization, number of accepted
connections, we start a thread in head worker to report these via prometheus
metrics.
"""
def __init__(self, worker):
super().__init__()
self.daemon = True
self.worker = worker
def run(self):
"""
Every X seconds, check the status of the Thread pool, as well as the
"""
active_worker_connections = Gauge(
"gunicorn_active_worker_connections",
"Number of active connections.",
labelnames=["pid"],
)
max_worker_connections = Gauge(
"gunicorn_max_worker_connections",
"Maximum worker connections.",
labelnames=["pid"],
)
total_threads = Gauge(
"gunicorn_max_worker_threads",
"Size of the thread pool per worker.",
labelnames=["pid"],
)
active_threads = Gauge(
"gunicorn_active_worker_threads",
"Number of threads actively processing requests.",
labelnames=["pid"],
)
pending_requests = Gauge(
"gunicorn_pending_requests",
"Number of requests that have been read from a connection but have not completed yet",
labelnames=["pid"],
)
max_worker_connections.labels(pid=self.worker.pid).set(self.worker.cfg.worker_connections)
total_threads.labels(pid=self.worker.pid).set(self.worker.cfg.threads)
while True:
active_worker_connections.labels(pid=self.worker.pid).set(self.worker.nr_conns)
active_threads.labels(pid=self.worker.pid).set(min(self.worker.cfg.threads, len(self.worker.futures)))
pending_requests.labels(pid=self.worker.pid).set(len(self.worker.futures))
time.sleep(METRICS_UPDATE_INTERVAL_SECONDS)
LOGGING_FORMATTER_NAME = os.getenv("LOGGING_FORMATTER_NAME", "default")
# Setup stdlib logging to be handled by Structlog
def add_pid_and_tid(
logger: logging.Logger, method_name: str, event_dict: structlog.types.EventDict
) -> structlog.types.EventDict:
event_dict["pid"] = os.getpid()
event_dict["tid"] = threading.get_ident()
return event_dict
pre_chain = [
# Add the log level and a timestamp to the event_dict if the log entry
# is not from structlog.
structlog.stdlib.add_log_level,
structlog.stdlib.add_logger_name,
add_pid_and_tid,
structlog.processors.TimeStamper(fmt="iso"),
]
# This is a copy the default logging config for gunicorn but with additions to:
#
# 1. non propagate loggers to the root handlers (otherwise we get duplicate log
# lines)
# 2. use structlog for processing of log records
#
# See
# https://github.com/benoitc/gunicorn/blob/0b953b803786997d633d66c0f7c7b290df75e07c/gunicorn/glogging.py#L48
# for the default log settings.
logconfig_dict = {
"version": 1,
"disable_existing_loggers": True,
"formatters": {
"default": {
"()": structlog.stdlib.ProcessorFormatter,
"processor": structlog.dev.ConsoleRenderer(colors=True),
"foreign_pre_chain": pre_chain,
},
"json": {
"()": structlog.stdlib.ProcessorFormatter,
"processor": structlog.processors.JSONRenderer(),
"foreign_pre_chain": pre_chain,
},
},
"root": {"level": "INFO", "handlers": ["console"]},
"loggers": {
"gunicorn.error": {
"level": "INFO",
"handlers": ["error_console"],
"propagate": False,
"qualname": "gunicorn.error",
},
"gunicorn.access": {
"level": "INFO",
"handlers": ["console"],
"propagate": False,
"qualname": "gunicorn.access",
},
},
"handlers": {
"error_console": {
"class": "logging.StreamHandler",
"formatter": LOGGING_FORMATTER_NAME,
"stream": "ext://sys.stderr",
},
"console": {
"class": "logging.StreamHandler",
"formatter": LOGGING_FORMATTER_NAME,
"stream": "ext://sys.stdout",
},
},
}