mirror of
https://github.com/PostHog/posthog.git
synced 2024-11-25 02:49:32 +01:00
23bd1a010f
Co-authored-by: github-actions <41898282+github-actions[bot]@users.noreply.github.com>
316 lines
14 KiB
Python
316 lines
14 KiB
Python
import json
|
|
from unittest.mock import patch
|
|
|
|
from django.test import override_settings
|
|
from langchain_core.agents import AgentAction
|
|
from langchain_core.prompts import ChatPromptTemplate
|
|
from langchain_core.runnables import RunnableLambda
|
|
|
|
from ee.hogai.schema_generator.nodes import SchemaGeneratorNode, SchemaGeneratorToolsNode
|
|
from ee.hogai.schema_generator.utils import SchemaGeneratorOutput
|
|
from posthog.schema import (
|
|
AssistantTrendsQuery,
|
|
FailureMessage,
|
|
HumanMessage,
|
|
VisualizationMessage,
|
|
)
|
|
from posthog.test.base import APIBaseTest, ClickhouseTestMixin
|
|
|
|
TestSchema = SchemaGeneratorOutput[AssistantTrendsQuery]
|
|
|
|
|
|
class DummyGeneratorNode(SchemaGeneratorNode[AssistantTrendsQuery]):
|
|
INSIGHT_NAME = "Test"
|
|
OUTPUT_MODEL = SchemaGeneratorOutput[AssistantTrendsQuery]
|
|
OUTPUT_SCHEMA = {}
|
|
|
|
def run(self, state, config):
|
|
prompt = ChatPromptTemplate.from_messages(
|
|
[
|
|
("system", "system_prompt"),
|
|
],
|
|
)
|
|
return super()._run_with_prompt(state, prompt, config=config)
|
|
|
|
|
|
@override_settings(IN_UNIT_TESTING=True)
|
|
class TestSchemaGeneratorNode(ClickhouseTestMixin, APIBaseTest):
|
|
def setUp(self):
|
|
self.schema = AssistantTrendsQuery(series=[])
|
|
|
|
def test_node_runs(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
with patch.object(DummyGeneratorNode, "_model") as generator_model_mock:
|
|
generator_model_mock.return_value = RunnableLambda(
|
|
lambda _: TestSchema(reasoning_steps=["step"], answer=self.schema).model_dump()
|
|
)
|
|
new_state = node.run(
|
|
{
|
|
"messages": [HumanMessage(content="Text")],
|
|
"plan": "Plan",
|
|
},
|
|
{},
|
|
)
|
|
self.assertEqual(
|
|
new_state,
|
|
{
|
|
"messages": [
|
|
VisualizationMessage(answer=self.schema, plan="Plan", reasoning_steps=["step"], done=True)
|
|
],
|
|
"intermediate_steps": None,
|
|
},
|
|
)
|
|
|
|
def test_agent_reconstructs_conversation(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
history = node._construct_messages({"messages": [HumanMessage(content="Text")]})
|
|
self.assertEqual(len(history), 2)
|
|
self.assertEqual(history[0].type, "human")
|
|
self.assertIn("mapping", history[0].content)
|
|
self.assertEqual(history[1].type, "human")
|
|
self.assertIn("Answer to this question:", history[1].content)
|
|
self.assertNotIn("{{question}}", history[1].content)
|
|
|
|
history = node._construct_messages({"messages": [HumanMessage(content="Text")], "plan": "randomplan"})
|
|
self.assertEqual(len(history), 3)
|
|
self.assertEqual(history[0].type, "human")
|
|
self.assertIn("mapping", history[0].content)
|
|
self.assertEqual(history[1].type, "human")
|
|
self.assertIn("the plan", history[1].content)
|
|
self.assertNotIn("{{plan}}", history[1].content)
|
|
self.assertIn("randomplan", history[1].content)
|
|
self.assertEqual(history[2].type, "human")
|
|
self.assertIn("Answer to this question:", history[2].content)
|
|
self.assertNotIn("{{question}}", history[2].content)
|
|
self.assertIn("Text", history[2].content)
|
|
|
|
node = DummyGeneratorNode(self.team)
|
|
history = node._construct_messages(
|
|
{
|
|
"messages": [
|
|
HumanMessage(content="Text"),
|
|
VisualizationMessage(answer=self.schema, plan="randomplan"),
|
|
HumanMessage(content="Follow Up"),
|
|
],
|
|
"plan": "newrandomplan",
|
|
}
|
|
)
|
|
|
|
self.assertEqual(len(history), 6)
|
|
self.assertEqual(history[0].type, "human")
|
|
self.assertIn("mapping", history[0].content)
|
|
self.assertEqual(history[1].type, "human")
|
|
self.assertIn("the plan", history[1].content)
|
|
self.assertNotIn("{{plan}}", history[1].content)
|
|
self.assertIn("randomplan", history[1].content)
|
|
self.assertEqual(history[2].type, "human")
|
|
self.assertIn("Answer to this question:", history[2].content)
|
|
self.assertNotIn("{{question}}", history[2].content)
|
|
self.assertIn("Text", history[2].content)
|
|
self.assertEqual(history[3].type, "ai")
|
|
self.assertEqual(history[3].content, self.schema.model_dump_json())
|
|
self.assertEqual(history[4].type, "human")
|
|
self.assertIn("the new plan", history[4].content)
|
|
self.assertNotIn("{{plan}}", history[4].content)
|
|
self.assertIn("newrandomplan", history[4].content)
|
|
self.assertEqual(history[5].type, "human")
|
|
self.assertIn("Answer to this question:", history[5].content)
|
|
self.assertNotIn("{{question}}", history[5].content)
|
|
self.assertIn("Follow Up", history[5].content)
|
|
|
|
def test_agent_reconstructs_conversation_and_merges_messages(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
history = node._construct_messages(
|
|
{
|
|
"messages": [HumanMessage(content="Te"), HumanMessage(content="xt")],
|
|
"plan": "randomplan",
|
|
}
|
|
)
|
|
self.assertEqual(len(history), 3)
|
|
self.assertEqual(history[0].type, "human")
|
|
self.assertIn("mapping", history[0].content)
|
|
self.assertEqual(history[1].type, "human")
|
|
self.assertIn("the plan", history[1].content)
|
|
self.assertNotIn("{{plan}}", history[1].content)
|
|
self.assertIn("randomplan", history[1].content)
|
|
self.assertEqual(history[2].type, "human")
|
|
self.assertIn("Answer to this question:", history[2].content)
|
|
self.assertNotIn("{{question}}", history[2].content)
|
|
self.assertIn("Te\nxt", history[2].content)
|
|
|
|
node = DummyGeneratorNode(self.team)
|
|
history = node._construct_messages(
|
|
{
|
|
"messages": [
|
|
HumanMessage(content="Text"),
|
|
VisualizationMessage(answer=self.schema, plan="randomplan"),
|
|
HumanMessage(content="Follow"),
|
|
HumanMessage(content="Up"),
|
|
],
|
|
"plan": "newrandomplan",
|
|
}
|
|
)
|
|
|
|
self.assertEqual(len(history), 6)
|
|
self.assertEqual(history[0].type, "human")
|
|
self.assertIn("mapping", history[0].content)
|
|
self.assertEqual(history[1].type, "human")
|
|
self.assertIn("the plan", history[1].content)
|
|
self.assertNotIn("{{plan}}", history[1].content)
|
|
self.assertIn("randomplan", history[1].content)
|
|
self.assertEqual(history[2].type, "human")
|
|
self.assertIn("Answer to this question:", history[2].content)
|
|
self.assertNotIn("{{question}}", history[2].content)
|
|
self.assertIn("Text", history[2].content)
|
|
self.assertEqual(history[3].type, "ai")
|
|
self.assertEqual(history[3].content, self.schema.model_dump_json())
|
|
self.assertEqual(history[4].type, "human")
|
|
self.assertIn("the new plan", history[4].content)
|
|
self.assertNotIn("{{plan}}", history[4].content)
|
|
self.assertIn("newrandomplan", history[4].content)
|
|
self.assertEqual(history[5].type, "human")
|
|
self.assertIn("Answer to this question:", history[5].content)
|
|
self.assertNotIn("{{question}}", history[5].content)
|
|
self.assertIn("Follow\nUp", history[5].content)
|
|
|
|
def test_failover_with_incorrect_schema(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
with patch.object(DummyGeneratorNode, "_model") as generator_model_mock:
|
|
schema = TestSchema(reasoning_steps=[], answer=None).model_dump()
|
|
# Emulate an incorrect JSON. It should be an object.
|
|
schema["answer"] = []
|
|
generator_model_mock.return_value = RunnableLambda(lambda _: json.dumps(schema))
|
|
|
|
new_state = node.run({"messages": [HumanMessage(content="Text")]}, {})
|
|
self.assertIn("intermediate_steps", new_state)
|
|
self.assertEqual(len(new_state["intermediate_steps"]), 1)
|
|
|
|
new_state = node.run(
|
|
{
|
|
"messages": [HumanMessage(content="Text")],
|
|
"intermediate_steps": [(AgentAction(tool="", tool_input="", log="exception"), "exception")],
|
|
},
|
|
{},
|
|
)
|
|
self.assertIn("intermediate_steps", new_state)
|
|
self.assertEqual(len(new_state["intermediate_steps"]), 2)
|
|
|
|
def test_node_leaves_failover(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
with patch.object(
|
|
DummyGeneratorNode,
|
|
"_model",
|
|
return_value=RunnableLambda(lambda _: TestSchema(reasoning_steps=[], answer=self.schema).model_dump()),
|
|
):
|
|
new_state = node.run(
|
|
{
|
|
"messages": [HumanMessage(content="Text")],
|
|
"intermediate_steps": [(AgentAction(tool="", tool_input="", log="exception"), "exception")],
|
|
},
|
|
{},
|
|
)
|
|
self.assertIsNone(new_state["intermediate_steps"])
|
|
|
|
new_state = node.run(
|
|
{
|
|
"messages": [HumanMessage(content="Text")],
|
|
"intermediate_steps": [
|
|
(AgentAction(tool="", tool_input="", log="exception"), "exception"),
|
|
(AgentAction(tool="", tool_input="", log="exception"), "exception"),
|
|
],
|
|
},
|
|
{},
|
|
)
|
|
self.assertIsNone(new_state["intermediate_steps"])
|
|
|
|
def test_node_leaves_failover_after_second_unsuccessful_attempt(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
with patch.object(DummyGeneratorNode, "_model") as generator_model_mock:
|
|
schema = TestSchema(reasoning_steps=[], answer=None).model_dump()
|
|
# Emulate an incorrect JSON. It should be an object.
|
|
schema["answer"] = []
|
|
generator_model_mock.return_value = RunnableLambda(lambda _: json.dumps(schema))
|
|
|
|
new_state = node.run(
|
|
{
|
|
"messages": [HumanMessage(content="Text")],
|
|
"intermediate_steps": [
|
|
(AgentAction(tool="", tool_input="", log="exception"), "exception"),
|
|
(AgentAction(tool="", tool_input="", log="exception"), "exception"),
|
|
],
|
|
},
|
|
{},
|
|
)
|
|
self.assertIsNone(new_state["intermediate_steps"])
|
|
self.assertEqual(len(new_state["messages"]), 1)
|
|
self.assertIsInstance(new_state["messages"][0], FailureMessage)
|
|
|
|
def test_agent_reconstructs_conversation_with_failover(self):
|
|
action = AgentAction(tool="fix", tool_input="validation error", log="exception")
|
|
node = DummyGeneratorNode(self.team)
|
|
history = node._construct_messages(
|
|
{
|
|
"messages": [HumanMessage(content="Text")],
|
|
"plan": "randomplan",
|
|
"intermediate_steps": [(action, "uniqexception")],
|
|
},
|
|
"uniqexception",
|
|
)
|
|
self.assertEqual(len(history), 4)
|
|
self.assertEqual(history[0].type, "human")
|
|
self.assertIn("mapping", history[0].content)
|
|
self.assertEqual(history[1].type, "human")
|
|
self.assertIn("the plan", history[1].content)
|
|
self.assertNotIn("{{plan}}", history[1].content)
|
|
self.assertIn("randomplan", history[1].content)
|
|
self.assertEqual(history[2].type, "human")
|
|
self.assertIn("Answer to this question:", history[2].content)
|
|
self.assertNotIn("{{question}}", history[2].content)
|
|
self.assertIn("Text", history[2].content)
|
|
self.assertEqual(history[3].type, "human")
|
|
self.assertIn("Pydantic", history[3].content)
|
|
self.assertIn("uniqexception", history[3].content)
|
|
|
|
def test_agent_reconstructs_conversation_with_failed_messages(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
history = node._construct_messages(
|
|
{
|
|
"messages": [
|
|
HumanMessage(content="Text"),
|
|
FailureMessage(content="Error"),
|
|
HumanMessage(content="Text"),
|
|
],
|
|
"plan": "randomplan",
|
|
},
|
|
)
|
|
self.assertEqual(len(history), 3)
|
|
self.assertEqual(history[0].type, "human")
|
|
self.assertIn("mapping", history[0].content)
|
|
self.assertEqual(history[1].type, "human")
|
|
self.assertIn("the plan", history[1].content)
|
|
self.assertNotIn("{{plan}}", history[1].content)
|
|
self.assertIn("randomplan", history[1].content)
|
|
self.assertEqual(history[2].type, "human")
|
|
self.assertIn("Answer to this question:", history[2].content)
|
|
self.assertNotIn("{{question}}", history[2].content)
|
|
self.assertIn("Text", history[2].content)
|
|
|
|
def test_router(self):
|
|
node = DummyGeneratorNode(self.team)
|
|
state = node.router({"messages": [], "intermediate_steps": None})
|
|
self.assertEqual(state, "next")
|
|
state = node.router(
|
|
{"messages": [], "intermediate_steps": [(AgentAction(tool="", tool_input="", log=""), None)]}
|
|
)
|
|
self.assertEqual(state, "tools")
|
|
|
|
|
|
class TestSchemaGeneratorToolsNode(ClickhouseTestMixin, APIBaseTest):
|
|
def test_tools_node(self):
|
|
node = SchemaGeneratorToolsNode(self.team)
|
|
action = AgentAction(tool="fix", tool_input="validationerror", log="pydanticexception")
|
|
state = node.run({"messages": [], "intermediate_steps": [(action, None)]}, {})
|
|
self.assertIsNotNone("validationerror", state["intermediate_steps"][0][1])
|
|
self.assertIn("validationerror", state["intermediate_steps"][0][1])
|
|
self.assertIn("pydanticexception", state["intermediate_steps"][0][1])
|