import re from collections import defaultdict from datetime import timedelta from typing import Dict, Generator, List, Optional, Set, Tuple import structlog from ee.clickhouse.materialized_columns.columns import ( DEFAULT_TABLE_COLUMN, backfill_materialized_columns, get_materialized_columns, materialize, ) from ee.settings import ( MATERIALIZE_COLUMNS_ANALYSIS_PERIOD_HOURS, MATERIALIZE_COLUMNS_BACKFILL_PERIOD_DAYS, MATERIALIZE_COLUMNS_MAX_AT_ONCE, MATERIALIZE_COLUMNS_MINIMUM_QUERY_TIME, ) from posthog.cache_utils import instance_memoize from posthog.client import sync_execute from posthog.models.filters.mixins.utils import cached_property from posthog.models.person.sql import GET_EVENT_PROPERTIES_COUNT, GET_PERSON_PROPERTIES_COUNT from posthog.models.property import PropertyName, TableColumn, TableWithProperties from posthog.models.property_definition import PropertyDefinition from posthog.models.team import Team Suggestion = Tuple[TableWithProperties, TableColumn, PropertyName, int] logger = structlog.get_logger(__name__) class TeamManager: @instance_memoize def person_properties(self, team_id: str) -> Set[str]: return self._get_properties(GET_PERSON_PROPERTIES_COUNT, team_id) @instance_memoize def event_properties(self, team_id: str) -> Set[str]: return set(PropertyDefinition.objects.filter(team_id=team_id).values_list("name", flat=True)) @instance_memoize def person_on_events_properties(self, team_id: str) -> Set[str]: return self._get_properties(GET_EVENT_PROPERTIES_COUNT.format(column_name="person_properties"), team_id) @instance_memoize def group_on_events_properties(self, group_type_index: int, team_id: str) -> Set[str]: return self._get_properties( GET_EVENT_PROPERTIES_COUNT.format(column_name=f"group{group_type_index}_properties"), team_id ) def _get_properties(self, query, team_id) -> Set[str]: rows = sync_execute(query, {"team_id": team_id}) return set(name for name, _ in rows) class Query: def __init__(self, query_string: str, query_time_ms: float, min_query_time=MATERIALIZE_COLUMNS_MINIMUM_QUERY_TIME): self.query_string = query_string self.query_time_ms = query_time_ms self.min_query_time = min_query_time @property def cost(self) -> int: return int((self.query_time_ms - self.min_query_time) / 1000) + 1 @cached_property def is_valid(self): return self.team_id is not None and Team.objects.filter(pk=self.team_id).exists() @cached_property def team_id(self) -> Optional[str]: matches = re.findall(r"team_id = (\d+)", self.query_string) return matches[0] if matches else None @cached_property def _all_properties(self) -> List[Tuple[str, PropertyName]]: return re.findall(r"JSONExtract\w+\((\S+), '([^']+)'\)", self.query_string) def properties( self, team_manager: TeamManager ) -> Generator[Tuple[TableWithProperties, TableColumn, PropertyName], None, None]: # Reverse-engineer whether a property is an "event" or "person" property by getting their event definitions. # :KLUDGE: Note that the same property will be found on both tables if both are used. # We try to hone in on the right column by looking at the column from which the property is extracted. person_props = team_manager.person_properties(self.team_id) event_props = team_manager.event_properties(self.team_id) person_on_events_props = team_manager.person_on_events_properties(self.team_id) group0_props = team_manager.group_on_events_properties(0, self.team_id) group1_props = team_manager.group_on_events_properties(1, self.team_id) group2_props = team_manager.group_on_events_properties(2, self.team_id) group3_props = team_manager.group_on_events_properties(3, self.team_id) group4_props = team_manager.group_on_events_properties(4, self.team_id) for table_column, property in self._all_properties: if property in event_props: yield "events", DEFAULT_TABLE_COLUMN, property if property in person_props: yield "person", DEFAULT_TABLE_COLUMN, property if property in person_on_events_props and "person_properties" in table_column: yield "events", "person_properties", property if property in group0_props and "group0_properties" in table_column: yield "events", "group0_properties", property if property in group1_props and "group1_properties" in table_column: yield "events", "group1_properties", property if property in group2_props and "group2_properties" in table_column: yield "events", "group2_properties", property if property in group3_props and "group3_properties" in table_column: yield "events", "group3_properties", property if property in group4_props and "group4_properties" in table_column: yield "events", "group4_properties", property def _get_queries(since_hours_ago: int, min_query_time: int) -> List[Query]: "Finds queries that have happened since cutoff that were slow" raw_queries = sync_execute( f""" SELECT query, query_duration_ms FROM system.query_log WHERE query NOT LIKE '%%query_log%%' AND (query LIKE '/* user_id:%%' OR query LIKE '/* request:%%') AND query NOT LIKE '%%INSERT%%' AND type = 'QueryFinish' AND query_start_time > now() - toIntervalHour(%(since)s) AND query_duration_ms > %(min_query_time)s ORDER BY query_duration_ms desc """, {"since": since_hours_ago, "min_query_time": min_query_time}, ) return [Query(query, query_duration_ms, min_query_time) for query, query_duration_ms in raw_queries] def _analyze(queries: List[Query]) -> List[Suggestion]: """ Analyzes query history to find which properties could get materialized. Returns an ordered list of suggestions by cost. """ team_manager = TeamManager() costs: defaultdict = defaultdict(int) for query in queries: if not query.is_valid: continue for table, table_column, property in query.properties(team_manager): costs[(table, table_column, property)] += query.cost return [ (table, table_column, property_name, cost) for (table, table_column, property_name), cost in sorted(costs.items(), key=lambda kv: -kv[1]) ] def materialize_properties_task( columns_to_materialize: Optional[List[Suggestion]] = None, time_to_analyze_hours: int = MATERIALIZE_COLUMNS_ANALYSIS_PERIOD_HOURS, maximum: int = MATERIALIZE_COLUMNS_MAX_AT_ONCE, min_query_time: int = MATERIALIZE_COLUMNS_MINIMUM_QUERY_TIME, backfill_period_days: int = MATERIALIZE_COLUMNS_BACKFILL_PERIOD_DAYS, dry_run: bool = False, ) -> None: """ Creates materialized columns for event and person properties based off of slow queries """ if columns_to_materialize is None: columns_to_materialize = _analyze(_get_queries(time_to_analyze_hours, min_query_time)) result = [] for suggestion in columns_to_materialize: table, table_column, property_name, _ = suggestion if (property_name, table_column) not in get_materialized_columns(table): result.append(suggestion) if len(result) > 0: logger.info(f"Calculated columns that could be materialized. count={len(result)}") else: logger.info("Found no columns to materialize.") properties: Dict[TableWithProperties, List[Tuple[PropertyName, TableColumn]]] = {"events": [], "person": []} for table, table_column, property_name, cost in result[:maximum]: logger.info(f"Materializing column. table={table}, property_name={property_name}, cost={cost}") if not dry_run: materialize(table, property_name, table_column=table_column) properties[table].append((property_name, table_column)) if backfill_period_days > 0 and not dry_run: logger.info(f"Starting backfill for new materialized columns. period_days={backfill_period_days}") backfill_materialized_columns("events", properties["events"], timedelta(days=backfill_period_days)) backfill_materialized_columns("person", properties["person"], timedelta(days=backfill_period_days))