from datetime import datetime, timedelta from typing import Dict import pytz from celery import shared_task from ee.api.sentry_stats import get_stats_for_timerange from posthog.models.feature_flag import FeatureFlag from posthog.models.filters.filter import Filter from posthog.models.team import Team from posthog.queries.trends.trends import Trends def check_flags_to_rollback(): flags_with_threshold = FeatureFlag.objects.exclude(rollback_conditions__isnull=True).exclude( rollback_conditions__exact=[] ) for feature_flag in flags_with_threshold: check_feature_flag_rollback_conditions(feature_flag_id=feature_flag.pk) @shared_task(ignore_result=True, max_retries=2) def check_feature_flag_rollback_conditions(feature_flag_id: int) -> None: flag: FeatureFlag = FeatureFlag.objects.get(pk=feature_flag_id) if any(check_condition(condition, flag) for condition in flag.rollback_conditions): flag.performed_rollback = True flag.active = False flag.save() def calculate_rolling_average(threshold_metric: Dict, team: Team, timezone: str) -> float: curr = datetime.now(tz=pytz.timezone(timezone)) rolling_average_days = 7 filter = Filter( data={ **threshold_metric, "date_from": (curr - timedelta(days=rolling_average_days)).strftime("%Y-%m-%d %H:%M:%S.%f"), "date_to": curr.strftime("%Y-%m-%d %H:%M:%S.%f"), }, team=team, ) trends_query = Trends() result = trends_query.run(filter, team) if not len(result): return False data = result[0]["data"] return sum(data) / rolling_average_days def check_condition(rollback_condition: Dict, feature_flag: FeatureFlag) -> bool: if rollback_condition["threshold_type"] == "sentry": created_date = feature_flag.created_at base_start_date = created_date.strftime("%Y-%m-%dT%H:%M:%S") base_end_date = (created_date + timedelta(days=1)).strftime("%Y-%m-%dT%H:%M:%S") current_time = datetime.utcnow() target_end_date = current_time.strftime("%Y-%m-%dT%H:%M:%S") target_start_date = (current_time - timedelta(days=1)).strftime("%Y-%m-%dT%H:%M:%S") base, target = get_stats_for_timerange(base_start_date, base_end_date, target_start_date, target_end_date) if rollback_condition["operator"] == "lt": return target < float(rollback_condition["threshold"]) * base else: return target > float(rollback_condition["threshold"]) * base elif rollback_condition["threshold_type"] == "insight": rolling_average = calculate_rolling_average( rollback_condition["threshold_metric"], feature_flag.team, feature_flag.team.timezone ) if rollback_condition["operator"] == "lt": return rolling_average < rollback_condition["threshold"] else: return rolling_average > rollback_condition["threshold"] return False