2021-06-29 00:48:35 +02:00
|
|
|
|
from datetime import date, datetime, timedelta
|
|
|
|
|
from typing import Union
|
2021-06-03 23:06:08 +02:00
|
|
|
|
|
2021-07-01 18:11:54 +02:00
|
|
|
|
from ee.clickhouse.queries.funnels.base import ClickhouseFunnelBase
|
2021-06-29 00:48:35 +02:00
|
|
|
|
from ee.clickhouse.queries.util import get_time_diff, get_trunc_func_ch
|
2021-06-30 17:36:51 +02:00
|
|
|
|
from posthog.constants import BREAKDOWN
|
|
|
|
|
from posthog.models.filters.filter import Filter
|
|
|
|
|
from posthog.models.team import Team
|
2021-06-03 23:06:08 +02:00
|
|
|
|
|
|
|
|
|
DAY_START = 0
|
|
|
|
|
TOTAL_COMPLETED_FUNNELS = 1
|
|
|
|
|
ALL_FUNNELS_ENTRIES = 2
|
|
|
|
|
PERSON_IDS = 3
|
|
|
|
|
TIMESTAMP_FORMAT = "%Y-%m-%d %H:%M:%S"
|
|
|
|
|
HUMAN_READABLE_TIMESTAMP_FORMAT = "%a. %-d %b"
|
|
|
|
|
|
|
|
|
|
|
2021-07-01 18:11:54 +02:00
|
|
|
|
class ClickhouseFunnelTrends(ClickhouseFunnelBase):
|
2021-06-29 00:48:35 +02:00
|
|
|
|
"""
|
2021-06-30 02:16:48 +02:00
|
|
|
|
## Funnel trends assumptions
|
2021-06-29 00:48:35 +02:00
|
|
|
|
|
|
|
|
|
Funnel trends are a graph of conversion over time – meaning a Y ({conversion_rate}) for each X ({entrance_period}).
|
|
|
|
|
|
|
|
|
|
### What is {entrance_period}?
|
|
|
|
|
|
2021-06-29 18:11:40 +02:00
|
|
|
|
A funnel is considered entered by a user when they have performed its first step.
|
|
|
|
|
When that happens, we consider that an entrance of funnel.
|
2021-06-29 00:48:35 +02:00
|
|
|
|
|
|
|
|
|
Now, our time series is based on a sequence of {entrance_period}s, each starting at {entrance_period_start}
|
2021-06-29 18:11:40 +02:00
|
|
|
|
and ending _right before the next_ {entrance_period_start}. A person is then counted at most once in each
|
2021-06-30 02:16:48 +02:00
|
|
|
|
{entrance_period}.
|
2021-06-29 00:48:35 +02:00
|
|
|
|
|
|
|
|
|
### What is {conversion_rate}?
|
|
|
|
|
|
2021-06-29 18:11:40 +02:00
|
|
|
|
Each time a funnel is entered by a person, they have exactly {funnel_window_days} days to go
|
2021-06-30 02:16:48 +02:00
|
|
|
|
through the funnel's steps. Later events are just not taken into account.
|
2021-06-29 00:48:35 +02:00
|
|
|
|
|
2021-06-29 18:11:40 +02:00
|
|
|
|
For {conversion_rate}, we need to know reference steps: {from_step} and {to_step}.
|
|
|
|
|
By default they are respectively the first and the last steps of the funnel.
|
2021-06-30 02:16:48 +02:00
|
|
|
|
|
2021-06-29 18:11:40 +02:00
|
|
|
|
Then for each {entrance_period} we calculate {reached_from_step_count} – the number of persons
|
|
|
|
|
who entered the funnel and reached step {from_step} (along with all the steps leading up to it, if there any).
|
|
|
|
|
Similarly we calculate {reached_to_step_count}, which is the number of persons from {reached_from_step_count}
|
|
|
|
|
who also reached step {to_step} (along with all the steps leading up to it, including of course step {from_step}).
|
2021-06-29 00:48:35 +02:00
|
|
|
|
|
2021-06-30 02:16:48 +02:00
|
|
|
|
{conversion_rate} is simply {reached_to_step_count} divided by {reached_from_step_count},
|
2021-06-29 18:11:40 +02:00
|
|
|
|
multiplied by 100 to be a percentage.
|
|
|
|
|
|
2021-06-30 02:16:48 +02:00
|
|
|
|
If no people have reached step {from_step} in the period, {conversion_rate} is zero.
|
2021-06-29 00:48:35 +02:00
|
|
|
|
"""
|
|
|
|
|
|
2021-06-30 17:36:51 +02:00
|
|
|
|
def __init__(self, filter: Filter, team: Team) -> None:
|
|
|
|
|
# TODO: allow breakdown
|
|
|
|
|
if BREAKDOWN in filter._data:
|
|
|
|
|
del filter._data[BREAKDOWN]
|
|
|
|
|
super().__init__(filter, team)
|
|
|
|
|
|
2021-06-29 00:48:35 +02:00
|
|
|
|
def run(self, *args, **kwargs):
|
2021-06-24 03:49:39 +02:00
|
|
|
|
if len(self._filter.entities) == 0:
|
|
|
|
|
return []
|
|
|
|
|
|
2021-06-29 00:48:35 +02:00
|
|
|
|
return self._get_ui_response(self.perform_query())
|
2021-06-03 23:06:08 +02:00
|
|
|
|
|
|
|
|
|
def perform_query(self):
|
2021-06-29 00:48:35 +02:00
|
|
|
|
return self._summarize_data(self._exec_query())
|
2021-06-03 23:06:08 +02:00
|
|
|
|
|
2021-06-29 00:48:35 +02:00
|
|
|
|
def get_query(self, format_properties) -> str:
|
|
|
|
|
steps_per_person_query = self._get_steps_per_person_query()
|
|
|
|
|
num_intervals, seconds_in_interval, _ = get_time_diff(
|
|
|
|
|
self._filter.interval or "day", self._filter.date_from, self._filter.date_to, team_id=self._team.pk
|
|
|
|
|
)
|
2021-06-03 23:06:08 +02:00
|
|
|
|
interval_method = get_trunc_func_ch(self._filter.interval)
|
|
|
|
|
|
2021-06-30 02:16:48 +02:00
|
|
|
|
# How many steps must have been done to count for the denominator
|
|
|
|
|
from_step = self._filter.funnel_from_step or 1
|
|
|
|
|
# How many steps must have been done to count for the numerator
|
|
|
|
|
to_step = self._filter.funnel_to_step or len(self._filter.entities)
|
2021-06-29 00:48:35 +02:00
|
|
|
|
|
|
|
|
|
reached_from_step_count_condition = f"steps_completed >= {from_step}"
|
|
|
|
|
reached_to_step_count_condition = f"steps_completed >= {to_step}"
|
|
|
|
|
|
|
|
|
|
query = f"""
|
|
|
|
|
SELECT
|
|
|
|
|
{interval_method}(toDateTime('{self._filter.date_from.strftime(TIMESTAMP_FORMAT)}') + number * {seconds_in_interval}) AS entrance_period_start,
|
2021-06-29 18:11:40 +02:00
|
|
|
|
reached_from_step_count,
|
|
|
|
|
reached_to_step_count,
|
2021-06-29 00:48:35 +02:00
|
|
|
|
conversion_rate
|
|
|
|
|
FROM numbers({num_intervals}) AS period_offsets
|
|
|
|
|
LEFT OUTER JOIN (
|
|
|
|
|
SELECT
|
|
|
|
|
entrance_period_start,
|
2021-06-29 18:11:40 +02:00
|
|
|
|
reached_from_step_count,
|
|
|
|
|
reached_to_step_count,
|
|
|
|
|
if(reached_from_step_count > 0, round(reached_to_step_count / reached_from_step_count * 100, 2), 0) AS conversion_rate
|
2021-06-29 00:48:35 +02:00
|
|
|
|
FROM (
|
|
|
|
|
SELECT
|
|
|
|
|
entrance_period_start,
|
2021-06-29 18:11:40 +02:00
|
|
|
|
countIf({reached_from_step_count_condition}) AS reached_from_step_count,
|
|
|
|
|
countIf({reached_to_step_count_condition}) AS reached_to_step_count
|
2021-06-29 00:48:35 +02:00
|
|
|
|
FROM (
|
|
|
|
|
SELECT
|
|
|
|
|
person_id,
|
|
|
|
|
{interval_method}(timestamp) AS entrance_period_start,
|
|
|
|
|
max(steps) AS steps_completed
|
|
|
|
|
FROM (
|
|
|
|
|
{steps_per_person_query}
|
|
|
|
|
) GROUP BY person_id, entrance_period_start
|
|
|
|
|
) GROUP BY entrance_period_start
|
|
|
|
|
)
|
|
|
|
|
) data
|
|
|
|
|
ON data.entrance_period_start = entrance_period_start
|
|
|
|
|
ORDER BY entrance_period_start ASC
|
|
|
|
|
SETTINGS allow_experimental_window_functions = 1"""
|
|
|
|
|
|
|
|
|
|
return query
|
2021-06-03 23:06:08 +02:00
|
|
|
|
|
|
|
|
|
def _summarize_data(self, results):
|
2021-06-29 00:48:35 +02:00
|
|
|
|
summary = [
|
|
|
|
|
{
|
|
|
|
|
"timestamp": period_row[0],
|
2021-06-29 18:11:40 +02:00
|
|
|
|
"reached_from_step_count": period_row[1],
|
|
|
|
|
"reached_to_step_count": period_row[2],
|
2021-06-29 00:48:35 +02:00
|
|
|
|
"conversion_rate": period_row[3],
|
|
|
|
|
"is_period_final": self._is_period_final(period_row[0]),
|
2021-06-03 23:06:08 +02:00
|
|
|
|
}
|
2021-06-29 00:48:35 +02:00
|
|
|
|
for period_row in results
|
|
|
|
|
]
|
|
|
|
|
return summary
|
2021-06-03 23:06:08 +02:00
|
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _get_ui_response(summary):
|
|
|
|
|
count = len(summary)
|
|
|
|
|
data = []
|
|
|
|
|
days = []
|
|
|
|
|
labels = []
|
|
|
|
|
|
|
|
|
|
for row in summary:
|
2021-06-29 00:48:35 +02:00
|
|
|
|
data.append(row["conversion_rate"])
|
2021-06-03 23:06:08 +02:00
|
|
|
|
days.append(row["timestamp"].strftime(HUMAN_READABLE_TIMESTAMP_FORMAT))
|
|
|
|
|
labels.append(row["timestamp"].strftime(HUMAN_READABLE_TIMESTAMP_FORMAT))
|
|
|
|
|
|
|
|
|
|
return [{"count": count, "data": data, "days": days, "labels": labels,}]
|
|
|
|
|
|
2021-06-29 00:48:35 +02:00
|
|
|
|
def _is_period_final(self, timestamp: Union[datetime, date]):
|
2021-06-03 23:06:08 +02:00
|
|
|
|
# difference between current date and timestamp greater than window
|
|
|
|
|
now = datetime.utcnow().date()
|
|
|
|
|
days_to_subtract = self._filter.funnel_window_days * -1
|
|
|
|
|
delta = timedelta(days=days_to_subtract)
|
|
|
|
|
completed_end = now + delta
|
2021-06-29 00:48:35 +02:00
|
|
|
|
compare_timestamp = timestamp.date() if isinstance(timestamp, datetime) else timestamp
|
|
|
|
|
is_final = compare_timestamp <= completed_end
|
|
|
|
|
return is_final
|