0
0
mirror of https://github.com/nodejs/node.git synced 2024-12-01 16:10:02 +01:00
nodejs/lib/timers.js
Anatoli Papirovski e7af9830e9 timers: run nextTicks after each immediate and timer
In order to better match the browser behaviour, run nextTicks (and
subsequently the microtask queue) after each individual Timer and
Immediate, rather than after the whole list is processed. The
current behaviour is somewhat of a performance micro-optimization
and also partly dictated by how timer handles were implemented.

PR-URL: https://github.com/nodejs/node/pull/22842
Fixes: https://github.com/nodejs/node/issues/22257
Reviewed-By: Anna Henningsen <anna@addaleax.net>
Reviewed-By: Gus Caplan <me@gus.host>
Reviewed-By: Jeremiah Senkpiel <fishrock123@rocketmail.com>
Reviewed-By: James M Snell <jasnell@gmail.com>
Reviewed-By: Ruben Bridgewater <ruben@bridgewater.de>
2018-10-17 20:38:07 -07:00

750 lines
21 KiB
JavaScript

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
'use strict';
const {
getLibuvNow,
setupTimers,
scheduleTimer,
toggleTimerRef,
immediateInfo,
toggleImmediateRef
} = internalBinding('timers');
const L = require('internal/linkedlist');
const PriorityQueue = require('internal/priority_queue');
const {
async_id_symbol,
trigger_async_id_symbol,
Timeout,
kRefed,
initAsyncResource,
validateTimerDuration
} = require('internal/timers');
const internalUtil = require('internal/util');
const util = require('util');
const { ERR_INVALID_CALLBACK } = require('internal/errors').codes;
const debug = util.debuglog('timer');
const {
destroyHooksExist,
// The needed emit*() functions.
emitBefore,
emitAfter,
emitDestroy
} = require('internal/async_hooks');
// *Must* match Environment::ImmediateInfo::Fields in src/env.h.
const kCount = 0;
const kRefCount = 1;
const kHasOutstanding = 2;
// Call into C++ to assign callbacks that are responsible for processing
// Immediates and TimerLists.
setupTimers(processImmediate, processTimers);
// HOW and WHY the timers implementation works the way it does.
//
// Timers are crucial to Node.js. Internally, any TCP I/O connection creates a
// timer so that we can time out of connections. Additionally, many user
// libraries and applications also use timers. As such there may be a
// significantly large amount of timeouts scheduled at any given time.
// Therefore, it is very important that the timers implementation is performant
// and efficient.
//
// Note: It is suggested you first read through the lib/internal/linkedlist.js
// linked list implementation, since timers depend on it extensively. It can be
// somewhat counter-intuitive at first, as it is not actually a class. Instead,
// it is a set of helpers that operate on an existing object.
//
// In order to be as performant as possible, the architecture and data
// structures are designed so that they are optimized to handle the following
// use cases as efficiently as possible:
// - Adding a new timer. (insert)
// - Removing an existing timer. (remove)
// - Handling a timer timing out. (timeout)
//
// Whenever possible, the implementation tries to make the complexity of these
// operations as close to constant-time as possible.
// (So that performance is not impacted by the number of scheduled timers.)
//
// Object maps are kept which contain linked lists keyed by their duration in
// milliseconds.
//
/* eslint-disable node-core/non-ascii-character */
//
// ╔════ > Object Map
// ║
// ╠══
// ║ lists: { '40': { }, '320': { etc } } (keys of millisecond duration)
// ╚══ ┌────┘
// │
// ╔══ │
// ║ TimersList { _idleNext: { }, _idlePrev: (self) }
// ║ ┌────────────────┘
// ║ ╔══ │ ^
// ║ ║ { _idleNext: { }, _idlePrev: { }, _onTimeout: (callback) }
// ║ ║ ┌───────────┘
// ║ ║ │ ^
// ║ ║ { _idleNext: { etc }, _idlePrev: { }, _onTimeout: (callback) }
// ╠══ ╠══
// ║ ║
// ║ ╚════ > Actual JavaScript timeouts
// ║
// ╚════ > Linked List
//
/* eslint-enable node-core/non-ascii-character */
//
// With this, virtually constant-time insertion (append), removal, and timeout
// is possible in the JavaScript layer. Any one list of timers is able to be
// sorted by just appending to it because all timers within share the same
// duration. Therefore, any timer added later will always have been scheduled to
// timeout later, thus only needing to be appended.
// Removal from an object-property linked list is also virtually constant-time
// as can be seen in the lib/internal/linkedlist.js implementation.
// Timeouts only need to process any timers currently due to expire, which will
// always be at the beginning of the list for reasons stated above. Any timers
// after the first one encountered that does not yet need to timeout will also
// always be due to timeout at a later time.
//
// Less-than constant time operations are thus contained in two places:
// The PriorityQueue — an efficient binary heap implementation that does all
// operations in worst-case O(log n) time — which manages the order of expiring
// Timeout lists and the object map lookup of a specific list by the duration of
// timers within (or creation of a new list). However, these operations combined
// have shown to be trivial in comparison to other timers architectures.
// Object map containing linked lists of timers, keyed and sorted by their
// duration in milliseconds.
//
// - key = time in milliseconds
// - value = linked list
const lists = Object.create(null);
// This is a priority queue with a custom sorting function that first compares
// the expiry times of two lists and if they're the same then compares their
// individual IDs to determine which list was created first.
const queue = new PriorityQueue(compareTimersLists, setPosition);
function compareTimersLists(a, b) {
const expiryDiff = a.expiry - b.expiry;
if (expiryDiff === 0) {
if (a.id < b.id)
return -1;
if (a.id > b.id)
return 1;
}
return expiryDiff;
}
function setPosition(node, pos) {
node.priorityQueuePosition = pos;
}
let nextExpiry = Infinity;
let timerListId = Number.MIN_SAFE_INTEGER;
let refCount = 0;
function incRefCount() {
if (refCount++ === 0)
toggleTimerRef(true);
}
function decRefCount() {
if (--refCount === 0)
toggleTimerRef(false);
}
// Schedule or re-schedule a timer.
// The item must have been enroll()'d first.
const active = exports.active = function(item) {
insert(item, true, getLibuvNow());
};
// Internal APIs that need timeouts should use `_unrefActive()` instead of
// `active()` so that they do not unnecessarily keep the process open.
exports._unrefActive = function(item) {
insert(item, false, getLibuvNow());
};
// The underlying logic for scheduling or re-scheduling a timer.
//
// Appends a timer onto the end of an existing timers list, or creates a new
// list if one does not already exist for the specified timeout duration.
function insert(item, refed, start) {
const msecs = item._idleTimeout;
if (msecs < 0 || msecs === undefined)
return;
item._idleStart = start;
// Use an existing list if there is one, otherwise we need to make a new one.
var list = lists[msecs];
if (list === undefined) {
debug('no %d list was found in insert, creating a new one', msecs);
const expiry = start + msecs;
lists[msecs] = list = new TimersList(expiry, msecs);
queue.insert(list);
if (nextExpiry > expiry) {
scheduleTimer(msecs);
nextExpiry = expiry;
}
}
if (!item[async_id_symbol] || item._destroyed) {
item._destroyed = false;
initAsyncResource(item, 'Timeout');
}
if (refed === !item[kRefed]) {
if (refed)
incRefCount();
else
decRefCount();
}
item[kRefed] = refed;
L.append(list, item);
}
function TimersList(expiry, msecs) {
this._idleNext = this; // Create the list with the linkedlist properties to
this._idlePrev = this; // prevent any unnecessary hidden class changes.
this.expiry = expiry;
this.id = timerListId++;
this.msecs = msecs;
this.priorityQueuePosition = null;
}
// Make sure the linked list only shows the minimal necessary information.
TimersList.prototype[util.inspect.custom] = function(_, options) {
return util.inspect(this, {
...options,
// Only inspect one level.
depth: 0,
// It should not recurse.
customInspect: false
});
};
const { _tickCallback: runNextTicks } = process;
function processTimers(now) {
debug('process timer lists %d', now);
nextExpiry = Infinity;
let list;
let ranAtLeastOneList = false;
while (list = queue.peek()) {
if (list.expiry > now) {
nextExpiry = list.expiry;
return refCount > 0 ? nextExpiry : -nextExpiry;
}
if (ranAtLeastOneList)
runNextTicks();
else
ranAtLeastOneList = true;
listOnTimeout(list, now);
}
return 0;
}
function listOnTimeout(list, now) {
const msecs = list.msecs;
debug('timeout callback %d', msecs);
var diff, timer;
let ranAtLeastOneTimer = false;
while (timer = L.peek(list)) {
diff = now - timer._idleStart;
// Check if this loop iteration is too early for the next timer.
// This happens if there are more timers scheduled for later in the list.
if (diff < msecs) {
list.expiry = timer._idleStart + msecs;
list.id = timerListId++;
queue.percolateDown(1);
debug('%d list wait because diff is %d', msecs, diff);
return;
}
if (ranAtLeastOneTimer)
runNextTicks();
else
ranAtLeastOneTimer = true;
// The actual logic for when a timeout happens.
L.remove(timer);
const asyncId = timer[async_id_symbol];
if (!timer._onTimeout) {
if (timer[kRefed])
refCount--;
timer[kRefed] = null;
if (destroyHooksExist() && !timer._destroyed) {
emitDestroy(asyncId);
timer._destroyed = true;
}
continue;
}
emitBefore(asyncId, timer[trigger_async_id_symbol]);
let start;
if (timer._repeat)
start = getLibuvNow();
try {
const args = timer._timerArgs;
if (!args)
timer._onTimeout();
else
Reflect.apply(timer._onTimeout, timer, args);
} finally {
if (timer._repeat && timer._idleTimeout !== -1) {
timer._idleTimeout = timer._repeat;
if (start === undefined)
start = getLibuvNow();
insert(timer, timer[kRefed], start);
} else {
if (timer[kRefed])
refCount--;
timer[kRefed] = null;
if (destroyHooksExist() && !timer._destroyed) {
emitDestroy(timer[async_id_symbol]);
timer._destroyed = true;
}
}
}
emitAfter(asyncId);
}
// If `L.peek(list)` returned nothing, the list was either empty or we have
// called all of the timer timeouts.
// As such, we can remove the list from the object map and the PriorityQueue.
debug('%d list empty', msecs);
// The current list may have been removed and recreated since the reference
// to `list` was created. Make sure they're the same instance of the list
// before destroying.
if (list === lists[msecs]) {
delete lists[msecs];
queue.shift();
}
}
// Remove a timer. Cancels the timeout and resets the relevant timer properties.
function unenroll(item) {
// Fewer checks may be possible, but these cover everything.
if (destroyHooksExist() &&
item[async_id_symbol] !== undefined &&
!item._destroyed) {
emitDestroy(item[async_id_symbol]);
item._destroyed = true;
}
L.remove(item);
// We only delete refed lists because unrefed ones are incredibly likely
// to come from http and be recreated shortly after.
// TODO: Long-term this could instead be handled by creating an internal
// clearTimeout that makes it clear that the list should not be deleted.
// That function could then be used by http and other similar modules.
if (item[kRefed]) {
const list = lists[item._idleTimeout];
if (list !== undefined && L.isEmpty(list)) {
debug('unenroll: list empty');
queue.removeAt(list.priorityQueuePosition);
delete lists[list.msecs];
}
decRefCount();
}
item[kRefed] = null;
// if active is called later, then we want to make sure not to insert again
item._idleTimeout = -1;
}
exports.unenroll = util.deprecate(unenroll,
'timers.unenroll() is deprecated. ' +
'Please use clearTimeout instead.',
'DEP0096');
// Make a regular object able to act as a timer by setting some properties.
// This function does not start the timer, see `active()`.
// Using existing objects as timers slightly reduces object overhead.
function enroll(item, msecs) {
msecs = validateTimerDuration(msecs);
// if this item was already in a list somewhere
// then we should unenroll it from that
if (item._idleNext) unenroll(item);
L.init(item);
item._idleTimeout = msecs;
}
exports.enroll = util.deprecate(enroll,
'timers.enroll() is deprecated. ' +
'Please use setTimeout instead.',
'DEP0095');
/*
* DOM-style timers
*/
function setTimeout(callback, after, arg1, arg2, arg3) {
if (typeof callback !== 'function') {
throw new ERR_INVALID_CALLBACK();
}
var i, args;
switch (arguments.length) {
// fast cases
case 1:
case 2:
break;
case 3:
args = [arg1];
break;
case 4:
args = [arg1, arg2];
break;
default:
args = [arg1, arg2, arg3];
for (i = 5; i < arguments.length; i++) {
// extend array dynamically, makes .apply run much faster in v6.0.0
args[i - 2] = arguments[i];
}
break;
}
const timeout = new Timeout(callback, after, args, false);
active(timeout);
return timeout;
}
setTimeout[internalUtil.promisify.custom] = function(after, value) {
return new Promise((resolve) => {
active(new Timeout(resolve, after, [value], false));
});
};
exports.setTimeout = setTimeout;
const clearTimeout = exports.clearTimeout = function clearTimeout(timer) {
if (timer && timer._onTimeout) {
timer._onTimeout = null;
unenroll(timer);
}
};
exports.setInterval = function setInterval(callback, repeat, arg1, arg2, arg3) {
if (typeof callback !== 'function') {
throw new ERR_INVALID_CALLBACK();
}
var i, args;
switch (arguments.length) {
// fast cases
case 1:
case 2:
break;
case 3:
args = [arg1];
break;
case 4:
args = [arg1, arg2];
break;
default:
args = [arg1, arg2, arg3];
for (i = 5; i < arguments.length; i++) {
// extend array dynamically, makes .apply run much faster in v6.0.0
args[i - 2] = arguments[i];
}
break;
}
const timeout = new Timeout(callback, repeat, args, true);
active(timeout);
return timeout;
};
exports.clearInterval = function clearInterval(timer) {
// clearTimeout and clearInterval can be used to clear timers created from
// both setTimeout and setInterval, as specified by HTML Living Standard:
// https://html.spec.whatwg.org/multipage/timers-and-user-prompts.html#dom-setinterval
clearTimeout(timer);
};
Timeout.prototype.unref = function() {
if (this[kRefed]) {
this[kRefed] = false;
decRefCount();
}
return this;
};
Timeout.prototype.ref = function() {
if (this[kRefed] === false) {
this[kRefed] = true;
incRefCount();
}
return this;
};
Timeout.prototype.hasRef = function() {
return !!this[kRefed];
};
Timeout.prototype.close = function() {
clearTimeout(this);
return this;
};
// A linked list for storing `setImmediate()` requests
function ImmediateList() {
this.head = null;
this.tail = null;
}
// Appends an item to the end of the linked list, adjusting the current tail's
// previous and next pointers where applicable
ImmediateList.prototype.append = function(item) {
if (this.tail !== null) {
this.tail._idleNext = item;
item._idlePrev = this.tail;
} else {
this.head = item;
}
this.tail = item;
};
// Removes an item from the linked list, adjusting the pointers of adjacent
// items and the linked list's head or tail pointers as necessary
ImmediateList.prototype.remove = function(item) {
if (item._idleNext !== null) {
item._idleNext._idlePrev = item._idlePrev;
}
if (item._idlePrev !== null) {
item._idlePrev._idleNext = item._idleNext;
}
if (item === this.head)
this.head = item._idleNext;
if (item === this.tail)
this.tail = item._idlePrev;
item._idleNext = null;
item._idlePrev = null;
};
// Create a single linked list instance only once at startup
const immediateQueue = new ImmediateList();
// If an uncaught exception was thrown during execution of immediateQueue,
// this queue will store all remaining Immediates that need to run upon
// resolution of all error handling (if process is still alive).
const outstandingQueue = new ImmediateList();
function processImmediate() {
const queue = outstandingQueue.head !== null ?
outstandingQueue : immediateQueue;
var immediate = queue.head;
// Clear the linked list early in case new `setImmediate()` calls occur while
// immediate callbacks are executed
if (queue !== outstandingQueue) {
queue.head = queue.tail = null;
immediateInfo[kHasOutstanding] = 1;
}
let prevImmediate;
let ranAtLeastOneImmediate = false;
while (immediate !== null) {
if (ranAtLeastOneImmediate)
runNextTicks();
else
ranAtLeastOneImmediate = true;
// It's possible for this current Immediate to be cleared while executing
// the next tick queue above, which means we need to use the previous
// Immediate's _idleNext which is guaranteed to not have been cleared.
if (immediate._destroyed) {
outstandingQueue.head = immediate = prevImmediate._idleNext;
continue;
}
immediate._destroyed = true;
immediateInfo[kCount]--;
if (immediate[kRefed])
immediateInfo[kRefCount]--;
immediate[kRefed] = null;
prevImmediate = immediate;
const asyncId = immediate[async_id_symbol];
emitBefore(asyncId, immediate[trigger_async_id_symbol]);
try {
const argv = immediate._argv;
if (!argv)
immediate._onImmediate();
else
Reflect.apply(immediate._onImmediate, immediate, argv);
} finally {
immediate._onImmediate = null;
if (destroyHooksExist())
emitDestroy(asyncId);
outstandingQueue.head = immediate = immediate._idleNext;
}
emitAfter(asyncId);
}
if (queue === outstandingQueue)
outstandingQueue.head = null;
immediateInfo[kHasOutstanding] = 0;
}
const Immediate = class Immediate {
constructor(callback, args) {
this._idleNext = null;
this._idlePrev = null;
// this must be set to null first to avoid function tracking
// on the hidden class, revisit in V8 versions after 6.2
this._onImmediate = null;
this._onImmediate = callback;
this._argv = args;
this._destroyed = false;
this[kRefed] = false;
initAsyncResource(this, 'Immediate');
this.ref();
immediateInfo[kCount]++;
immediateQueue.append(this);
}
ref() {
if (this[kRefed] === false) {
this[kRefed] = true;
if (immediateInfo[kRefCount]++ === 0)
toggleImmediateRef(true);
}
return this;
}
unref() {
if (this[kRefed] === true) {
this[kRefed] = false;
if (--immediateInfo[kRefCount] === 0)
toggleImmediateRef(false);
}
return this;
}
hasRef() {
return !!this[kRefed];
}
};
function setImmediate(callback, arg1, arg2, arg3) {
if (typeof callback !== 'function') {
throw new ERR_INVALID_CALLBACK();
}
var i, args;
switch (arguments.length) {
// fast cases
case 1:
break;
case 2:
args = [arg1];
break;
case 3:
args = [arg1, arg2];
break;
default:
args = [arg1, arg2, arg3];
for (i = 4; i < arguments.length; i++) {
// extend array dynamically, makes .apply run much faster in v6.0.0
args[i - 1] = arguments[i];
}
break;
}
return new Immediate(callback, args);
}
setImmediate[internalUtil.promisify.custom] = function(value) {
return new Promise((resolve) => new Immediate(resolve, [value]));
};
exports.setImmediate = setImmediate;
exports.clearImmediate = function clearImmediate(immediate) {
if (!immediate || immediate._destroyed)
return;
immediateInfo[kCount]--;
immediate._destroyed = true;
if (immediate[kRefed] && --immediateInfo[kRefCount] === 0)
toggleImmediateRef(false);
immediate[kRefed] = null;
if (destroyHooksExist()) {
emitDestroy(immediate[async_id_symbol]);
}
immediate._onImmediate = null;
immediateQueue.remove(immediate);
};