0
0
mirror of https://github.com/nodejs/node.git synced 2024-12-01 16:10:02 +01:00
nodejs/deps/libeio/eio.c
Ryan 1df6d61208 Upgrade libeio, increase xthread stacksize to 64kb.
64kb seems to be the magic number for getaddrinfo() to work on Macintosh.
2009-09-03 15:59:48 +02:00

1897 lines
47 KiB
C

/*
* libeio implementation
*
* Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libeio@schmorp.de>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modifica-
* tion, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
* CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
* CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
* ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Alternatively, the contents of this file may be used under the terms of
* the GNU General Public License ("GPL") version 2 or any later version,
* in which case the provisions of the GPL are applicable instead of
* the above. If you wish to allow the use of your version of this file
* only under the terms of the GPL and not to allow others to use your
* version of this file under the BSD license, indicate your decision
* by deleting the provisions above and replace them with the notice
* and other provisions required by the GPL. If you do not delete the
* provisions above, a recipient may use your version of this file under
* either the BSD or the GPL.
*/
#include "eio.h"
#ifdef EIO_STACKSIZE
# define XTHREAD_STACKSIZE EIO_STACKSIZE
#endif
#include "xthread.h"
#include <errno.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <limits.h>
#include <fcntl.h>
#include <assert.h>
#ifndef EIO_FINISH
# define EIO_FINISH(req) ((req)->finish) && !EIO_CANCELLED (req) ? (req)->finish (req) : 0
#endif
#ifndef EIO_DESTROY
# define EIO_DESTROY(req) do { if ((req)->destroy) (req)->destroy (req); } while (0)
#endif
#ifndef EIO_FEED
# define EIO_FEED(req) do { if ((req)->feed ) (req)->feed (req); } while (0)
#endif
#ifdef _WIN32
/*doh*/
#else
# include "config.h"
# include <sys/time.h>
# include <sys/select.h>
# include <sys/mman.h>
# include <unistd.h>
# include <utime.h>
# include <signal.h>
# include <dirent.h>
/* POSIX_SOURCE is useless on bsd's, and XOPEN_SOURCE is unreliable there, too */
# if defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)
# define _DIRENT_HAVE_D_TYPE /* sigh */
# define D_INO(de) (de)->d_fileno
# define D_NAMLEN(de) (de)->d_namlen
# elif defined(__linux) || defined(d_ino) || _XOPEN_SOURCE >= 600
# define D_INO(de) (de)->d_ino
# endif
#ifdef _D_EXACT_NAMLEN
# undef D_NAMLEN
# define D_NAMLEN(de) _D_EXACT_NAMLEN (de)
#endif
# ifdef _DIRENT_HAVE_D_TYPE
# define D_TYPE(de) (de)->d_type
# endif
# ifndef EIO_STRUCT_DIRENT
# define EIO_STRUCT_DIRENT struct dirent
# endif
#endif
#if HAVE_SENDFILE
# if __linux
# include <sys/sendfile.h>
# elif __freebsd
# include <sys/socket.h>
# include <sys/uio.h>
# elif __hpux
# include <sys/socket.h>
# elif __solaris /* not yet */
# include <sys/sendfile.h>
# else
# error sendfile support requested but not available
# endif
#endif
#ifndef D_TYPE
# define D_TYPE(de) 0
#endif
#ifndef D_INO
# define D_INO(de) 0
#endif
#ifndef D_NAMLEN
# define D_NAMLEN(de) strlen ((de)->d_name)
#endif
/* number of seconds after which an idle threads exit */
#define IDLE_TIMEOUT 10
/* used for struct dirent, AIX doesn't provide it */
#ifndef NAME_MAX
# define NAME_MAX 4096
#endif
/* buffer size for various temporary buffers */
#define EIO_BUFSIZE 65536
#define dBUF \
char *eio_buf; \
ETP_WORKER_LOCK (self); \
self->dbuf = eio_buf = malloc (EIO_BUFSIZE); \
ETP_WORKER_UNLOCK (self); \
errno = ENOMEM; \
if (!eio_buf) \
return -1;
#define EIO_TICKS ((1000000 + 1023) >> 10)
/*****************************************************************************/
#if __GNUC__ >= 3
# define expect(expr,value) __builtin_expect ((expr),(value))
#else
# define expect(expr,value) (expr)
#endif
#define expect_false(expr) expect ((expr) != 0, 0)
#define expect_true(expr) expect ((expr) != 0, 1)
/*****************************************************************************/
#define ETP_PRI_MIN EIO_PRI_MIN
#define ETP_PRI_MAX EIO_PRI_MAX
struct etp_worker;
#define ETP_REQ eio_req
#define ETP_DESTROY(req) eio_destroy (req)
static int eio_finish (eio_req *req);
#define ETP_FINISH(req) eio_finish (req)
static void eio_execute (struct etp_worker *self, eio_req *req);
#define ETP_EXECUTE(wrk,req) eio_execute (wrk,req)
#define ETP_WORKER_CLEAR(req) \
if (wrk->dbuf) \
{ \
free (wrk->dbuf); \
wrk->dbuf = 0; \
} \
\
if (wrk->dirp) \
{ \
closedir (wrk->dirp); \
wrk->dirp = 0; \
}
#define ETP_WORKER_COMMON \
void *dbuf; \
DIR *dirp;
/*****************************************************************************/
#define ETP_NUM_PRI (ETP_PRI_MAX - ETP_PRI_MIN + 1)
/* calculcate time difference in ~1/EIO_TICKS of a second */
static int tvdiff (struct timeval *tv1, struct timeval *tv2)
{
return (tv2->tv_sec - tv1->tv_sec ) * EIO_TICKS
+ ((tv2->tv_usec - tv1->tv_usec) >> 10);
}
static unsigned int started, idle, wanted = 4;
static void (*want_poll_cb) (void);
static void (*done_poll_cb) (void);
static unsigned int max_poll_time; /* reslock */
static unsigned int max_poll_reqs; /* reslock */
static volatile unsigned int nreqs; /* reqlock */
static volatile unsigned int nready; /* reqlock */
static volatile unsigned int npending; /* reqlock */
static volatile unsigned int max_idle = 4;
static mutex_t wrklock = X_MUTEX_INIT;
static mutex_t reslock = X_MUTEX_INIT;
static mutex_t reqlock = X_MUTEX_INIT;
static cond_t reqwait = X_COND_INIT;
#if !HAVE_PREADWRITE
/*
* make our pread/pwrite emulation safe against themselves, but not against
* normal read/write by using a mutex. slows down execution a lot,
* but that's your problem, not mine.
*/
static mutex_t preadwritelock = X_MUTEX_INIT;
#endif
typedef struct etp_worker
{
/* locked by wrklock */
struct etp_worker *prev, *next;
thread_t tid;
/* locked by reslock, reqlock or wrklock */
ETP_REQ *req; /* currently processed request */
ETP_WORKER_COMMON
} etp_worker;
static etp_worker wrk_first = { &wrk_first, &wrk_first, 0 }; /* NOT etp */
#define ETP_WORKER_LOCK(wrk) X_LOCK (wrklock)
#define ETP_WORKER_UNLOCK(wrk) X_UNLOCK (wrklock)
/* worker threads management */
static void etp_worker_clear (etp_worker *wrk)
{
ETP_WORKER_CLEAR (wrk);
}
static void etp_worker_free (etp_worker *wrk)
{
wrk->next->prev = wrk->prev;
wrk->prev->next = wrk->next;
free (wrk);
}
static unsigned int etp_nreqs (void)
{
int retval;
if (WORDACCESS_UNSAFE) X_LOCK (reqlock);
retval = nreqs;
if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock);
return retval;
}
static unsigned int etp_nready (void)
{
unsigned int retval;
if (WORDACCESS_UNSAFE) X_LOCK (reqlock);
retval = nready;
if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock);
return retval;
}
static unsigned int etp_npending (void)
{
unsigned int retval;
if (WORDACCESS_UNSAFE) X_LOCK (reqlock);
retval = npending;
if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock);
return retval;
}
static unsigned int etp_nthreads (void)
{
unsigned int retval;
if (WORDACCESS_UNSAFE) X_LOCK (reqlock);
retval = started;
if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock);
return retval;
}
/*
* a somewhat faster data structure might be nice, but
* with 8 priorities this actually needs <20 insns
* per shift, the most expensive operation.
*/
typedef struct {
ETP_REQ *qs[ETP_NUM_PRI], *qe[ETP_NUM_PRI]; /* qstart, qend */
int size;
} etp_reqq;
static etp_reqq req_queue;
static etp_reqq res_queue;
static int reqq_push (etp_reqq *q, ETP_REQ *req)
{
int pri = req->pri;
req->next = 0;
if (q->qe[pri])
{
q->qe[pri]->next = req;
q->qe[pri] = req;
}
else
q->qe[pri] = q->qs[pri] = req;
return q->size++;
}
static ETP_REQ *reqq_shift (etp_reqq *q)
{
int pri;
if (!q->size)
return 0;
--q->size;
for (pri = ETP_NUM_PRI; pri--; )
{
eio_req *req = q->qs[pri];
if (req)
{
if (!(q->qs[pri] = (eio_req *)req->next))
q->qe[pri] = 0;
return req;
}
}
abort ();
}
static void etp_atfork_prepare (void)
{
X_LOCK (wrklock);
X_LOCK (reqlock);
X_LOCK (reslock);
#if !HAVE_PREADWRITE
X_LOCK (preadwritelock);
#endif
}
static void etp_atfork_parent (void)
{
#if !HAVE_PREADWRITE
X_UNLOCK (preadwritelock);
#endif
X_UNLOCK (reslock);
X_UNLOCK (reqlock);
X_UNLOCK (wrklock);
}
static void etp_atfork_child (void)
{
ETP_REQ *prv;
while ((prv = reqq_shift (&req_queue)))
ETP_DESTROY (prv);
while ((prv = reqq_shift (&res_queue)))
ETP_DESTROY (prv);
while (wrk_first.next != &wrk_first)
{
etp_worker *wrk = wrk_first.next;
if (wrk->req)
ETP_DESTROY (wrk->req);
etp_worker_clear (wrk);
etp_worker_free (wrk);
}
started = 0;
idle = 0;
nreqs = 0;
nready = 0;
npending = 0;
etp_atfork_parent ();
}
static void
etp_once_init (void)
{
X_THREAD_ATFORK (etp_atfork_prepare, etp_atfork_parent, etp_atfork_child);
}
static int
etp_init (void (*want_poll)(void), void (*done_poll)(void))
{
static pthread_once_t doinit = PTHREAD_ONCE_INIT;
pthread_once (&doinit, etp_once_init);
want_poll_cb = want_poll;
done_poll_cb = done_poll;
return 0;
}
X_THREAD_PROC (etp_proc);
static void etp_start_thread (void)
{
etp_worker *wrk = calloc (1, sizeof (etp_worker));
/*TODO*/
assert (("unable to allocate worker thread data", wrk));
X_LOCK (wrklock);
if (thread_create (&wrk->tid, etp_proc, (void *)wrk))
{
wrk->prev = &wrk_first;
wrk->next = wrk_first.next;
wrk_first.next->prev = wrk;
wrk_first.next = wrk;
++started;
}
else
free (wrk);
X_UNLOCK (wrklock);
}
static void etp_maybe_start_thread (void)
{
if (expect_true (etp_nthreads () >= wanted))
return;
/* todo: maybe use idle here, but might be less exact */
if (expect_true (0 <= (int)etp_nthreads () + (int)etp_npending () - (int)etp_nreqs ()))
return;
etp_start_thread ();
}
static void etp_end_thread (void)
{
eio_req *req = calloc (1, sizeof (eio_req));
req->type = -1;
req->pri = ETP_PRI_MAX - ETP_PRI_MIN;
X_LOCK (reqlock);
reqq_push (&req_queue, req);
X_COND_SIGNAL (reqwait);
X_UNLOCK (reqlock);
X_LOCK (wrklock);
--started;
X_UNLOCK (wrklock);
}
static int etp_poll (void)
{
unsigned int maxreqs;
unsigned int maxtime;
struct timeval tv_start, tv_now;
X_LOCK (reslock);
maxreqs = max_poll_reqs;
maxtime = max_poll_time;
X_UNLOCK (reslock);
if (maxtime)
gettimeofday (&tv_start, 0);
for (;;)
{
ETP_REQ *req;
etp_maybe_start_thread ();
X_LOCK (reslock);
req = reqq_shift (&res_queue);
if (req)
{
--npending;
if (!res_queue.size && done_poll_cb)
done_poll_cb ();
}
X_UNLOCK (reslock);
if (!req)
return 0;
X_LOCK (reqlock);
--nreqs;
X_UNLOCK (reqlock);
if (expect_false (req->type == EIO_GROUP && req->size))
{
req->int1 = 1; /* mark request as delayed */
continue;
}
else
{
int res = ETP_FINISH (req);
if (expect_false (res))
return res;
}
if (expect_false (maxreqs && !--maxreqs))
break;
if (maxtime)
{
gettimeofday (&tv_now, 0);
if (tvdiff (&tv_start, &tv_now) >= maxtime)
break;
}
}
errno = EAGAIN;
return -1;
}
static void etp_cancel (ETP_REQ *req)
{
X_LOCK (wrklock);
req->flags |= EIO_FLAG_CANCELLED;
X_UNLOCK (wrklock);
eio_grp_cancel (req);
}
static void etp_submit (ETP_REQ *req)
{
req->pri -= ETP_PRI_MIN;
if (expect_false (req->pri < ETP_PRI_MIN - ETP_PRI_MIN)) req->pri = ETP_PRI_MIN - ETP_PRI_MIN;
if (expect_false (req->pri > ETP_PRI_MAX - ETP_PRI_MIN)) req->pri = ETP_PRI_MAX - ETP_PRI_MIN;
if (expect_false (req->type == EIO_GROUP))
{
/* I hope this is worth it :/ */
X_LOCK (reqlock);
++nreqs;
X_UNLOCK (reqlock);
X_LOCK (reslock);
++npending;
if (!reqq_push (&res_queue, req) && want_poll_cb)
want_poll_cb ();
X_UNLOCK (reslock);
}
else
{
X_LOCK (reqlock);
++nreqs;
++nready;
reqq_push (&req_queue, req);
X_COND_SIGNAL (reqwait);
X_UNLOCK (reqlock);
etp_maybe_start_thread ();
}
}
static void etp_set_max_poll_time (double nseconds)
{
if (WORDACCESS_UNSAFE) X_LOCK (reslock);
max_poll_time = nseconds;
if (WORDACCESS_UNSAFE) X_UNLOCK (reslock);
}
static void etp_set_max_poll_reqs (unsigned int maxreqs)
{
if (WORDACCESS_UNSAFE) X_LOCK (reslock);
max_poll_reqs = maxreqs;
if (WORDACCESS_UNSAFE) X_UNLOCK (reslock);
}
static void etp_set_max_idle (unsigned int nthreads)
{
if (WORDACCESS_UNSAFE) X_LOCK (reqlock);
max_idle = nthreads <= 0 ? 1 : nthreads;
if (WORDACCESS_UNSAFE) X_UNLOCK (reqlock);
}
static void etp_set_min_parallel (unsigned int nthreads)
{
if (wanted < nthreads)
wanted = nthreads;
}
static void etp_set_max_parallel (unsigned int nthreads)
{
if (wanted > nthreads)
wanted = nthreads;
while (started > wanted)
etp_end_thread ();
}
/*****************************************************************************/
static void grp_try_feed (eio_req *grp)
{
while (grp->size < grp->int2 && !EIO_CANCELLED (grp))
{
grp->flags &= ~EIO_FLAG_GROUPADD;
EIO_FEED (grp);
/* stop if no progress has been made */
if (!(grp->flags & EIO_FLAG_GROUPADD))
{
grp->feed = 0;
break;
}
}
}
static int grp_dec (eio_req *grp)
{
--grp->size;
/* call feeder, if applicable */
grp_try_feed (grp);
/* finish, if done */
if (!grp->size && grp->int1)
return eio_finish (grp);
else
return 0;
}
void eio_destroy (eio_req *req)
{
if ((req)->flags & EIO_FLAG_PTR1_FREE) free (req->ptr1);
if ((req)->flags & EIO_FLAG_PTR2_FREE) free (req->ptr2);
EIO_DESTROY (req);
}
static int eio_finish (eio_req *req)
{
int res = EIO_FINISH (req);
if (req->grp)
{
int res2;
eio_req *grp = req->grp;
/* unlink request */
if (req->grp_next) req->grp_next->grp_prev = req->grp_prev;
if (req->grp_prev) req->grp_prev->grp_next = req->grp_next;
if (grp->grp_first == req)
grp->grp_first = req->grp_next;
res2 = grp_dec (grp);
if (!res && res2)
res = res2;
}
eio_destroy (req);
return res;
}
void eio_grp_cancel (eio_req *grp)
{
for (grp = grp->grp_first; grp; grp = grp->grp_next)
eio_cancel (grp);
}
void eio_cancel (eio_req *req)
{
etp_cancel (req);
}
void eio_submit (eio_req *req)
{
etp_submit (req);
}
unsigned int eio_nreqs (void)
{
return etp_nreqs ();
}
unsigned int eio_nready (void)
{
return etp_nready ();
}
unsigned int eio_npending (void)
{
return etp_npending ();
}
unsigned int eio_nthreads (void)
{
return etp_nthreads ();
}
void eio_set_max_poll_time (double nseconds)
{
etp_set_max_poll_time (nseconds);
}
void eio_set_max_poll_reqs (unsigned int maxreqs)
{
etp_set_max_poll_reqs (maxreqs);
}
void eio_set_max_idle (unsigned int nthreads)
{
etp_set_max_idle (nthreads);
}
void eio_set_min_parallel (unsigned int nthreads)
{
etp_set_min_parallel (nthreads);
}
void eio_set_max_parallel (unsigned int nthreads)
{
etp_set_max_parallel (nthreads);
}
int eio_poll (void)
{
return etp_poll ();
}
/*****************************************************************************/
/* work around various missing functions */
#if !HAVE_PREADWRITE
# undef pread
# undef pwrite
# define pread eio__pread
# define pwrite eio__pwrite
static ssize_t
eio__pread (int fd, void *buf, size_t count, off_t offset)
{
ssize_t res;
off_t ooffset;
X_LOCK (preadwritelock);
ooffset = lseek (fd, 0, SEEK_CUR);
lseek (fd, offset, SEEK_SET);
res = read (fd, buf, count);
lseek (fd, ooffset, SEEK_SET);
X_UNLOCK (preadwritelock);
return res;
}
static ssize_t
eio__pwrite (int fd, void *buf, size_t count, off_t offset)
{
ssize_t res;
off_t ooffset;
X_LOCK (preadwritelock);
ooffset = lseek (fd, 0, SEEK_CUR);
lseek (fd, offset, SEEK_SET);
res = write (fd, buf, count);
lseek (fd, ooffset, SEEK_SET);
X_UNLOCK (preadwritelock);
return res;
}
#endif
#ifndef HAVE_FUTIMES
# undef utimes
# undef futimes
# define utimes(path,times) eio__utimes (path, times)
# define futimes(fd,times) eio__futimes (fd, times)
static int
eio__utimes (const char *filename, const struct timeval times[2])
{
if (times)
{
struct utimbuf buf;
buf.actime = times[0].tv_sec;
buf.modtime = times[1].tv_sec;
return utime (filename, &buf);
}
else
return utime (filename, 0);
}
static int eio__futimes (int fd, const struct timeval tv[2])
{
errno = ENOSYS;
return -1;
}
#endif
#if !HAVE_FDATASYNC
# undef fdatasync
# define fdatasync(fd) fsync (fd)
#endif
/* sync_file_range always needs emulation */
int
eio__sync_file_range (int fd, off_t offset, size_t nbytes, unsigned int flags)
{
#if HAVE_SYNC_FILE_RANGE
int res;
if (EIO_SYNC_FILE_RANGE_WAIT_BEFORE != SYNC_FILE_RANGE_WAIT_BEFORE
|| EIO_SYNC_FILE_RANGE_WRITE != SYNC_FILE_RANGE_WRITE
|| EIO_SYNC_FILE_RANGE_WAIT_AFTER != SYNC_FILE_RANGE_WAIT_AFTER)
{
flags = 0
| (flags & EIO_SYNC_FILE_RANGE_WAIT_BEFORE ? SYNC_FILE_RANGE_WAIT_BEFORE : 0)
| (flags & EIO_SYNC_FILE_RANGE_WRITE ? SYNC_FILE_RANGE_WRITE : 0)
| (flags & EIO_SYNC_FILE_RANGE_WAIT_AFTER ? SYNC_FILE_RANGE_WAIT_AFTER : 0);
}
res = sync_file_range (fd, offset, nbytes, flags);
if (!res || errno != ENOSYS)
return res;
#endif
/* even though we could play tricks with the flags, it's better to always
* call fdatasync, as that matches the expectation of its users best */
return fdatasync (fd);
}
#if !HAVE_READAHEAD
# undef readahead
# define readahead(fd,offset,count) eio__readahead (fd, offset, count, self)
static ssize_t
eio__readahead (int fd, off_t offset, size_t count, etp_worker *self)
{
size_t todo = count;
dBUF;
while (todo > 0)
{
size_t len = todo < EIO_BUFSIZE ? todo : EIO_BUFSIZE;
pread (fd, eio_buf, len, offset);
offset += len;
todo -= len;
}
errno = 0;
return count;
}
#endif
/* sendfile always needs emulation */
static ssize_t
eio__sendfile (int ofd, int ifd, off_t offset, size_t count, etp_worker *self)
{
ssize_t res;
if (!count)
return 0;
#if HAVE_SENDFILE
# if __linux
res = sendfile (ofd, ifd, &offset, count);
# elif __freebsd
/*
* Of course, the freebsd sendfile is a dire hack with no thoughts
* wasted on making it similar to other I/O functions.
*/
{
off_t sbytes;
res = sendfile (ifd, ofd, offset, count, 0, &sbytes, 0);
if (res < 0 && sbytes)
/* maybe only on EAGAIN: as usual, the manpage leaves you guessing */
res = sbytes;
}
# elif __hpux
res = sendfile (ofd, ifd, offset, count, 0, 0);
# elif __solaris
{
struct sendfilevec vec;
size_t sbytes;
vec.sfv_fd = ifd;
vec.sfv_flag = 0;
vec.sfv_off = offset;
vec.sfv_len = count;
res = sendfilev (ofd, &vec, 1, &sbytes);
if (res < 0 && sbytes)
res = sbytes;
}
# endif
#else
res = -1;
errno = ENOSYS;
#endif
if (res < 0
&& (errno == ENOSYS || errno == EINVAL || errno == ENOTSOCK
#if __solaris
|| errno == EAFNOSUPPORT || errno == EPROTOTYPE
#endif
)
)
{
/* emulate sendfile. this is a major pain in the ass */
dBUF;
res = 0;
while (count)
{
ssize_t cnt;
cnt = pread (ifd, eio_buf, count > EIO_BUFSIZE ? EIO_BUFSIZE : count, offset);
if (cnt <= 0)
{
if (cnt && !res) res = -1;
break;
}
cnt = write (ofd, eio_buf, cnt);
if (cnt <= 0)
{
if (cnt && !res) res = -1;
break;
}
offset += cnt;
res += cnt;
count -= cnt;
}
}
return res;
}
static signed char
eio_dent_cmp (const eio_dirent *a, const eio_dirent *b)
{
return a->score - b->score ? a->score - b->score /* works because our signed char is always 0..100 */
: a->inode < b->inode ? -1 : a->inode > b->inode ? 1 : 0;
}
#define EIO_DENT_CMP(i,op,j) eio_dent_cmp (&i, &j) op 0
#define EIO_SORT_CUTOFF 30 /* quite high, but performs well on many filesystems */
#define EIO_SORT_FAST 60 /* when to only use insertion sort */
static void
eio_dent_radix_sort (eio_dirent *dents, int size, signed char score_bits, ino_t inode_bits)
{
unsigned char bits [9 + sizeof (ino_t) * 8];
unsigned char *bit = bits;
assert (CHAR_BIT == 8);
assert (sizeof (eio_dirent) * 8 < 256);
assert (offsetof (eio_dirent, inode)); /* we use 0 as sentinel */
assert (offsetof (eio_dirent, score)); /* we use 0 as sentinel */
if (size <= EIO_SORT_FAST)
return;
/* first prepare an array of bits to test in our radix sort */
/* try to take endianness into account, as well as differences in ino_t sizes */
/* inode_bits must contain all inodes ORed together */
/* which is used to skip bits that are 0 everywhere, which is very common */
{
ino_t endianness;
int i, j;
/* we store the byte offset of byte n into byte n of "endianness" */
for (i = 0; i < sizeof (ino_t); ++i)
((unsigned char *)&endianness)[i] = i;
*bit++ = 0;
for (i = 0; i < sizeof (ino_t); ++i)
{
/* shifting off the byte offsets out of "endianness" */
int offs = (offsetof (eio_dirent, inode) + (endianness & 0xff)) * 8;
endianness >>= 8;
for (j = 0; j < 8; ++j)
if (inode_bits & (((ino_t)1) << (i * 8 + j)))
*bit++ = offs + j;
}
for (j = 0; j < 8; ++j)
if (score_bits & (1 << j))
*bit++ = offsetof (eio_dirent, score) * 8 + j;
}
/* now actually do the sorting (a variant of MSD radix sort) */
{
eio_dirent *base_stk [9 + sizeof (ino_t) * 8], *base;
eio_dirent *end_stk [9 + sizeof (ino_t) * 8], *end;
unsigned char *bit_stk [9 + sizeof (ino_t) * 8];
int stk_idx = 0;
base_stk [stk_idx] = dents;
end_stk [stk_idx] = dents + size;
bit_stk [stk_idx] = bit - 1;
do
{
base = base_stk [stk_idx];
end = end_stk [stk_idx];
bit = bit_stk [stk_idx];
for (;;)
{
unsigned char O = *bit >> 3;
unsigned char M = 1 << (*bit & 7);
eio_dirent *a = base;
eio_dirent *b = end;
if (b - a < EIO_SORT_CUTOFF)
break;
/* now bit-partition the array on the bit */
/* this ugly asymmetric loop seems to perform much better than typical */
/* partition algos found in the literature */
do
if (!(((unsigned char *)a)[O] & M))
++a;
else if (!(((unsigned char *)--b)[O] & M))
{
eio_dirent tmp = *a; *a = *b; *b = tmp;
++a;
}
while (b > a);
/* next bit, or stop, if no bits left in this path */
if (!*--bit)
break;
base_stk [stk_idx] = a;
end_stk [stk_idx] = end;
bit_stk [stk_idx] = bit;
++stk_idx;
end = a;
}
}
while (stk_idx--);
}
}
static void
eio_dent_insertion_sort (eio_dirent *dents, int size)
{
/* first move the smallest element to the front, to act as a sentinel */
{
int i;
eio_dirent *min = dents;
/* the radix pre-pass ensures that the minimum element is in the first EIO_SORT_CUTOFF + 1 elements */
for (i = size > EIO_SORT_FAST ? EIO_SORT_CUTOFF + 1 : size; --i; )
if (EIO_DENT_CMP (dents [i], <, *min))
min = &dents [i];
/* swap elements 0 and j (minimum) */
{
eio_dirent tmp = *dents; *dents = *min; *min = tmp;
}
}
/* then do standard insertion sort, assuming that all elements are >= dents [0] */
{
eio_dirent *i, *j;
for (i = dents + 1; i < dents + size; ++i)
{
eio_dirent value = *i;
for (j = i - 1; EIO_DENT_CMP (*j, >, value); --j)
j [1] = j [0];
j [1] = value;
}
}
}
static void
eio_dent_sort (eio_dirent *dents, int size, signed char score_bits, ino_t inode_bits)
{
if (size <= 1)
return; /* our insertion sort relies on size > 0 */
/* first we use a radix sort, but only for dirs >= EIO_SORT_FAST */
/* and stop sorting when the partitions are <= EIO_SORT_CUTOFF */
eio_dent_radix_sort (dents, size, score_bits, inode_bits);
/* use an insertion sort at the end, or for small arrays, */
/* as insertion sort is more efficient for small partitions */
eio_dent_insertion_sort (dents, size);
}
/* read a full directory */
static void
eio__scandir (eio_req *req, etp_worker *self)
{
DIR *dirp;
EIO_STRUCT_DIRENT *entp;
char *name, *names;
int namesalloc = 4096;
int namesoffs = 0;
int flags = req->int1;
eio_dirent *dents = 0;
int dentalloc = 128;
int dentoffs = 0;
ino_t inode_bits = 0;
req->result = -1;
if (!(flags & EIO_READDIR_DENTS))
flags &= ~(EIO_READDIR_DIRS_FIRST | EIO_READDIR_STAT_ORDER);
X_LOCK (wrklock);
/* the corresponding closedir is in ETP_WORKER_CLEAR */
self->dirp = dirp = opendir (req->ptr1);
req->flags |= EIO_FLAG_PTR1_FREE | EIO_FLAG_PTR2_FREE;
req->ptr1 = dents = flags ? malloc (dentalloc * sizeof (eio_dirent)) : 0;
req->ptr2 = names = malloc (namesalloc);
X_UNLOCK (wrklock);
if (dirp && names && (!flags || dents))
for (;;)
{
errno = 0;
entp = readdir (dirp);
if (!entp)
{
if (errno)
break;
/* sort etc. */
req->int1 = flags;
req->result = dentoffs;
if (flags & EIO_READDIR_STAT_ORDER)
eio_dent_sort (dents, dentoffs, 0, inode_bits); /* sort by inode exclusively */
else if (flags & EIO_READDIR_DIRS_FIRST)
if (flags & EIO_READDIR_FOUND_UNKNOWN)
eio_dent_sort (dents, dentoffs, 7, inode_bits); /* sort by score and inode */
else
{
/* in this case, all is known, and we just put dirs first and sort them */
eio_dirent *oth = dents + dentoffs;
eio_dirent *dir = dents;
/* now partition dirs to the front, and non-dirs to the back */
/* by walking from both sides and swapping if necessary */
/* also clear score, so it doesn't influence sorting */
while (oth > dir)
{
if (dir->type == EIO_DT_DIR)
++dir;
else if ((--oth)->type == EIO_DT_DIR)
{
eio_dirent tmp = *dir; *dir = *oth; *oth = tmp;
++dir;
}
}
/* now sort the dirs only */
eio_dent_sort (dents, dir - dents, 0, inode_bits);
}
break;
}
/* now add the entry to our list(s) */
name = entp->d_name;
/* skip . and .. entries */
if (name [0] != '.' || (name [1] && (name [1] != '.' || name [2])))
{
int len = D_NAMLEN (entp) + 1;
while (expect_false (namesoffs + len > namesalloc))
{
namesalloc *= 2;
X_LOCK (wrklock);
req->ptr2 = names = realloc (names, namesalloc);
X_UNLOCK (wrklock);
if (!names)
break;
}
memcpy (names + namesoffs, name, len);
if (dents)
{
struct eio_dirent *ent;
if (expect_false (dentoffs == dentalloc))
{
dentalloc *= 2;
X_LOCK (wrklock);
req->ptr1 = dents = realloc (dents, dentalloc * sizeof (eio_dirent));
X_UNLOCK (wrklock);
if (!dents)
break;
}
ent = dents + dentoffs;
ent->nameofs = namesoffs; /* rather dirtily we store the offset in the pointer */
ent->namelen = len - 1;
ent->inode = D_INO (entp);
inode_bits |= ent->inode;
switch (D_TYPE (entp))
{
default:
ent->type = EIO_DT_UNKNOWN;
flags |= EIO_READDIR_FOUND_UNKNOWN;
break;
#ifdef DT_FIFO
case DT_FIFO: ent->type = EIO_DT_FIFO; break;
#endif
#ifdef DT_CHR
case DT_CHR: ent->type = EIO_DT_CHR; break;
#endif
#ifdef DT_MPC
case DT_MPC: ent->type = EIO_DT_MPC; break;
#endif
#ifdef DT_DIR
case DT_DIR: ent->type = EIO_DT_DIR; break;
#endif
#ifdef DT_NAM
case DT_NAM: ent->type = EIO_DT_NAM; break;
#endif
#ifdef DT_BLK
case DT_BLK: ent->type = EIO_DT_BLK; break;
#endif
#ifdef DT_MPB
case DT_MPB: ent->type = EIO_DT_MPB; break;
#endif
#ifdef DT_REG
case DT_REG: ent->type = EIO_DT_REG; break;
#endif
#ifdef DT_NWK
case DT_NWK: ent->type = EIO_DT_NWK; break;
#endif
#ifdef DT_CMP
case DT_CMP: ent->type = EIO_DT_CMP; break;
#endif
#ifdef DT_LNK
case DT_LNK: ent->type = EIO_DT_LNK; break;
#endif
#ifdef DT_SOCK
case DT_SOCK: ent->type = EIO_DT_SOCK; break;
#endif
#ifdef DT_DOOR
case DT_DOOR: ent->type = EIO_DT_DOOR; break;
#endif
#ifdef DT_WHT
case DT_WHT: ent->type = EIO_DT_WHT; break;
#endif
}
ent->score = 7;
if (flags & EIO_READDIR_DIRS_FIRST)
{
if (ent->type == EIO_DT_UNKNOWN)
{
if (*name == '.') /* leading dots are likely directories, and, in any case, rare */
ent->score = 1;
else if (!strchr (name, '.')) /* absense of dots indicate likely dirs */
ent->score = len <= 2 ? 4 - len : len <= 4 ? 4 : len <= 7 ? 5 : 6; /* shorter == more likely dir, but avoid too many classes */
}
else if (ent->type == EIO_DT_DIR)
ent->score = 0;
}
}
namesoffs += len;
++dentoffs;
}
if (EIO_CANCELLED (req))
{
errno = ECANCELED;
break;
}
}
}
#if !(_POSIX_MAPPED_FILES && _POSIX_SYNCHRONIZED_IO)
# undef msync
# define msync(a,b,c) ((errno = ENOSYS), -1)
#endif
int
eio__mtouch (void *mem, size_t len, int flags)
{
intptr_t addr = (intptr_t)mem;
intptr_t end = addr + len;
#ifdef PAGESIZE
const intptr_t page = PAGESIZE;
#else
static intptr_t page;
if (!page)
page = sysconf (_SC_PAGESIZE);
#endif
addr &= ~(page - 1); /* assume page size is always a power of two */
if (addr < end)
if (flags) /* modify */
do { *((volatile sig_atomic_t *)addr) |= 0; } while ((addr += page) < len);
else
do { *((volatile sig_atomic_t *)addr) ; } while ((addr += page) < len);
return 0;
}
/*****************************************************************************/
#define ALLOC(len) \
if (!req->ptr2) \
{ \
X_LOCK (wrklock); \
req->flags |= EIO_FLAG_PTR2_FREE; \
X_UNLOCK (wrklock); \
req->ptr2 = malloc (len); \
if (!req->ptr2) \
{ \
errno = ENOMEM; \
req->result = -1; \
break; \
} \
}
X_THREAD_PROC (etp_proc)
{
ETP_REQ *req;
struct timespec ts;
etp_worker *self = (etp_worker *)thr_arg;
/* try to distribute timeouts somewhat randomly */
ts.tv_nsec = ((unsigned long)self & 1023UL) * (1000000000UL / 1024UL);
for (;;)
{
X_LOCK (reqlock);
for (;;)
{
self->req = req = reqq_shift (&req_queue);
if (req)
break;
++idle;
ts.tv_sec = time (0) + IDLE_TIMEOUT;
if (X_COND_TIMEDWAIT (reqwait, reqlock, ts) == ETIMEDOUT)
{
if (idle > max_idle)
{
--idle;
X_UNLOCK (reqlock);
X_LOCK (wrklock);
--started;
X_UNLOCK (wrklock);
goto quit;
}
/* we are allowed to idle, so do so without any timeout */
X_COND_WAIT (reqwait, reqlock);
}
--idle;
}
--nready;
X_UNLOCK (reqlock);
if (req->type < 0)
goto quit;
if (!EIO_CANCELLED (req))
ETP_EXECUTE (self, req);
X_LOCK (reslock);
++npending;
if (!reqq_push (&res_queue, req) && want_poll_cb)
want_poll_cb ();
self->req = 0;
etp_worker_clear (self);
X_UNLOCK (reslock);
}
quit:
X_LOCK (wrklock);
etp_worker_free (self);
X_UNLOCK (wrklock);
return 0;
}
/*****************************************************************************/
int eio_init (void (*want_poll)(void), void (*done_poll)(void))
{
return etp_init (want_poll, done_poll);
}
static void eio_api_destroy (eio_req *req)
{
free (req);
}
#define REQ(rtype) \
eio_req *req; \
\
req = (eio_req *)calloc (1, sizeof *req); \
if (!req) \
return 0; \
\
req->type = rtype; \
req->pri = pri; \
req->finish = cb; \
req->data = data; \
req->destroy = eio_api_destroy;
#define SEND eio_submit (req); return req
#define PATH \
req->flags |= EIO_FLAG_PTR1_FREE; \
req->ptr1 = strdup (path); \
if (!req->ptr1) \
{ \
eio_api_destroy (req); \
return 0; \
}
static void eio_execute (etp_worker *self, eio_req *req)
{
errno = 0;
switch (req->type)
{
case EIO_READ: ALLOC (req->size);
req->result = req->offs >= 0
? pread (req->int1, req->ptr2, req->size, req->offs)
: read (req->int1, req->ptr2, req->size); break;
case EIO_WRITE: req->result = req->offs >= 0
? pwrite (req->int1, req->ptr2, req->size, req->offs)
: write (req->int1, req->ptr2, req->size); break;
case EIO_READAHEAD: req->result = readahead (req->int1, req->offs, req->size); break;
case EIO_SENDFILE: req->result = eio__sendfile (req->int1, req->int2, req->offs, req->size, self); break;
case EIO_STAT: ALLOC (sizeof (EIO_STRUCT_STAT));
req->result = stat (req->ptr1, (EIO_STRUCT_STAT *)req->ptr2); break;
case EIO_LSTAT: ALLOC (sizeof (EIO_STRUCT_STAT));
req->result = lstat (req->ptr1, (EIO_STRUCT_STAT *)req->ptr2); break;
case EIO_FSTAT: ALLOC (sizeof (EIO_STRUCT_STAT));
req->result = fstat (req->int1, (EIO_STRUCT_STAT *)req->ptr2); break;
case EIO_CHOWN: req->result = chown (req->ptr1, req->int2, req->int3); break;
case EIO_FCHOWN: req->result = fchown (req->int1, req->int2, req->int3); break;
case EIO_CHMOD: req->result = chmod (req->ptr1, (mode_t)req->int2); break;
case EIO_FCHMOD: req->result = fchmod (req->int1, (mode_t)req->int2); break;
case EIO_TRUNCATE: req->result = truncate (req->ptr1, req->offs); break;
case EIO_FTRUNCATE: req->result = ftruncate (req->int1, req->offs); break;
case EIO_OPEN: req->result = open (req->ptr1, req->int1, (mode_t)req->int2); break;
case EIO_CLOSE: req->result = close (req->int1); break;
case EIO_DUP2: req->result = dup2 (req->int1, req->int2); break;
case EIO_UNLINK: req->result = unlink (req->ptr1); break;
case EIO_RMDIR: req->result = rmdir (req->ptr1); break;
case EIO_MKDIR: req->result = mkdir (req->ptr1, (mode_t)req->int2); break;
case EIO_RENAME: req->result = rename (req->ptr1, req->ptr2); break;
case EIO_LINK: req->result = link (req->ptr1, req->ptr2); break;
case EIO_SYMLINK: req->result = symlink (req->ptr1, req->ptr2); break;
case EIO_MKNOD: req->result = mknod (req->ptr1, (mode_t)req->int2, (dev_t)req->int3); break;
case EIO_READLINK: ALLOC (NAME_MAX);
req->result = readlink (req->ptr1, req->ptr2, NAME_MAX); break;
case EIO_SYNC: req->result = 0; sync (); break;
case EIO_FSYNC: req->result = fsync (req->int1); break;
case EIO_FDATASYNC: req->result = fdatasync (req->int1); break;
case EIO_MSYNC: req->result = msync (req->ptr2, req->size, req->int1); break;
case EIO_MTOUCH: req->result = eio__mtouch (req->ptr2, req->size, req->int1); break;
case EIO_SYNC_FILE_RANGE: req->result = eio__sync_file_range (req->int1, req->offs, req->size, req->int2); break;
case EIO_READDIR: eio__scandir (req, self); break;
case EIO_BUSY:
#ifdef _WIN32
Sleep (req->nv1 * 1000.);
#else
{
struct timeval tv;
tv.tv_sec = req->nv1;
tv.tv_usec = (req->nv1 - tv.tv_sec) * 1000000.;
req->result = select (0, 0, 0, 0, &tv);
}
#endif
break;
case EIO_UTIME:
case EIO_FUTIME:
{
struct timeval tv[2];
struct timeval *times;
if (req->nv1 != -1. || req->nv2 != -1.)
{
tv[0].tv_sec = req->nv1;
tv[0].tv_usec = (req->nv1 - tv[0].tv_sec) * 1000000.;
tv[1].tv_sec = req->nv2;
tv[1].tv_usec = (req->nv2 - tv[1].tv_sec) * 1000000.;
times = tv;
}
else
times = 0;
req->result = req->type == EIO_FUTIME
? futimes (req->int1, times)
: utimes (req->ptr1, times);
}
break;
case EIO_GROUP:
abort (); /* handled in eio_request */
case EIO_NOP:
req->result = 0;
break;
case EIO_CUSTOM:
((void (*)(eio_req *))req->feed) (req);
break;
default:
req->result = -1;
break;
}
req->errorno = errno;
}
#ifndef EIO_NO_WRAPPERS
eio_req *eio_nop (int pri, eio_cb cb, void *data)
{
REQ (EIO_NOP); SEND;
}
eio_req *eio_busy (double delay, int pri, eio_cb cb, void *data)
{
REQ (EIO_BUSY); req->nv1 = delay; SEND;
}
eio_req *eio_sync (int pri, eio_cb cb, void *data)
{
REQ (EIO_SYNC); SEND;
}
eio_req *eio_fsync (int fd, int pri, eio_cb cb, void *data)
{
REQ (EIO_FSYNC); req->int1 = fd; SEND;
}
eio_req *eio_msync (void *addr, size_t length, int flags, int pri, eio_cb cb, void *data)
{
REQ (EIO_MSYNC); req->ptr2 = addr; req->size = length; req->int1 = flags; SEND;
}
eio_req *eio_mtouch (void *addr, size_t length, int flags, int pri, eio_cb cb, void *data)
{
REQ (EIO_MTOUCH); req->ptr2 = addr; req->size = length; req->int1 = flags; SEND;
}
eio_req *eio_sync_file_range (int fd, off_t offset, size_t nbytes, unsigned int flags, int pri, eio_cb cb, void *data)
{
REQ (EIO_SYNC_FILE_RANGE); req->int1 = fd; req->offs = offset; req->size = nbytes; req->int2 = flags; SEND;
}
eio_req *eio_fdatasync (int fd, int pri, eio_cb cb, void *data)
{
REQ (EIO_FDATASYNC); req->int1 = fd; SEND;
}
eio_req *eio_close (int fd, int pri, eio_cb cb, void *data)
{
REQ (EIO_CLOSE); req->int1 = fd; SEND;
}
eio_req *eio_readahead (int fd, off_t offset, size_t length, int pri, eio_cb cb, void *data)
{
REQ (EIO_READAHEAD); req->int1 = fd; req->offs = offset; req->size = length; SEND;
}
eio_req *eio_read (int fd, void *buf, size_t length, off_t offset, int pri, eio_cb cb, void *data)
{
REQ (EIO_READ); req->int1 = fd; req->offs = offset; req->size = length; req->ptr2 = buf; SEND;
}
eio_req *eio_write (int fd, void *buf, size_t length, off_t offset, int pri, eio_cb cb, void *data)
{
REQ (EIO_WRITE); req->int1 = fd; req->offs = offset; req->size = length; req->ptr2 = buf; SEND;
}
eio_req *eio_fstat (int fd, int pri, eio_cb cb, void *data)
{
REQ (EIO_FSTAT); req->int1 = fd; SEND;
}
eio_req *eio_futime (int fd, double atime, double mtime, int pri, eio_cb cb, void *data)
{
REQ (EIO_FUTIME); req->int1 = fd; req->nv1 = atime; req->nv2 = mtime; SEND;
}
eio_req *eio_ftruncate (int fd, off_t offset, int pri, eio_cb cb, void *data)
{
REQ (EIO_FTRUNCATE); req->int1 = fd; req->offs = offset; SEND;
}
eio_req *eio_fchmod (int fd, mode_t mode, int pri, eio_cb cb, void *data)
{
REQ (EIO_FCHMOD); req->int1 = fd; req->int2 = (long)mode; SEND;
}
eio_req *eio_fchown (int fd, uid_t uid, gid_t gid, int pri, eio_cb cb, void *data)
{
REQ (EIO_FCHOWN); req->int1 = fd; req->int2 = (long)uid; req->int3 = (long)gid; SEND;
}
eio_req *eio_dup2 (int fd, int fd2, int pri, eio_cb cb, void *data)
{
REQ (EIO_DUP2); req->int1 = fd; req->int2 = fd2; SEND;
}
eio_req *eio_sendfile (int out_fd, int in_fd, off_t in_offset, size_t length, int pri, eio_cb cb, void *data)
{
REQ (EIO_SENDFILE); req->int1 = out_fd; req->int2 = in_fd; req->offs = in_offset; req->size = length; SEND;
}
eio_req *eio_open (const char *path, int flags, mode_t mode, int pri, eio_cb cb, void *data)
{
REQ (EIO_OPEN); PATH; req->int1 = flags; req->int2 = (long)mode; SEND;
}
eio_req *eio_utime (const char *path, double atime, double mtime, int pri, eio_cb cb, void *data)
{
REQ (EIO_UTIME); PATH; req->nv1 = atime; req->nv2 = mtime; SEND;
}
eio_req *eio_truncate (const char *path, off_t offset, int pri, eio_cb cb, void *data)
{
REQ (EIO_TRUNCATE); PATH; req->offs = offset; SEND;
}
eio_req *eio_chown (const char *path, uid_t uid, gid_t gid, int pri, eio_cb cb, void *data)
{
REQ (EIO_CHOWN); PATH; req->int2 = (long)uid; req->int3 = (long)gid; SEND;
}
eio_req *eio_chmod (const char *path, mode_t mode, int pri, eio_cb cb, void *data)
{
REQ (EIO_CHMOD); PATH; req->int2 = (long)mode; SEND;
}
eio_req *eio_mkdir (const char *path, mode_t mode, int pri, eio_cb cb, void *data)
{
REQ (EIO_MKDIR); PATH; req->int2 = (long)mode; SEND;
}
static eio_req *
eio__1path (int type, const char *path, int pri, eio_cb cb, void *data)
{
REQ (type); PATH; SEND;
}
eio_req *eio_readlink (const char *path, int pri, eio_cb cb, void *data)
{
return eio__1path (EIO_READLINK, path, pri, cb, data);
}
eio_req *eio_stat (const char *path, int pri, eio_cb cb, void *data)
{
return eio__1path (EIO_STAT, path, pri, cb, data);
}
eio_req *eio_lstat (const char *path, int pri, eio_cb cb, void *data)
{
return eio__1path (EIO_LSTAT, path, pri, cb, data);
}
eio_req *eio_unlink (const char *path, int pri, eio_cb cb, void *data)
{
return eio__1path (EIO_UNLINK, path, pri, cb, data);
}
eio_req *eio_rmdir (const char *path, int pri, eio_cb cb, void *data)
{
return eio__1path (EIO_RMDIR, path, pri, cb, data);
}
eio_req *eio_readdir (const char *path, int flags, int pri, eio_cb cb, void *data)
{
REQ (EIO_READDIR); PATH; req->int1 = flags; SEND;
}
eio_req *eio_mknod (const char *path, mode_t mode, dev_t dev, int pri, eio_cb cb, void *data)
{
REQ (EIO_MKNOD); PATH; req->int2 = (long)mode; req->int3 = (long)dev; SEND;
}
static eio_req *
eio__2path (int type, const char *path, const char *new_path, int pri, eio_cb cb, void *data)
{
REQ (type); PATH;
req->flags |= EIO_FLAG_PTR2_FREE;
req->ptr2 = strdup (new_path);
if (!req->ptr2)
{
eio_api_destroy (req);
return 0;
}
SEND;
}
eio_req *eio_link (const char *path, const char *new_path, int pri, eio_cb cb, void *data)
{
return eio__2path (EIO_LINK, path, new_path, pri, cb, data);
}
eio_req *eio_symlink (const char *path, const char *new_path, int pri, eio_cb cb, void *data)
{
return eio__2path (EIO_SYMLINK, path, new_path, pri, cb, data);
}
eio_req *eio_rename (const char *path, const char *new_path, int pri, eio_cb cb, void *data)
{
return eio__2path (EIO_RENAME, path, new_path, pri, cb, data);
}
eio_req *eio_custom (eio_cb execute, int pri, eio_cb cb, void *data)
{
REQ (EIO_CUSTOM); req->feed = (void (*)(eio_req *))execute; SEND;
}
#endif
eio_req *eio_grp (eio_cb cb, void *data)
{
const int pri = EIO_PRI_MAX;
REQ (EIO_GROUP); SEND;
}
#undef REQ
#undef PATH
#undef SEND
/*****************************************************************************/
/* grp functions */
void eio_grp_feed (eio_req *grp, void (*feed)(eio_req *req), int limit)
{
grp->int2 = limit;
grp->feed = feed;
grp_try_feed (grp);
}
void eio_grp_limit (eio_req *grp, int limit)
{
grp->int2 = limit;
grp_try_feed (grp);
}
void eio_grp_add (eio_req *grp, eio_req *req)
{
assert (("cannot add requests to IO::AIO::GRP after the group finished", grp->int1 != 2));
grp->flags |= EIO_FLAG_GROUPADD;
++grp->size;
req->grp = grp;
req->grp_prev = 0;
req->grp_next = grp->grp_first;
if (grp->grp_first)
grp->grp_first->grp_prev = req;
grp->grp_first = req;
}
/*****************************************************************************/
/* misc garbage */
ssize_t eio_sendfile_sync (int ofd, int ifd, off_t offset, size_t count)
{
etp_worker wrk;
ssize_t ret;
wrk.dbuf = 0;
ret = eio__sendfile (ofd, ifd, offset, count, &wrk);
if (wrk.dbuf)
free (wrk.dbuf);
return ret;
}