0
0
mirror of https://github.com/nodejs/node.git synced 2024-11-30 23:43:09 +01:00
nodejs/lib/_stream_transform.js
Ruben Bridgewater 57fd70fc7d
stream: remove TODO and add a description instead
After looking into this it turned out that these two errors are
sanity checks that should not be reached. It is unfortunate that
we assigned error codes for these but changing it into an assertion
seems to be a hassle for `readable-streams`.

PR-URL: https://github.com/nodejs/node/pull/27086
Reviewed-By: James M Snell <jasnell@gmail.com>
Reviewed-By: Matteo Collina <matteo.collina@gmail.com>
Reviewed-By: Anna Henningsen <anna@addaleax.net>
Reviewed-By: Rich Trott <rtrott@gmail.com>
2019-05-02 23:16:14 +02:00

220 lines
7.5 KiB
JavaScript

// Copyright Joyent, Inc. and other Node contributors.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the
// "Software"), to deal in the Software without restriction, including
// without limitation the rights to use, copy, modify, merge, publish,
// distribute, sublicense, and/or sell copies of the Software, and to permit
// persons to whom the Software is furnished to do so, subject to the
// following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
// USE OR OTHER DEALINGS IN THE SOFTWARE.
// a transform stream is a readable/writable stream where you do
// something with the data. Sometimes it's called a "filter",
// but that's not a great name for it, since that implies a thing where
// some bits pass through, and others are simply ignored. (That would
// be a valid example of a transform, of course.)
//
// While the output is causally related to the input, it's not a
// necessarily symmetric or synchronous transformation. For example,
// a zlib stream might take multiple plain-text writes(), and then
// emit a single compressed chunk some time in the future.
//
// Here's how this works:
//
// The Transform stream has all the aspects of the readable and writable
// stream classes. When you write(chunk), that calls _write(chunk,cb)
// internally, and returns false if there's a lot of pending writes
// buffered up. When you call read(), that calls _read(n) until
// there's enough pending readable data buffered up.
//
// In a transform stream, the written data is placed in a buffer. When
// _read(n) is called, it transforms the queued up data, calling the
// buffered _write cb's as it consumes chunks. If consuming a single
// written chunk would result in multiple output chunks, then the first
// outputted bit calls the readcb, and subsequent chunks just go into
// the read buffer, and will cause it to emit 'readable' if necessary.
//
// This way, back-pressure is actually determined by the reading side,
// since _read has to be called to start processing a new chunk. However,
// a pathological inflate type of transform can cause excessive buffering
// here. For example, imagine a stream where every byte of input is
// interpreted as an integer from 0-255, and then results in that many
// bytes of output. Writing the 4 bytes {ff,ff,ff,ff} would result in
// 1kb of data being output. In this case, you could write a very small
// amount of input, and end up with a very large amount of output. In
// such a pathological inflating mechanism, there'd be no way to tell
// the system to stop doing the transform. A single 4MB write could
// cause the system to run out of memory.
//
// However, even in such a pathological case, only a single written chunk
// would be consumed, and then the rest would wait (un-transformed) until
// the results of the previous transformed chunk were consumed.
'use strict';
const { Object } = primordials;
module.exports = Transform;
const {
ERR_METHOD_NOT_IMPLEMENTED,
ERR_MULTIPLE_CALLBACK,
ERR_TRANSFORM_ALREADY_TRANSFORMING,
ERR_TRANSFORM_WITH_LENGTH_0
} = require('internal/errors').codes;
const Duplex = require('_stream_duplex');
Object.setPrototypeOf(Transform.prototype, Duplex.prototype);
Object.setPrototypeOf(Transform, Duplex);
function afterTransform(er, data) {
const ts = this._transformState;
ts.transforming = false;
const cb = ts.writecb;
if (cb === null) {
return this.emit('error', new ERR_MULTIPLE_CALLBACK());
}
ts.writechunk = null;
ts.writecb = null;
if (data != null) // Single equals check for both `null` and `undefined`
this.push(data);
cb(er);
const rs = this._readableState;
rs.reading = false;
if (rs.needReadable || rs.length < rs.highWaterMark) {
this._read(rs.highWaterMark);
}
}
function Transform(options) {
if (!(this instanceof Transform))
return new Transform(options);
Duplex.call(this, options);
this._transformState = {
afterTransform: afterTransform.bind(this),
needTransform: false,
transforming: false,
writecb: null,
writechunk: null,
writeencoding: null
};
// We have implemented the _read method, and done the other things
// that Readable wants before the first _read call, so unset the
// sync guard flag.
this._readableState.sync = false;
if (options) {
if (typeof options.transform === 'function')
this._transform = options.transform;
if (typeof options.flush === 'function')
this._flush = options.flush;
}
// When the writable side finishes, then flush out anything remaining.
this.on('prefinish', prefinish);
}
function prefinish() {
if (typeof this._flush === 'function' && !this._readableState.destroyed) {
this._flush((er, data) => {
done(this, er, data);
});
} else {
done(this, null, null);
}
}
Transform.prototype.push = function(chunk, encoding) {
this._transformState.needTransform = false;
return Duplex.prototype.push.call(this, chunk, encoding);
};
// This is the part where you do stuff!
// override this function in implementation classes.
// 'chunk' is an input chunk.
//
// Call `push(newChunk)` to pass along transformed output
// to the readable side. You may call 'push' zero or more times.
//
// Call `cb(err)` when you are done with this chunk. If you pass
// an error, then that'll put the hurt on the whole operation. If you
// never call cb(), then you'll never get another chunk.
Transform.prototype._transform = function(chunk, encoding, cb) {
cb(new ERR_METHOD_NOT_IMPLEMENTED('_transform()'));
};
Transform.prototype._write = function(chunk, encoding, cb) {
const ts = this._transformState;
ts.writecb = cb;
ts.writechunk = chunk;
ts.writeencoding = encoding;
if (!ts.transforming) {
var rs = this._readableState;
if (ts.needTransform ||
rs.needReadable ||
rs.length < rs.highWaterMark)
this._read(rs.highWaterMark);
}
};
// Doesn't matter what the args are here.
// _transform does all the work.
// That we got here means that the readable side wants more data.
Transform.prototype._read = function(n) {
const ts = this._transformState;
if (ts.writechunk !== null && !ts.transforming) {
ts.transforming = true;
this._transform(ts.writechunk, ts.writeencoding, ts.afterTransform);
} else {
// Mark that we need a transform, so that any data that comes in
// will get processed, now that we've asked for it.
ts.needTransform = true;
}
};
Transform.prototype._destroy = function(err, cb) {
Duplex.prototype._destroy.call(this, err, (err2) => {
cb(err2);
});
};
function done(stream, er, data) {
if (er)
return stream.emit('error', er);
if (data != null) // Single equals check for both `null` and `undefined`
stream.push(data);
// These two error cases are coherence checks that can likely not be tested.
if (stream._writableState.length)
throw new ERR_TRANSFORM_WITH_LENGTH_0();
if (stream._transformState.transforming)
throw new ERR_TRANSFORM_ALREADY_TRANSFORMING();
return stream.push(null);
}