0
0
mirror of https://github.com/nodejs/node.git synced 2024-11-21 21:19:50 +01:00
nodejs/test/parallel/test-crypto-rsa-dsa.js
Michael Dawson b6d162e0c4 test: crypto-rsa-dsa testing for dynamic openssl
Fixes: https://github.com/nodejs/node/issues/52537

Signed-off-by: Michael Dawson <midawson@redhat.com>
PR-URL: https://github.com/nodejs/node/pull/52781
Reviewed-By: Luigi Pinca <luigipinca@gmail.com>
Reviewed-By: James M Snell <jasnell@gmail.com>
2024-05-06 15:00:24 -04:00

544 lines
16 KiB
JavaScript

'use strict';
const common = require('../common');
if (!common.hasCrypto)
common.skip('missing crypto');
const assert = require('assert');
const crypto = require('crypto');
const constants = crypto.constants;
const fixtures = require('../common/fixtures');
// Test certificates
const certPem = fixtures.readKey('rsa_cert.crt');
const keyPem = fixtures.readKey('rsa_private.pem');
const rsaKeySize = 2048;
const rsaPubPem = fixtures.readKey('rsa_public.pem', 'ascii');
const rsaKeyPem = fixtures.readKey('rsa_private.pem', 'ascii');
const rsaKeyPemEncrypted = fixtures.readKey('rsa_private_encrypted.pem',
'ascii');
const dsaPubPem = fixtures.readKey('dsa_public.pem', 'ascii');
const dsaKeyPem = fixtures.readKey('dsa_private.pem', 'ascii');
const dsaKeyPemEncrypted = fixtures.readKey('dsa_private_encrypted.pem',
'ascii');
const rsaPkcs8KeyPem = fixtures.readKey('rsa_private_pkcs8.pem');
const dsaPkcs8KeyPem = fixtures.readKey('dsa_private_pkcs8.pem');
const ec = new TextEncoder();
const openssl1DecryptError = {
message: 'error:06065064:digital envelope routines:EVP_DecryptFinal_ex:' +
'bad decrypt',
code: 'ERR_OSSL_EVP_BAD_DECRYPT',
reason: 'bad decrypt',
function: 'EVP_DecryptFinal_ex',
library: 'digital envelope routines',
};
const decryptError = common.hasOpenSSL3 ?
{ message: 'error:1C800064:Provider routines::bad decrypt' } :
openssl1DecryptError;
const decryptPrivateKeyError = common.hasOpenSSL3 ? {
message: 'error:1C800064:Provider routines::bad decrypt',
} : openssl1DecryptError;
function getBufferCopy(buf) {
return buf.buffer.slice(buf.byteOffset, buf.byteOffset + buf.byteLength);
}
// Test RSA encryption/decryption
{
const input = 'I AM THE WALRUS';
const bufferToEncrypt = Buffer.from(input);
const bufferPassword = Buffer.from('password');
let encryptedBuffer = crypto.publicEncrypt(rsaPubPem, bufferToEncrypt);
// Test other input types
let otherEncrypted;
{
const ab = getBufferCopy(ec.encode(rsaPubPem));
const ab2enc = getBufferCopy(bufferToEncrypt);
crypto.publicEncrypt(ab, ab2enc);
crypto.publicEncrypt(new Uint8Array(ab), new Uint8Array(ab2enc));
crypto.publicEncrypt(new DataView(ab), new DataView(ab2enc));
otherEncrypted = crypto.publicEncrypt({
key: Buffer.from(ab).toString('hex'),
encoding: 'hex'
}, Buffer.from(ab2enc).toString('hex'));
}
let decryptedBuffer = crypto.privateDecrypt(rsaKeyPem, encryptedBuffer);
const otherDecrypted = crypto.privateDecrypt(rsaKeyPem, otherEncrypted);
assert.strictEqual(decryptedBuffer.toString(), input);
assert.strictEqual(otherDecrypted.toString(), input);
decryptedBuffer = crypto.privateDecrypt(rsaPkcs8KeyPem, encryptedBuffer);
assert.strictEqual(decryptedBuffer.toString(), input);
let decryptedBufferWithPassword = crypto.privateDecrypt({
key: rsaKeyPemEncrypted,
passphrase: 'password'
}, encryptedBuffer);
const otherDecryptedBufferWithPassword = crypto.privateDecrypt({
key: rsaKeyPemEncrypted,
passphrase: ec.encode('password')
}, encryptedBuffer);
assert.strictEqual(
otherDecryptedBufferWithPassword.toString(),
decryptedBufferWithPassword.toString());
decryptedBufferWithPassword = crypto.privateDecrypt({
key: rsaKeyPemEncrypted,
passphrase: 'password'
}, encryptedBuffer);
assert.strictEqual(decryptedBufferWithPassword.toString(), input);
encryptedBuffer = crypto.publicEncrypt({
key: rsaKeyPemEncrypted,
passphrase: 'password'
}, bufferToEncrypt);
decryptedBufferWithPassword = crypto.privateDecrypt({
key: rsaKeyPemEncrypted,
passphrase: 'password'
}, encryptedBuffer);
assert.strictEqual(decryptedBufferWithPassword.toString(), input);
encryptedBuffer = crypto.privateEncrypt({
key: rsaKeyPemEncrypted,
passphrase: bufferPassword
}, bufferToEncrypt);
decryptedBufferWithPassword = crypto.publicDecrypt({
key: rsaKeyPemEncrypted,
passphrase: bufferPassword
}, encryptedBuffer);
assert.strictEqual(decryptedBufferWithPassword.toString(), input);
// Now with explicit RSA_PKCS1_PADDING.
encryptedBuffer = crypto.privateEncrypt({
padding: crypto.constants.RSA_PKCS1_PADDING,
key: rsaKeyPemEncrypted,
passphrase: bufferPassword
}, bufferToEncrypt);
decryptedBufferWithPassword = crypto.publicDecrypt({
padding: crypto.constants.RSA_PKCS1_PADDING,
key: rsaKeyPemEncrypted,
passphrase: bufferPassword
}, encryptedBuffer);
assert.strictEqual(decryptedBufferWithPassword.toString(), input);
// Omitting padding should be okay because RSA_PKCS1_PADDING is the default.
decryptedBufferWithPassword = crypto.publicDecrypt({
key: rsaKeyPemEncrypted,
passphrase: bufferPassword
}, encryptedBuffer);
assert.strictEqual(decryptedBufferWithPassword.toString(), input);
// Now with RSA_NO_PADDING. Plaintext needs to match key size.
// OpenSSL 3.x has a rsa_check_padding that will cause an error if
// RSA_NO_PADDING is used.
if (!common.hasOpenSSL3) {
{
const plaintext = 'x'.repeat(rsaKeySize / 8);
encryptedBuffer = crypto.privateEncrypt({
padding: crypto.constants.RSA_NO_PADDING,
key: rsaKeyPemEncrypted,
passphrase: bufferPassword
}, Buffer.from(plaintext));
decryptedBufferWithPassword = crypto.publicDecrypt({
padding: crypto.constants.RSA_NO_PADDING,
key: rsaKeyPemEncrypted,
passphrase: bufferPassword
}, encryptedBuffer);
assert.strictEqual(decryptedBufferWithPassword.toString(), plaintext);
}
}
encryptedBuffer = crypto.publicEncrypt(certPem, bufferToEncrypt);
decryptedBuffer = crypto.privateDecrypt(keyPem, encryptedBuffer);
assert.strictEqual(decryptedBuffer.toString(), input);
encryptedBuffer = crypto.publicEncrypt(keyPem, bufferToEncrypt);
decryptedBuffer = crypto.privateDecrypt(keyPem, encryptedBuffer);
assert.strictEqual(decryptedBuffer.toString(), input);
encryptedBuffer = crypto.privateEncrypt(keyPem, bufferToEncrypt);
decryptedBuffer = crypto.publicDecrypt(keyPem, encryptedBuffer);
assert.strictEqual(decryptedBuffer.toString(), input);
assert.throws(() => {
crypto.privateDecrypt({
key: rsaKeyPemEncrypted,
passphrase: 'wrong'
}, bufferToEncrypt);
}, decryptError);
assert.throws(() => {
crypto.publicEncrypt({
key: rsaKeyPemEncrypted,
passphrase: 'wrong'
}, encryptedBuffer);
}, decryptError);
encryptedBuffer = crypto.privateEncrypt({
key: rsaKeyPemEncrypted,
passphrase: Buffer.from('password')
}, bufferToEncrypt);
assert.throws(() => {
crypto.publicDecrypt({
key: rsaKeyPemEncrypted,
passphrase: Buffer.from('wrong')
}, encryptedBuffer);
}, decryptError);
}
function test_rsa(padding, encryptOaepHash, decryptOaepHash) {
const size = (padding === 'RSA_NO_PADDING') ? rsaKeySize / 8 : 32;
const input = Buffer.allocUnsafe(size);
for (let i = 0; i < input.length; i++)
input[i] = (i * 7 + 11) & 0xff;
const bufferToEncrypt = Buffer.from(input);
padding = constants[padding];
const encryptedBuffer = crypto.publicEncrypt({
key: rsaPubPem,
padding: padding,
oaepHash: encryptOaepHash
}, bufferToEncrypt);
if (padding === constants.RSA_PKCS1_PADDING) {
if (!process.config.variables.node_shared_openssl) {
assert.throws(() => {
crypto.privateDecrypt({
key: rsaKeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
}, { code: 'ERR_INVALID_ARG_VALUE' });
assert.throws(() => {
crypto.privateDecrypt({
key: rsaPkcs8KeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
}, { code: 'ERR_INVALID_ARG_VALUE' });
} else {
// The version of a linked against OpenSSL. May
// or may not support implicit rejection. Figuring
// this out in the test is not feasible but we
// require that it pass based on one of the two
// cases of supporting it or not.
try {
// The expected exceptions should be thrown if implicit rejection
// is not supported
assert.throws(() => {
crypto.privateDecrypt({
key: rsaKeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
}, { code: 'ERR_INVALID_ARG_VALUE' });
assert.throws(() => {
crypto.privateDecrypt({
key: rsaPkcs8KeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
}, { code: 'ERR_INVALID_ARG_VALUE' });
} catch (e) {
if (e.toString() ===
'AssertionError [ERR_ASSERTION]: Missing expected exception.') {
// Implicit rejection must be supported since
// we did not get the exceptions that are thrown
// when it is not, we should be able to decrypt
let decryptedBuffer = crypto.privateDecrypt({
key: rsaKeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
assert.deepStrictEqual(decryptedBuffer, input);
decryptedBuffer = crypto.privateDecrypt({
key: rsaPkcs8KeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
assert.deepStrictEqual(decryptedBuffer, input);
} else {
// There was an exception but it is not the one we expect if implicit
// rejection is not supported so there was some other failure,
// re-throw it so the test fails
throw e;
}
}
}
} else {
let decryptedBuffer = crypto.privateDecrypt({
key: rsaKeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
assert.deepStrictEqual(decryptedBuffer, input);
decryptedBuffer = crypto.privateDecrypt({
key: rsaPkcs8KeyPem,
padding: padding,
oaepHash: decryptOaepHash
}, encryptedBuffer);
assert.deepStrictEqual(decryptedBuffer, input);
}
}
test_rsa('RSA_NO_PADDING');
test_rsa('RSA_PKCS1_PADDING');
test_rsa('RSA_PKCS1_OAEP_PADDING');
// Test OAEP with different hash functions.
test_rsa('RSA_PKCS1_OAEP_PADDING', undefined, 'sha1');
test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha1', undefined);
test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha256', 'sha256');
test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha512', 'sha512');
assert.throws(() => {
test_rsa('RSA_PKCS1_OAEP_PADDING', 'sha256', 'sha512');
}, {
code: 'ERR_OSSL_RSA_OAEP_DECODING_ERROR'
});
// The following RSA-OAEP test cases were created using the WebCrypto API to
// ensure compatibility when using non-SHA1 hash functions.
{
const { decryptionTests } =
JSON.parse(fixtures.readSync('rsa-oaep-test-vectors.js', 'utf8'));
for (const { ct, oaepHash, oaepLabel } of decryptionTests) {
const label = oaepLabel ? Buffer.from(oaepLabel, 'hex') : undefined;
const copiedLabel = oaepLabel ? getBufferCopy(label) : undefined;
const decrypted = crypto.privateDecrypt({
key: rsaPkcs8KeyPem,
oaepHash,
oaepLabel: oaepLabel ? label : undefined
}, Buffer.from(ct, 'hex'));
assert.strictEqual(decrypted.toString('utf8'), 'Hello Node.js');
const otherDecrypted = crypto.privateDecrypt({
key: rsaPkcs8KeyPem,
oaepHash,
oaepLabel: copiedLabel
}, Buffer.from(ct, 'hex'));
assert.strictEqual(otherDecrypted.toString('utf8'), 'Hello Node.js');
}
}
// Test invalid oaepHash and oaepLabel options.
for (const fn of [crypto.publicEncrypt, crypto.privateDecrypt]) {
assert.throws(() => {
fn({
key: rsaPubPem,
oaepHash: 'Hello world'
}, Buffer.alloc(10));
}, {
code: 'ERR_OSSL_EVP_INVALID_DIGEST'
});
for (const oaepHash of [0, false, null, Symbol(), () => {}]) {
assert.throws(() => {
fn({
key: rsaPubPem,
oaepHash
}, Buffer.alloc(10));
}, {
code: 'ERR_INVALID_ARG_TYPE'
});
}
for (const oaepLabel of [0, false, null, Symbol(), () => {}, {}]) {
assert.throws(() => {
fn({
key: rsaPubPem,
oaepLabel
}, Buffer.alloc(10));
}, {
code: 'ERR_INVALID_ARG_TYPE'
});
}
}
// Test RSA key signing/verification
let rsaSign = crypto.createSign('SHA1');
let rsaVerify = crypto.createVerify('SHA1');
assert.ok(rsaSign);
assert.ok(rsaVerify);
const expectedSignature = fixtures.readKey(
'rsa_public_sha1_signature_signedby_rsa_private_pkcs8.sha1',
'hex'
);
rsaSign.update(rsaPubPem);
let rsaSignature = rsaSign.sign(rsaKeyPem, 'hex');
assert.strictEqual(rsaSignature, expectedSignature);
rsaVerify.update(rsaPubPem);
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
// Test RSA PKCS#8 key signing/verification
rsaSign = crypto.createSign('SHA1');
rsaSign.update(rsaPubPem);
rsaSignature = rsaSign.sign(rsaPkcs8KeyPem, 'hex');
assert.strictEqual(rsaSignature, expectedSignature);
rsaVerify = crypto.createVerify('SHA1');
rsaVerify.update(rsaPubPem);
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
// Test RSA key signing/verification with encrypted key
rsaSign = crypto.createSign('SHA1');
rsaSign.update(rsaPubPem);
const signOptions = { key: rsaKeyPemEncrypted, passphrase: 'password' };
rsaSignature = rsaSign.sign(signOptions, 'hex');
assert.strictEqual(rsaSignature, expectedSignature);
rsaVerify = crypto.createVerify('SHA1');
rsaVerify.update(rsaPubPem);
assert.strictEqual(rsaVerify.verify(rsaPubPem, rsaSignature, 'hex'), true);
rsaSign = crypto.createSign('SHA1');
rsaSign.update(rsaPubPem);
assert.throws(() => {
const signOptions = { key: rsaKeyPemEncrypted, passphrase: 'wrong' };
rsaSign.sign(signOptions, 'hex');
}, decryptPrivateKeyError);
//
// Test RSA signing and verification
//
{
const privateKey = fixtures.readKey('rsa_private_b.pem');
const publicKey = fixtures.readKey('rsa_public_b.pem');
const input = 'I AM THE WALRUS';
const signature = fixtures.readKey(
'I_AM_THE_WALRUS_sha256_signature_signedby_rsa_private_b.sha256',
'hex'
);
const sign = crypto.createSign('SHA256');
sign.update(input);
const output = sign.sign(privateKey, 'hex');
assert.strictEqual(output, signature);
const verify = crypto.createVerify('SHA256');
verify.update(input);
assert.strictEqual(verify.verify(publicKey, signature, 'hex'), true);
// Test the legacy signature algorithm name.
const sign2 = crypto.createSign('RSA-SHA256');
sign2.update(input);
const output2 = sign2.sign(privateKey, 'hex');
assert.strictEqual(output2, signature);
const verify2 = crypto.createVerify('SHA256');
verify2.update(input);
assert.strictEqual(verify2.verify(publicKey, signature, 'hex'), true);
}
//
// Test DSA signing and verification
//
{
const input = 'I AM THE WALRUS';
// DSA signatures vary across runs so there is no static string to verify
// against.
const sign = crypto.createSign('SHA1');
sign.update(input);
const signature = sign.sign(dsaKeyPem, 'hex');
const verify = crypto.createVerify('SHA1');
verify.update(input);
assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
// Test the legacy 'DSS1' name.
const sign2 = crypto.createSign('DSS1');
sign2.update(input);
const signature2 = sign2.sign(dsaKeyPem, 'hex');
const verify2 = crypto.createVerify('DSS1');
verify2.update(input);
assert.strictEqual(verify2.verify(dsaPubPem, signature2, 'hex'), true);
}
//
// Test DSA signing and verification with PKCS#8 private key
//
{
const input = 'I AM THE WALRUS';
// DSA signatures vary across runs so there is no static string to verify
// against.
const sign = crypto.createSign('SHA1');
sign.update(input);
const signature = sign.sign(dsaPkcs8KeyPem, 'hex');
const verify = crypto.createVerify('SHA1');
verify.update(input);
assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
}
//
// Test DSA signing and verification with encrypted key
//
const input = 'I AM THE WALRUS';
{
const sign = crypto.createSign('SHA1');
sign.update(input);
assert.throws(() => {
sign.sign({ key: dsaKeyPemEncrypted, passphrase: 'wrong' }, 'hex');
}, decryptPrivateKeyError);
}
{
// DSA signatures vary across runs so there is no static string to verify
// against.
const sign = crypto.createSign('SHA1');
sign.update(input);
const signOptions = { key: dsaKeyPemEncrypted, passphrase: 'password' };
const signature = sign.sign(signOptions, 'hex');
const verify = crypto.createVerify('SHA1');
verify.update(input);
assert.strictEqual(verify.verify(dsaPubPem, signature, 'hex'), true);
}