# Buffer > Stability: 2 - Stable In Node.js, `Buffer` objects are used to represent binary data in the form of a sequence of bytes. Many Node.js APIs, for example streams and file system operations, support `Buffer`s, as interactions with the operating system or other processes generally always happen in terms of binary data. The `Buffer` class is a subclass of the [`Uint8Array`][] class that is built into the JavaScript language. A number of additional methods are supported that cover additional use cases. Node.js APIs accept plain [`Uint8Array`][]s wherever `Buffer`s are supported as well. Instances of `Buffer`, and instances of [`Uint8Array`][] in general, are similar to arrays of integers from `0` to `255`, but correspond to fixed-sized blocks of memory and cannot contain any other values. The size of a `Buffer` is established when it is created and cannot be changed. The `Buffer` class is within the global scope, making it unlikely that one would need to ever use `require('buffer').Buffer`. ```js // Creates a zero-filled Buffer of length 10. const buf1 = Buffer.alloc(10); // Creates a Buffer of length 10, // filled with bytes which all have the value `1`. const buf2 = Buffer.alloc(10, 1); // Creates an uninitialized buffer of length 10. // This is faster than calling Buffer.alloc() but the returned // Buffer instance might contain old data that needs to be // overwritten using fill(), write(), or other functions that fill the Buffer's // contents. const buf3 = Buffer.allocUnsafe(10); // Creates a Buffer containing the bytes [1, 2, 3]. const buf4 = Buffer.from([1, 2, 3]); // Creates a Buffer containing the bytes [1, 1, 1, 1] – the entries // are all truncated using `(value & 255)` to fit into the range 0–255. const buf5 = Buffer.from([257, 257.5, -255, '1']); // Creates a Buffer containing the UTF-8-encoded bytes for the string 'tést': // [0x74, 0xc3, 0xa9, 0x73, 0x74] (in hexadecimal notation) // [116, 195, 169, 115, 116] (in decimal notation) const buf6 = Buffer.from('tést'); // Creates a Buffer containing the Latin-1 bytes [0x74, 0xe9, 0x73, 0x74]. const buf7 = Buffer.from('tést', 'latin1'); ``` ## Buffers and Character Encodings When converting between `Buffer`s and strings, a character encoding may be specified. If no character encoding is specified, UTF-8 will be used as the default. ```js const buf = Buffer.from('hello world', 'utf8'); console.log(buf.toString('hex')); // Prints: 68656c6c6f20776f726c64 console.log(buf.toString('base64')); // Prints: aGVsbG8gd29ybGQ= console.log(Buffer.from('fhqwhgads', 'utf8')); // Prints: console.log(Buffer.from('fhqwhgads', 'utf16le')); // Prints: ``` The character encodings currently supported by Node.js are the following: * `'utf8'`: Multi-byte encoded Unicode characters. Many web pages and other document formats use [UTF-8][]. This is the default character encoding. When decoding a `Buffer` into a string that does not exclusively contain valid UTF-8 data, the Unicode replacement character `U+FFFD` � will be used to represent those errors. * `'utf16le'`: Multi-byte encoded Unicode characters. Unlike `'utf8'`, each character in the string will be encoded using either 2 or 4 bytes. Node.js only supports the [little-endian][endianness] variant of [UTF-16][]. * `'latin1'`: Latin-1 stands for [ISO-8859-1][]. This character encoding only supports the Unicode characters from `U+0000` to `U+00FF`. Each character is encoded using a single byte. Characters that do not fit into that range are truncated and will be mapped to characters in that range. Converting a `Buffer` into a string using one of the above is referred to as decoding, and converting a string into a `Buffer` is referred to as encoding. Node.js also supports the following two binary-to-text encodings. For binary-to-text encodings, the naming convention is reversed: Converting a `Buffer` into a string is typically referred to as encoding, and converting a string into a `Buffer` as decoding. * `'base64'`: [Base64][] encoding. When creating a `Buffer` from a string, this encoding will also correctly accept "URL and Filename Safe Alphabet" as specified in [RFC 4648, Section 5][]. * `'hex'`: Encode each byte as two hexadecimal characters. Data truncation may occur when decoding string that do exclusively contain valid hexadecimal characters. See below for an example. The following legacy character encodings are also supported: * `'ascii'`: For 7-bit [ASCII][] data only. When encoding a string into a `Buffer`, this is equivalent to using `'latin1'`. When decoding a `Buffer` into a string, using encoding this will additionally unset the highest bit of each byte before decoding as `'latin1'`. Generally, there should be no reason to use this encoding, as `'utf8'` (or, if the data is known to always be ASCII-only, `'latin1'`) will be a better choice when encoding or decoding ASCII-only text. It is only provided for legacy compatibility. * `'binary'`: Alias for `'latin1'`. See [binary strings][] for more background on this topic. The name of this encoding can be very misleading, as all of the encodings listed here convert between strings and binary data. For converting between strings and `Buffer`s, typically `'utf-8'` is the right choice. * `'ucs2'`: Alias of `'utf16le'`. UCS-2 used to refer to a variant of UTF-16 that did not support characters that had code points larger than U+FFFF. In Node.js, these code points are always supported. ```js Buffer.from('1ag', 'hex'); // Prints , data truncated when first non-hexadecimal value // ('g') encountered. Buffer.from('1a7g', 'hex'); // Prints , data truncated when data ends in single digit ('7'). Buffer.from('1634', 'hex'); // Prints , all data represented. ``` Modern Web browsers follow the [WHATWG Encoding Standard][] which aliases both `'latin1'` and `'ISO-8859-1'` to `'win-1252'`. This means that while doing something like `http.get()`, if the returned charset is one of those listed in the WHATWG specification it is possible that the server actually returned `'win-1252'`-encoded data, and using `'latin1'` encoding may incorrectly decode the characters. ## Buffers and TypedArrays `Buffer` instances are also [`Uint8Array`][] instances, which is the language’s built-in class for working with binary data. [`Uint8Array`][] in turn is a subclass of [`TypedArray`][]. Therefore, all [`TypedArray`][] methods are also available on `Buffer`s. However, there are subtle incompatibilities between the `Buffer` API and the [`TypedArray`][] API. In particular: * While [`TypedArray#slice()`][] creates a copy of part of the `TypedArray`, [`Buffer#slice()`][`buf.slice()`] creates a view over the existing `Buffer` without copying. This behavior can be surprising, and only exists for legacy compatibility. [`TypedArray#subarray()`][] can be used to achieve the behavior of [`Buffer#slice()`][`buf.slice()`] on both `Buffer`s and other `TypedArray`s. * [`buf.toString()`][] is incompatible with its `TypedArray` equivalent. * A number of methods, e.g. [`buf.indexOf()`][], support additional arguments. There are two ways to create new [`TypedArray`][] instances from a `Buffer`. When passing a `Buffer` to a [`TypedArray`][] constructor, the `Buffer`’s elements will be copied, interpreted as an array of integers, and not as a byte array of the target type. For example, `new Uint32Array(Buffer.from([1, 2, 3, 4]))` creates a 4-element [`Uint32Array`][] with elements `[1, 2, 3, 4]`, rather than a [`Uint32Array`][] with a single element `[0x1020304]` or `[0x4030201]`. In order to create a [`TypedArray`][] that shares its memory with the `Buffer`, the underlying [`ArrayBuffer`][] can be passed to the [`TypedArray`][] constructor instead: ```js const buf = Buffer.from('hello', 'utf16le'); const uint16arr = new Uint16Array( buf.buffer, buf.byteOffset, buf.length / Uint16Array.BYTES_PER_ELEMENT); ``` It is also possible to create a new `Buffer` that shares the same allocated memory as a [`TypedArray`][] instance by using the `TypedArray` object’s `.buffer` property in the same way. [`Buffer.from()`][`Buffer.from(arrayBuf)`] behaves like `new Uint8Array()` in this context. ```js const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; // Copies the contents of `arr`. const buf1 = Buffer.from(arr); // Shares memory with `arr`. const buf2 = Buffer.from(arr.buffer); console.log(buf1); // Prints: console.log(buf2); // Prints: arr[1] = 6000; console.log(buf1); // Prints: console.log(buf2); // Prints: ``` When creating a `Buffer` using a [`TypedArray`][]'s `.buffer`, it is possible to use only a portion of the underlying [`ArrayBuffer`][] by passing in `byteOffset` and `length` parameters. ```js const arr = new Uint16Array(20); const buf = Buffer.from(arr.buffer, 0, 16); console.log(buf.length); // Prints: 16 ``` The `Buffer.from()` and [`TypedArray.from()`][] have different signatures and implementations. Specifically, the [`TypedArray`][] variants accept a second argument that is a mapping function that is invoked on every element of the typed array: * `TypedArray.from(source[, mapFn[, thisArg]])` The `Buffer.from()` method, however, does not support the use of a mapping function: * [`Buffer.from(array)`][] * [`Buffer.from(buffer)`][] * [`Buffer.from(arrayBuffer[, byteOffset[, length]])`][`Buffer.from(arrayBuf)`] * [`Buffer.from(string[, encoding])`][`Buffer.from(string)`] ## Buffers and iteration `Buffer` instances can be iterated over using `for..of` syntax: ```js const buf = Buffer.from([1, 2, 3]); for (const b of buf) { console.log(b); } // Prints: // 1 // 2 // 3 ``` Additionally, the [`buf.values()`][], [`buf.keys()`][], and [`buf.entries()`][] methods can be used to create iterators. ## Class: `Buffer` The `Buffer` class is a global type for dealing with binary data directly. It can be constructed in a variety of ways. ### Class Method: `Buffer.alloc(size[, fill[, encoding]])` * `size` {integer} The desired length of the new `Buffer`. * `fill` {string|Buffer|Uint8Array|integer} A value to pre-fill the new `Buffer` with. **Default:** `0`. * `encoding` {string} If `fill` is a string, this is its encoding. **Default:** `'utf8'`. Allocates a new `Buffer` of `size` bytes. If `fill` is `undefined`, the `Buffer` will be zero-filled. ```js const buf = Buffer.alloc(5); console.log(buf); // Prints: ``` If `size` is larger than [`buffer.constants.MAX_LENGTH`][] or smaller than 0, [`ERR_INVALID_OPT_VALUE`][] is thrown. If `fill` is specified, the allocated `Buffer` will be initialized by calling [`buf.fill(fill)`][`buf.fill()`]. ```js const buf = Buffer.alloc(5, 'a'); console.log(buf); // Prints: ``` If both `fill` and `encoding` are specified, the allocated `Buffer` will be initialized by calling [`buf.fill(fill, encoding)`][`buf.fill()`]. ```js const buf = Buffer.alloc(11, 'aGVsbG8gd29ybGQ=', 'base64'); console.log(buf); // Prints: ``` Calling [`Buffer.alloc()`][] can be measurably slower than the alternative [`Buffer.allocUnsafe()`][] but ensures that the newly created `Buffer` instance contents will never contain sensitive data from previous allocations, including data that might not have been allocated for `Buffer`s. A `TypeError` will be thrown if `size` is not a number. ### Class Method: `Buffer.allocUnsafe(size)` * `size` {integer} The desired length of the new `Buffer`. Allocates a new `Buffer` of `size` bytes. If `size` is larger than [`buffer.constants.MAX_LENGTH`][] or smaller than 0, [`ERR_INVALID_OPT_VALUE`][] is thrown. The underlying memory for `Buffer` instances created in this way is *not initialized*. The contents of the newly created `Buffer` are unknown and *may contain sensitive data*. Use [`Buffer.alloc()`][] instead to initialize `Buffer` instances with zeroes. ```js const buf = Buffer.allocUnsafe(10); console.log(buf); // Prints (contents may vary): buf.fill(0); console.log(buf); // Prints: ``` A `TypeError` will be thrown if `size` is not a number. The `Buffer` module pre-allocates an internal `Buffer` instance of size [`Buffer.poolSize`][] that is used as a pool for the fast allocation of new `Buffer` instances created using [`Buffer.allocUnsafe()`][], [`Buffer.from(array)`][], and the deprecated `new Buffer(size)` constructor only when `size` is less than or equal to `Buffer.poolSize >> 1` (floor of [`Buffer.poolSize`][] divided by two). Use of this pre-allocated internal memory pool is a key difference between calling `Buffer.alloc(size, fill)` vs. `Buffer.allocUnsafe(size).fill(fill)`. Specifically, `Buffer.alloc(size, fill)` will *never* use the internal `Buffer` pool, while `Buffer.allocUnsafe(size).fill(fill)` *will* use the internal `Buffer` pool if `size` is less than or equal to half [`Buffer.poolSize`][]. The difference is subtle but can be important when an application requires the additional performance that [`Buffer.allocUnsafe()`][] provides. ### Class Method: `Buffer.allocUnsafeSlow(size)` * `size` {integer} The desired length of the new `Buffer`. Allocates a new `Buffer` of `size` bytes. If `size` is larger than [`buffer.constants.MAX_LENGTH`][] or smaller than 0, [`ERR_INVALID_OPT_VALUE`][] is thrown. A zero-length `Buffer` is created if `size` is 0. The underlying memory for `Buffer` instances created in this way is *not initialized*. The contents of the newly created `Buffer` are unknown and *may contain sensitive data*. Use [`buf.fill(0)`][`buf.fill()`] to initialize such `Buffer` instances with zeroes. When using [`Buffer.allocUnsafe()`][] to allocate new `Buffer` instances, allocations under 4KB are sliced from a single pre-allocated `Buffer`. This allows applications to avoid the garbage collection overhead of creating many individually allocated `Buffer` instances. This approach improves both performance and memory usage by eliminating the need to track and clean up as many individual `ArrayBuffer` objects. However, in the case where a developer may need to retain a small chunk of memory from a pool for an indeterminate amount of time, it may be appropriate to create an un-pooled `Buffer` instance using `Buffer.allocUnsafeSlow()` and then copying out the relevant bits. ```js // Need to keep around a few small chunks of memory. const store = []; socket.on('readable', () => { let data; while (null !== (data = readable.read())) { // Allocate for retained data. const sb = Buffer.allocUnsafeSlow(10); // Copy the data into the new allocation. data.copy(sb, 0, 0, 10); store.push(sb); } }); ``` A `TypeError` will be thrown if `size` is not a number. ### Class Method: `Buffer.byteLength(string[, encoding])` * `string` {string|Buffer|TypedArray|DataView|ArrayBuffer|SharedArrayBuffer} A value to calculate the length of. * `encoding` {string} If `string` is a string, this is its encoding. **Default:** `'utf8'`. * Returns: {integer} The number of bytes contained within `string`. Returns the byte length of a string when encoded using `encoding`. This is not the same as [`String.prototype.length`][], which does not account for the encoding that is used to convert the string into bytes. For `'base64'` and `'hex'`, this function assumes valid input. For strings that contain non-base64/hex-encoded data (e.g. whitespace), the return value might be greater than the length of a `Buffer` created from the string. ```js const str = '\u00bd + \u00bc = \u00be'; console.log(`${str}: ${str.length} characters, ` + `${Buffer.byteLength(str, 'utf8')} bytes`); // Prints: ½ + ¼ = ¾: 9 characters, 12 bytes ``` When `string` is a `Buffer`/[`DataView`][]/[`TypedArray`][]/[`ArrayBuffer`][]/ [`SharedArrayBuffer`][], the byte length as reported by `.byteLength` is returned. ### Class Method: `Buffer.compare(buf1, buf2)` * `buf1` {Buffer|Uint8Array} * `buf2` {Buffer|Uint8Array} * Returns: {integer} Either `-1`, `0`, or `1`, depending on the result of the comparison. See [`buf.compare()`][] for details. Compares `buf1` to `buf2`, typically for the purpose of sorting arrays of `Buffer` instances. This is equivalent to calling [`buf1.compare(buf2)`][`buf.compare()`]. ```js const buf1 = Buffer.from('1234'); const buf2 = Buffer.from('0123'); const arr = [buf1, buf2]; console.log(arr.sort(Buffer.compare)); // Prints: [ , ] // (This result is equal to: [buf2, buf1].) ``` ### Class Method: `Buffer.concat(list[, totalLength])` * `list` {Buffer[] | Uint8Array[]} List of `Buffer` or [`Uint8Array`][] instances to concatenate. * `totalLength` {integer} Total length of the `Buffer` instances in `list` when concatenated. * Returns: {Buffer} Returns a new `Buffer` which is the result of concatenating all the `Buffer` instances in the `list` together. If the list has no items, or if the `totalLength` is 0, then a new zero-length `Buffer` is returned. If `totalLength` is not provided, it is calculated from the `Buffer` instances in `list` by adding their lengths. If `totalLength` is provided, it is coerced to an unsigned integer. If the combined length of the `Buffer`s in `list` exceeds `totalLength`, the result is truncated to `totalLength`. ```js // Create a single `Buffer` from a list of three `Buffer` instances. const buf1 = Buffer.alloc(10); const buf2 = Buffer.alloc(14); const buf3 = Buffer.alloc(18); const totalLength = buf1.length + buf2.length + buf3.length; console.log(totalLength); // Prints: 42 const bufA = Buffer.concat([buf1, buf2, buf3], totalLength); console.log(bufA); // Prints: console.log(bufA.length); // Prints: 42 ``` ### Class Method: `Buffer.from(array)` * `array` {integer[]} Allocates a new `Buffer` using an `array` of bytes in the range `0` – `255`. Array entries outside that range will be truncated to fit into it. ```js // Creates a new Buffer containing the UTF-8 bytes of the string 'buffer'. const buf = Buffer.from([0x62, 0x75, 0x66, 0x66, 0x65, 0x72]); ``` A `TypeError` will be thrown if `array` is not an `Array` or another type appropriate for `Buffer.from()` variants. `Buffer.from(array)` and [`Buffer.from(string)`][] may also use the internal `Buffer` pool like [`Buffer.allocUnsafe()`][] does. ### Class Method: `Buffer.from(arrayBuffer[, byteOffset[, length]])` * `arrayBuffer` {ArrayBuffer|SharedArrayBuffer} An [`ArrayBuffer`][], [`SharedArrayBuffer`][], for example the `.buffer` property of a [`TypedArray`][]. * `byteOffset` {integer} Index of first byte to expose. **Default:** `0`. * `length` {integer} Number of bytes to expose. **Default:** `arrayBuffer.byteLength - byteOffset`. This creates a view of the [`ArrayBuffer`][] without copying the underlying memory. For example, when passed a reference to the `.buffer` property of a [`TypedArray`][] instance, the newly created `Buffer` will share the same allocated memory as the [`TypedArray`][]. ```js const arr = new Uint16Array(2); arr[0] = 5000; arr[1] = 4000; // Shares memory with `arr`. const buf = Buffer.from(arr.buffer); console.log(buf); // Prints: // Changing the original Uint16Array changes the Buffer also. arr[1] = 6000; console.log(buf); // Prints: ``` The optional `byteOffset` and `length` arguments specify a memory range within the `arrayBuffer` that will be shared by the `Buffer`. ```js const ab = new ArrayBuffer(10); const buf = Buffer.from(ab, 0, 2); console.log(buf.length); // Prints: 2 ``` A `TypeError` will be thrown if `arrayBuffer` is not an [`ArrayBuffer`][] or a [`SharedArrayBuffer`][] or another type appropriate for `Buffer.from()` variants. ### Class Method: `Buffer.from(buffer)` * `buffer` {Buffer|Uint8Array} An existing `Buffer` or [`Uint8Array`][] from which to copy data. Copies the passed `buffer` data onto a new `Buffer` instance. ```js const buf1 = Buffer.from('buffer'); const buf2 = Buffer.from(buf1); buf1[0] = 0x61; console.log(buf1.toString()); // Prints: auffer console.log(buf2.toString()); // Prints: buffer ``` A `TypeError` will be thrown if `buffer` is not a `Buffer` or another type appropriate for `Buffer.from()` variants. ### Class Method: `Buffer.from(object[, offsetOrEncoding[, length]])` * `object` {Object} An object supporting `Symbol.toPrimitive` or `valueOf()`. * `offsetOrEncoding` {integer|string} A byte-offset or encoding. * `length` {integer} A length. For objects whose `valueOf()` function returns a value not strictly equal to `object`, returns `Buffer.from(object.valueOf(), offsetOrEncoding, length)`. ```js const buf = Buffer.from(new String('this is a test')); // Prints: ``` For objects that support `Symbol.toPrimitive`, returns `Buffer.from(object[Symbol.toPrimitive]('string'), offsetOrEncoding)`. ```js class Foo { [Symbol.toPrimitive]() { return 'this is a test'; } } const buf = Buffer.from(new Foo(), 'utf8'); // Prints: ``` A `TypeError` will be thrown if `object` does not have the mentioned methods or is not of another type appropriate for `Buffer.from()` variants. ### Class Method: `Buffer.from(string[, encoding])` * `string` {string} A string to encode. * `encoding` {string} The encoding of `string`. **Default:** `'utf8'`. Creates a new `Buffer` containing `string`. The `encoding` parameter identifies the character encoding to be used when converting `string` into bytes. ```js const buf1 = Buffer.from('this is a tést'); const buf2 = Buffer.from('7468697320697320612074c3a97374', 'hex'); console.log(buf1.toString()); // Prints: this is a tést console.log(buf2.toString()); // Prints: this is a tést console.log(buf1.toString('latin1')); // Prints: this is a tést ``` A `TypeError` will be thrown if `string` is not a string or another type appropriate for `Buffer.from()` variants. ### Class Method: `Buffer.isBuffer(obj)` * `obj` {Object} * Returns: {boolean} Returns `true` if `obj` is a `Buffer`, `false` otherwise. ### Class Method: `Buffer.isEncoding(encoding)` * `encoding` {string} A character encoding name to check. * Returns: {boolean} Returns `true` if `encoding` is the name of a supported character encoding, or `false` otherwise. ```js console.log(Buffer.isEncoding('utf-8')); // Prints: true console.log(Buffer.isEncoding('hex')); // Prints: true console.log(Buffer.isEncoding('utf/8')); // Prints: false console.log(Buffer.isEncoding('')); // Prints: false ``` ### Class Property: `Buffer.poolSize` * {integer} **Default:** `8192` This is the size (in bytes) of pre-allocated internal `Buffer` instances used for pooling. This value may be modified. ### `buf[index]` * `index` {integer} The index operator `[index]` can be used to get and set the octet at position `index` in `buf`. The values refer to individual bytes, so the legal value range is between `0x00` and `0xFF` (hex) or `0` and `255` (decimal). This operator is inherited from `Uint8Array`, so its behavior on out-of-bounds access is the same as `Uint8Array`. In other words, `buf[index]` returns `undefined` when `index` is negative or `>= buf.length`, and `buf[index] = value` does not modify the buffer if `index` is negative or `>= buf.length`. ```js // Copy an ASCII string into a `Buffer` one byte at a time. // (This only works for ASCII-only strings. In general, one should use // `Buffer.from()` to perform this conversion.) const str = 'Node.js'; const buf = Buffer.allocUnsafe(str.length); for (let i = 0; i < str.length; i++) { buf[i] = str.charCodeAt(i); } console.log(buf.toString('utf8')); // Prints: Node.js ``` ### `buf.buffer` * {ArrayBuffer} The underlying `ArrayBuffer` object based on which this `Buffer` object is created. This `ArrayBuffer` is not guaranteed to correspond exactly to the original `Buffer`. See the notes on `buf.byteOffset` for details. ```js const arrayBuffer = new ArrayBuffer(16); const buffer = Buffer.from(arrayBuffer); console.log(buffer.buffer === arrayBuffer); // Prints: true ``` ### `buf.byteOffset` * {integer} The `byteOffset` on the underlying `ArrayBuffer` object based on which this `Buffer` object is created. When setting `byteOffset` in `Buffer.from(ArrayBuffer, byteOffset, length)`, or sometimes when allocating a buffer smaller than `Buffer.poolSize`, the buffer doesn't start from a zero offset on the underlying `ArrayBuffer`. This can cause problems when accessing the underlying `ArrayBuffer` directly using `buf.buffer`, as other parts of the `ArrayBuffer` may be unrelated to the `buf` object itself. A common issue when creating a `TypedArray` object that shares its memory with a `Buffer` is that in this case one needs to specify the `byteOffset` correctly: ```js // Create a buffer smaller than `Buffer.poolSize`. const nodeBuffer = new Buffer.from([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]); // When casting the Node.js Buffer to an Int8Array, use the byteOffset // to refer only to the part of `nodeBuffer.buffer` that contains the memory // for `nodeBuffer`. new Int8Array(nodeBuffer.buffer, nodeBuffer.byteOffset, nodeBuffer.length); ``` ### `buf.compare(target[, targetStart[, targetEnd[, sourceStart[, sourceEnd]]]])` * `target` {Buffer|Uint8Array} A `Buffer` or [`Uint8Array`][] with which to compare `buf`. * `targetStart` {integer} The offset within `target` at which to begin comparison. **Default:** `0`. * `targetEnd` {integer} The offset within `target` at which to end comparison (not inclusive). **Default:** `target.length`. * `sourceStart` {integer} The offset within `buf` at which to begin comparison. **Default:** `0`. * `sourceEnd` {integer} The offset within `buf` at which to end comparison (not inclusive). **Default:** [`buf.length`][]. * Returns: {integer} Compares `buf` with `target` and returns a number indicating whether `buf` comes before, after, or is the same as `target` in sort order. Comparison is based on the actual sequence of bytes in each `Buffer`. * `0` is returned if `target` is the same as `buf` * `1` is returned if `target` should come *before* `buf` when sorted. * `-1` is returned if `target` should come *after* `buf` when sorted. ```js const buf1 = Buffer.from('ABC'); const buf2 = Buffer.from('BCD'); const buf3 = Buffer.from('ABCD'); console.log(buf1.compare(buf1)); // Prints: 0 console.log(buf1.compare(buf2)); // Prints: -1 console.log(buf1.compare(buf3)); // Prints: -1 console.log(buf2.compare(buf1)); // Prints: 1 console.log(buf2.compare(buf3)); // Prints: 1 console.log([buf1, buf2, buf3].sort(Buffer.compare)); // Prints: [ , , ] // (This result is equal to: [buf1, buf3, buf2].) ``` The optional `targetStart`, `targetEnd`, `sourceStart`, and `sourceEnd` arguments can be used to limit the comparison to specific ranges within `target` and `buf` respectively. ```js const buf1 = Buffer.from([1, 2, 3, 4, 5, 6, 7, 8, 9]); const buf2 = Buffer.from([5, 6, 7, 8, 9, 1, 2, 3, 4]); console.log(buf1.compare(buf2, 5, 9, 0, 4)); // Prints: 0 console.log(buf1.compare(buf2, 0, 6, 4)); // Prints: -1 console.log(buf1.compare(buf2, 5, 6, 5)); // Prints: 1 ``` [`ERR_OUT_OF_RANGE`][] is thrown if `targetStart < 0`, `sourceStart < 0`, `targetEnd > target.byteLength`, or `sourceEnd > source.byteLength`. ### `buf.copy(target[, targetStart[, sourceStart[, sourceEnd]]])` * `target` {Buffer|Uint8Array} A `Buffer` or [`Uint8Array`][] to copy into. * `targetStart` {integer} The offset within `target` at which to begin writing. **Default:** `0`. * `sourceStart` {integer} The offset within `buf` from which to begin copying. **Default:** `0`. * `sourceEnd` {integer} The offset within `buf` at which to stop copying (not inclusive). **Default:** [`buf.length`][]. * Returns: {integer} The number of bytes copied. Copies data from a region of `buf` to a region in `target`, even if the `target` memory region overlaps with `buf`. [`TypedArray#set()`][] performs the same operation, and is available for all TypedArrays, including Node.js `Buffer`s, although it takes different function arguments. ```js // Create two `Buffer` instances. const buf1 = Buffer.allocUnsafe(26); const buf2 = Buffer.allocUnsafe(26).fill('!'); for (let i = 0; i < 26; i++) { // 97 is the decimal ASCII value for 'a'. buf1[i] = i + 97; } // Copy `buf1` bytes 16 through 19 into `buf2` starting at byte 8 of `buf2`. buf1.copy(buf2, 8, 16, 20); // This is equivalent to: // buf2.set(buf1.subarray(16, 20), 8); console.log(buf2.toString('ascii', 0, 25)); // Prints: !!!!!!!!qrst!!!!!!!!!!!!! ``` ```js // Create a `Buffer` and copy data from one region to an overlapping region // within the same `Buffer`. const buf = Buffer.allocUnsafe(26); for (let i = 0; i < 26; i++) { // 97 is the decimal ASCII value for 'a'. buf[i] = i + 97; } buf.copy(buf, 0, 4, 10); console.log(buf.toString()); // Prints: efghijghijklmnopqrstuvwxyz ``` ### `buf.entries()` * Returns: {Iterator} Creates and returns an [iterator][] of `[index, byte]` pairs from the contents of `buf`. ```js // Log the entire contents of a `Buffer`. const buf = Buffer.from('buffer'); for (const pair of buf.entries()) { console.log(pair); } // Prints: // [0, 98] // [1, 117] // [2, 102] // [3, 102] // [4, 101] // [5, 114] ``` ### `buf.equals(otherBuffer)` * `otherBuffer` {Buffer|Uint8Array} A `Buffer` or [`Uint8Array`][] with which to compare `buf`. * Returns: {boolean} Returns `true` if both `buf` and `otherBuffer` have exactly the same bytes, `false` otherwise. Equivalent to [`buf.compare(otherBuffer) === 0`][`buf.compare()`]. ```js const buf1 = Buffer.from('ABC'); const buf2 = Buffer.from('414243', 'hex'); const buf3 = Buffer.from('ABCD'); console.log(buf1.equals(buf2)); // Prints: true console.log(buf1.equals(buf3)); // Prints: false ``` ### `buf.fill(value[, offset[, end]][, encoding])` * `value` {string|Buffer|Uint8Array|integer} The value with which to fill `buf`. * `offset` {integer} Number of bytes to skip before starting to fill `buf`. **Default:** `0`. * `end` {integer} Where to stop filling `buf` (not inclusive). **Default:** [`buf.length`][]. * `encoding` {string} The encoding for `value` if `value` is a string. **Default:** `'utf8'`. * Returns: {Buffer} A reference to `buf`. Fills `buf` with the specified `value`. If the `offset` and `end` are not given, the entire `buf` will be filled: ```js // Fill a `Buffer` with the ASCII character 'h'. const b = Buffer.allocUnsafe(50).fill('h'); console.log(b.toString()); // Prints: hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh ``` `value` is coerced to a `uint32` value if it is not a string, `Buffer`, or integer. If the resulting integer is greater than `255` (decimal), `buf` will be filled with `value & 255`. If the final write of a `fill()` operation falls on a multi-byte character, then only the bytes of that character that fit into `buf` are written: ```js // Fill a `Buffer` with character that takes up two bytes in UTF-8. console.log(Buffer.allocUnsafe(5).fill('\u0222')); // Prints: ``` If `value` contains invalid characters, it is truncated; if no valid fill data remains, an exception is thrown: ```js const buf = Buffer.allocUnsafe(5); console.log(buf.fill('a')); // Prints: console.log(buf.fill('aazz', 'hex')); // Prints: console.log(buf.fill('zz', 'hex')); // Throws an exception. ``` ### `buf.includes(value[, byteOffset][, encoding])` * `value` {string|Buffer|Uint8Array|integer} What to search for. * `byteOffset` {integer} Where to begin searching in `buf`. If negative, then offset is calculated from the end of `buf`. **Default:** `0`. * `encoding` {string} If `value` is a string, this is its encoding. **Default:** `'utf8'`. * Returns: {boolean} `true` if `value` was found in `buf`, `false` otherwise. Equivalent to [`buf.indexOf() !== -1`][`buf.indexOf()`]. ```js const buf = Buffer.from('this is a buffer'); console.log(buf.includes('this')); // Prints: true console.log(buf.includes('is')); // Prints: true console.log(buf.includes(Buffer.from('a buffer'))); // Prints: true console.log(buf.includes(97)); // Prints: true (97 is the decimal ASCII value for 'a') console.log(buf.includes(Buffer.from('a buffer example'))); // Prints: false console.log(buf.includes(Buffer.from('a buffer example').slice(0, 8))); // Prints: true console.log(buf.includes('this', 4)); // Prints: false ``` ### `buf.indexOf(value[, byteOffset][, encoding])` * `value` {string|Buffer|Uint8Array|integer} What to search for. * `byteOffset` {integer} Where to begin searching in `buf`. If negative, then offset is calculated from the end of `buf`. **Default:** `0`. * `encoding` {string} If `value` is a string, this is the encoding used to determine the binary representation of the string that will be searched for in `buf`. **Default:** `'utf8'`. * Returns: {integer} The index of the first occurrence of `value` in `buf`, or `-1` if `buf` does not contain `value`. If `value` is: * a string, `value` is interpreted according to the character encoding in `encoding`. * a `Buffer` or [`Uint8Array`][], `value` will be used in its entirety. To compare a partial `Buffer`, use [`buf.slice()`][]. * a number, `value` will be interpreted as an unsigned 8-bit integer value between `0` and `255`. ```js const buf = Buffer.from('this is a buffer'); console.log(buf.indexOf('this')); // Prints: 0 console.log(buf.indexOf('is')); // Prints: 2 console.log(buf.indexOf(Buffer.from('a buffer'))); // Prints: 8 console.log(buf.indexOf(97)); // Prints: 8 (97 is the decimal ASCII value for 'a') console.log(buf.indexOf(Buffer.from('a buffer example'))); // Prints: -1 console.log(buf.indexOf(Buffer.from('a buffer example').slice(0, 8))); // Prints: 8 const utf16Buffer = Buffer.from('\u039a\u0391\u03a3\u03a3\u0395', 'utf16le'); console.log(utf16Buffer.indexOf('\u03a3', 0, 'utf16le')); // Prints: 4 console.log(utf16Buffer.indexOf('\u03a3', -4, 'utf16le')); // Prints: 6 ``` If `value` is not a string, number, or `Buffer`, this method will throw a `TypeError`. If `value` is a number, it will be coerced to a valid byte value, an integer between 0 and 255. If `byteOffset` is not a number, it will be coerced to a number. If the result of coercion is `NaN` or `0`, then the entire buffer will be searched. This behavior matches [`String#indexOf()`][]. ```js const b = Buffer.from('abcdef'); // Passing a value that's a number, but not a valid byte. // Prints: 2, equivalent to searching for 99 or 'c'. console.log(b.indexOf(99.9)); console.log(b.indexOf(256 + 99)); // Passing a byteOffset that coerces to NaN or 0. // Prints: 1, searching the whole buffer. console.log(b.indexOf('b', undefined)); console.log(b.indexOf('b', {})); console.log(b.indexOf('b', null)); console.log(b.indexOf('b', [])); ``` If `value` is an empty string or empty `Buffer` and `byteOffset` is less than `buf.length`, `byteOffset` will be returned. If `value` is empty and `byteOffset` is at least `buf.length`, `buf.length` will be returned. ### `buf.keys()` * Returns: {Iterator} Creates and returns an [iterator][] of `buf` keys (indices). ```js const buf = Buffer.from('buffer'); for (const key of buf.keys()) { console.log(key); } // Prints: // 0 // 1 // 2 // 3 // 4 // 5 ``` ### `buf.lastIndexOf(value[, byteOffset][, encoding])` * `value` {string|Buffer|Uint8Array|integer} What to search for. * `byteOffset` {integer} Where to begin searching in `buf`. If negative, then offset is calculated from the end of `buf`. **Default:** `buf.length - 1`. * `encoding` {string} If `value` is a string, this is the encoding used to determine the binary representation of the string that will be searched for in `buf`. **Default:** `'utf8'`. * Returns: {integer} The index of the last occurrence of `value` in `buf`, or `-1` if `buf` does not contain `value`. Identical to [`buf.indexOf()`][], except the last occurrence of `value` is found rather than the first occurrence. ```js const buf = Buffer.from('this buffer is a buffer'); console.log(buf.lastIndexOf('this')); // Prints: 0 console.log(buf.lastIndexOf('buffer')); // Prints: 17 console.log(buf.lastIndexOf(Buffer.from('buffer'))); // Prints: 17 console.log(buf.lastIndexOf(97)); // Prints: 15 (97 is the decimal ASCII value for 'a') console.log(buf.lastIndexOf(Buffer.from('yolo'))); // Prints: -1 console.log(buf.lastIndexOf('buffer', 5)); // Prints: 5 console.log(buf.lastIndexOf('buffer', 4)); // Prints: -1 const utf16Buffer = Buffer.from('\u039a\u0391\u03a3\u03a3\u0395', 'utf16le'); console.log(utf16Buffer.lastIndexOf('\u03a3', undefined, 'utf16le')); // Prints: 6 console.log(utf16Buffer.lastIndexOf('\u03a3', -5, 'utf16le')); // Prints: 4 ``` If `value` is not a string, number, or `Buffer`, this method will throw a `TypeError`. If `value` is a number, it will be coerced to a valid byte value, an integer between 0 and 255. If `byteOffset` is not a number, it will be coerced to a number. Any arguments that coerce to `NaN`, like `{}` or `undefined`, will search the whole buffer. This behavior matches [`String#lastIndexOf()`][]. ```js const b = Buffer.from('abcdef'); // Passing a value that's a number, but not a valid byte. // Prints: 2, equivalent to searching for 99 or 'c'. console.log(b.lastIndexOf(99.9)); console.log(b.lastIndexOf(256 + 99)); // Passing a byteOffset that coerces to NaN. // Prints: 1, searching the whole buffer. console.log(b.lastIndexOf('b', undefined)); console.log(b.lastIndexOf('b', {})); // Passing a byteOffset that coerces to 0. // Prints: -1, equivalent to passing 0. console.log(b.lastIndexOf('b', null)); console.log(b.lastIndexOf('b', [])); ``` If `value` is an empty string or empty `Buffer`, `byteOffset` will be returned. ### `buf.length` * {integer} Returns the number of bytes in `buf`. ```js // Create a `Buffer` and write a shorter string to it using UTF-8. const buf = Buffer.alloc(1234); console.log(buf.length); // Prints: 1234 buf.write('some string', 0, 'utf8'); console.log(buf.length); // Prints: 1234 ``` ### `buf.parent` > Stability: 0 - Deprecated: Use [`buf.buffer`][] instead. The `buf.parent` property is a deprecated alias for `buf.buffer`. ### `buf.readBigInt64BE([offset])` ### `buf.readBigInt64LE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy: `0 <= offset <= buf.length - 8`. **Default:** `0`. * Returns: {bigint} Reads a signed 64-bit integer from `buf` at the specified `offset` with the specified [endianness][] (`readBigInt64BE()` reads as big endian, `readBigInt64LE()` reads as little endian). Integers read from a `Buffer` are interpreted as two's complement signed values. ### `buf.readBigUInt64BE([offset])` ### `buf.readBigUInt64LE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy: `0 <= offset <= buf.length - 8`. **Default:** `0`. * Returns: {bigint} Reads an unsigned 64-bit integer from `buf` at the specified `offset` with the specified [endianness][] (`readBigUInt64BE()` reads as big endian, `readBigUInt64LE()` reads as little endian). ```js const buf = Buffer.from([0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff]); console.log(buf.readBigUInt64BE(0)); // Prints: 4294967295n console.log(buf.readBigUInt64LE(0)); // Prints: 18446744069414584320n ``` ### `buf.readDoubleBE([offset])` ### `buf.readDoubleLE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 8`. **Default:** `0`. * Returns: {number} Reads a 64-bit double from `buf` at the specified `offset` with the specified [endianness][] (`readDoubleBE()` reads as big endian, `readDoubleLE()` reads as little endian). ```js const buf = Buffer.from([1, 2, 3, 4, 5, 6, 7, 8]); console.log(buf.readDoubleBE(0)); // Prints: 8.20788039913184e-304 console.log(buf.readDoubleLE(0)); // Prints: 5.447603722011605e-270 console.log(buf.readDoubleLE(1)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readFloatBE([offset])` ### `buf.readFloatLE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 4`. **Default:** `0`. * Returns: {number} Reads a 32-bit float from `buf` at the specified `offset` with the specified [endianness][] (`readFloatBE()` reads as big endian, `readFloatLE()` reads as little endian). ```js const buf = Buffer.from([1, 2, 3, 4]); console.log(buf.readFloatBE(0)); // Prints: 2.387939260590663e-38 console.log(buf.readFloatLE(0)); // Prints: 1.539989614439558e-36 console.log(buf.readFloatLE(1)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readInt8([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 1`. **Default:** `0`. * Returns: {integer} Reads a signed 8-bit integer from `buf` at the specified `offset`. Integers read from a `Buffer` are interpreted as two's complement signed values. ```js const buf = Buffer.from([-1, 5]); console.log(buf.readInt8(0)); // Prints: -1 console.log(buf.readInt8(1)); // Prints: 5 console.log(buf.readInt8(2)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readInt16BE([offset])` ### `buf.readInt16LE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 2`. **Default:** `0`. * Returns: {integer} Reads a signed 16-bit integer from `buf` at the specified `offset` with the specified [endianness][] (`readInt16BE()` reads as big endian, `readInt16LE()` reads as little endian). Integers read from a `Buffer` are interpreted as two's complement signed values. ```js const buf = Buffer.from([0, 5]); console.log(buf.readInt16BE(0)); // Prints: 5 console.log(buf.readInt16LE(0)); // Prints: 1280 console.log(buf.readInt16LE(1)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readInt32BE([offset])` ### `buf.readInt32LE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 4`. **Default:** `0`. * Returns: {integer} Reads a signed 32-bit integer from `buf` at the specified `offset` with the specified [endianness][] (`readInt32BE()` reads as big endian, `readInt32LE()` reads as little endian). Integers read from a `Buffer` are interpreted as two's complement signed values. ```js const buf = Buffer.from([0, 0, 0, 5]); console.log(buf.readInt32BE(0)); // Prints: 5 console.log(buf.readInt32LE(0)); // Prints: 83886080 console.log(buf.readInt32LE(1)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readIntBE(offset, byteLength)` ### `buf.readIntLE(offset, byteLength)` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - byteLength`. * `byteLength` {integer} Number of bytes to read. Must satisfy `0 < byteLength <= 6`. * Returns: {integer} Reads `byteLength` number of bytes from `buf` at the specified `offset` and interprets the result as a two's complement signed value. Supports up to 48 bits of accuracy. ```js const buf = Buffer.from([0x12, 0x34, 0x56, 0x78, 0x90, 0xab]); console.log(buf.readIntLE(0, 6).toString(16)); // Prints: -546f87a9cbee console.log(buf.readIntBE(0, 6).toString(16)); // Prints: 1234567890ab console.log(buf.readIntBE(1, 6).toString(16)); // Throws ERR_OUT_OF_RANGE. console.log(buf.readIntBE(1, 0).toString(16)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readUInt8([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 1`. **Default:** `0`. * Returns: {integer} Reads an unsigned 8-bit integer from `buf` at the specified `offset`. ```js const buf = Buffer.from([1, -2]); console.log(buf.readUInt8(0)); // Prints: 1 console.log(buf.readUInt8(1)); // Prints: 254 console.log(buf.readUInt8(2)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readUInt16BE([offset])` ### `buf.readUInt16LE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 2`. **Default:** `0`. * Returns: {integer} Reads an unsigned 16-bit integer from `buf` at the specified `offset` with the specified [endianness][] (`readUInt16BE()` reads as big endian, `readUInt16LE()` reads as little endian). ```js const buf = Buffer.from([0x12, 0x34, 0x56]); console.log(buf.readUInt16BE(0).toString(16)); // Prints: 1234 console.log(buf.readUInt16LE(0).toString(16)); // Prints: 3412 console.log(buf.readUInt16BE(1).toString(16)); // Prints: 3456 console.log(buf.readUInt16LE(1).toString(16)); // Prints: 5634 console.log(buf.readUInt16LE(2).toString(16)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readUInt32BE([offset])` ### `buf.readUInt32LE([offset])` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - 4`. **Default:** `0`. * Returns: {integer} Reads an unsigned 32-bit integer from `buf` at the specified `offset` with the specified [endianness][] (`readUInt32BE()` reads as big endian, `readUInt32LE()` reads as little endian). ```js const buf = Buffer.from([0x12, 0x34, 0x56, 0x78]); console.log(buf.readUInt32BE(0).toString(16)); // Prints: 12345678 console.log(buf.readUInt32LE(0).toString(16)); // Prints: 78563412 console.log(buf.readUInt32LE(1).toString(16)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.readUIntBE(offset, byteLength)` ### `buf.readUIntLE(offset, byteLength)` * `offset` {integer} Number of bytes to skip before starting to read. Must satisfy `0 <= offset <= buf.length - byteLength`. * `byteLength` {integer} Number of bytes to read. Must satisfy `0 < byteLength <= 6`. * Returns: {integer} Reads `byteLength` number of bytes from `buf` at the specified `offset` and interprets the result as an unsigned integer. Supports up to 48 bits of accuracy. ```js const buf = Buffer.from([0x12, 0x34, 0x56, 0x78, 0x90, 0xab]); console.log(buf.readUIntBE(0, 6).toString(16)); // Prints: 1234567890ab console.log(buf.readUIntLE(0, 6).toString(16)); // Prints: ab9078563412 console.log(buf.readUIntBE(1, 6).toString(16)); // Throws ERR_OUT_OF_RANGE. ``` ### `buf.subarray([start[, end]])` * `start` {integer} Where the new `Buffer` will start. **Default:** `0`. * `end` {integer} Where the new `Buffer` will end (not inclusive). **Default:** [`buf.length`][]. * Returns: {Buffer} Returns a new `Buffer` that references the same memory as the original, but offset and cropped by the `start` and `end` indices. Specifying `end` greater than [`buf.length`][] will return the same result as that of `end` equal to [`buf.length`][]. This method is inherited from [`TypedArray#subarray()`][]. Modifying the new `Buffer` slice will modify the memory in the original `Buffer` because the allocated memory of the two objects overlap. ```js // Create a `Buffer` with the ASCII alphabet, take a slice, and modify one byte // from the original `Buffer`. const buf1 = Buffer.allocUnsafe(26); for (let i = 0; i < 26; i++) { // 97 is the decimal ASCII value for 'a'. buf1[i] = i + 97; } const buf2 = buf1.subarray(0, 3); console.log(buf2.toString('ascii', 0, buf2.length)); // Prints: abc buf1[0] = 33; console.log(buf2.toString('ascii', 0, buf2.length)); // Prints: !bc ``` Specifying negative indexes causes the slice to be generated relative to the end of `buf` rather than the beginning. ```js const buf = Buffer.from('buffer'); console.log(buf.subarray(-6, -1).toString()); // Prints: buffe // (Equivalent to buf.subarray(0, 5).) console.log(buf.subarray(-6, -2).toString()); // Prints: buff // (Equivalent to buf.subarray(0, 4).) console.log(buf.subarray(-5, -2).toString()); // Prints: uff // (Equivalent to buf.subarray(1, 4).) ``` ### `buf.slice([start[, end]])` * `start` {integer} Where the new `Buffer` will start. **Default:** `0`. * `end` {integer} Where the new `Buffer` will end (not inclusive). **Default:** [`buf.length`][]. * Returns: {Buffer} Returns a new `Buffer` that references the same memory as the original, but offset and cropped by the `start` and `end` indices. This is the same behavior as `buf.subarray()`. This method is not compatible with the `Uint8Array.prototype.slice()`, which is a superclass of `Buffer`. To copy the slice, use `Uint8Array.prototype.slice()`. ```js const buf = Buffer.from('buffer'); const copiedBuf = Uint8Array.prototype.slice.call(buf); copiedBuf[0]++; console.log(copiedBuf.toString()); // Prints: cuffer console.log(buf.toString()); // Prints: buffer ``` ### `buf.swap16()` * Returns: {Buffer} A reference to `buf`. Interprets `buf` as an array of unsigned 16-bit integers and swaps the byte order *in-place*. Throws [`ERR_INVALID_BUFFER_SIZE`][] if [`buf.length`][] is not a multiple of 2. ```js const buf1 = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf1); // Prints: buf1.swap16(); console.log(buf1); // Prints: const buf2 = Buffer.from([0x1, 0x2, 0x3]); buf2.swap16(); // Throws ERR_INVALID_BUFFER_SIZE. ``` One convenient use of `buf.swap16()` is to perform a fast in-place conversion between UTF-16 little-endian and UTF-16 big-endian: ```js const buf = Buffer.from('This is little-endian UTF-16', 'utf16le'); buf.swap16(); // Convert to big-endian UTF-16 text. ``` ### `buf.swap32()` * Returns: {Buffer} A reference to `buf`. Interprets `buf` as an array of unsigned 32-bit integers and swaps the byte order *in-place*. Throws [`ERR_INVALID_BUFFER_SIZE`][] if [`buf.length`][] is not a multiple of 4. ```js const buf1 = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf1); // Prints: buf1.swap32(); console.log(buf1); // Prints: const buf2 = Buffer.from([0x1, 0x2, 0x3]); buf2.swap32(); // Throws ERR_INVALID_BUFFER_SIZE. ``` ### `buf.swap64()` * Returns: {Buffer} A reference to `buf`. Interprets `buf` as an array of 64-bit numbers and swaps byte order *in-place*. Throws [`ERR_INVALID_BUFFER_SIZE`][] if [`buf.length`][] is not a multiple of 8. ```js const buf1 = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8]); console.log(buf1); // Prints: buf1.swap64(); console.log(buf1); // Prints: const buf2 = Buffer.from([0x1, 0x2, 0x3]); buf2.swap64(); // Throws ERR_INVALID_BUFFER_SIZE. ``` ### `buf.toJSON()` * Returns: {Object} Returns a JSON representation of `buf`. [`JSON.stringify()`][] implicitly calls this function when stringifying a `Buffer` instance. `Buffer.from()` accepts objects in the format returned from this method. In particular, `Buffer.from(buf.toJSON())` works like `Buffer.from(buf)`. ```js const buf = Buffer.from([0x1, 0x2, 0x3, 0x4, 0x5]); const json = JSON.stringify(buf); console.log(json); // Prints: {"type":"Buffer","data":[1,2,3,4,5]} const copy = JSON.parse(json, (key, value) => { return value && value.type === 'Buffer' ? Buffer.from(value) : value; }); console.log(copy); // Prints: ``` ### `buf.toString([encoding[, start[, end]]])` * `encoding` {string} The character encoding to use. **Default:** `'utf8'`. * `start` {integer} The byte offset to start decoding at. **Default:** `0`. * `end` {integer} The byte offset to stop decoding at (not inclusive). **Default:** [`buf.length`][]. * Returns: {string} Decodes `buf` to a string according to the specified character encoding in `encoding`. `start` and `end` may be passed to decode only a subset of `buf`. If `encoding` is `'utf8'` and a byte sequence in the input is not valid UTF-8, then each invalid byte is replaced with the replacement character `U+FFFD`. The maximum length of a string instance (in UTF-16 code units) is available as [`buffer.constants.MAX_STRING_LENGTH`][]. ```js const buf1 = Buffer.allocUnsafe(26); for (let i = 0; i < 26; i++) { // 97 is the decimal ASCII value for 'a'. buf1[i] = i + 97; } console.log(buf1.toString('utf8')); // Prints: abcdefghijklmnopqrstuvwxyz console.log(buf1.toString('utf8', 0, 5)); // Prints: abcde const buf2 = Buffer.from('tést'); console.log(buf2.toString('hex')); // Prints: 74c3a97374 console.log(buf2.toString('utf8', 0, 3)); // Prints: té console.log(buf2.toString(undefined, 0, 3)); // Prints: té ``` ### `buf.values()` * Returns: {Iterator} Creates and returns an [iterator][] for `buf` values (bytes). This function is called automatically when a `Buffer` is used in a `for..of` statement. ```js const buf = Buffer.from('buffer'); for (const value of buf.values()) { console.log(value); } // Prints: // 98 // 117 // 102 // 102 // 101 // 114 for (const value of buf) { console.log(value); } // Prints: // 98 // 117 // 102 // 102 // 101 // 114 ``` ### `buf.write(string[, offset[, length]][, encoding])` * `string` {string} String to write to `buf`. * `offset` {integer} Number of bytes to skip before starting to write `string`. **Default:** `0`. * `length` {integer} Maximum number of bytes to write (written bytes will not exceed `buf.length - offset`). **Default:** `buf.length - offset`. * `encoding` {string} The character encoding of `string`. **Default:** `'utf8'`. * Returns: {integer} Number of bytes written. Writes `string` to `buf` at `offset` according to the character encoding in `encoding`. The `length` parameter is the number of bytes to write. If `buf` did not contain enough space to fit the entire string, only part of `string` will be written. However, partially encoded characters will not be written. ```js const buf = Buffer.alloc(256); const len = buf.write('\u00bd + \u00bc = \u00be', 0); console.log(`${len} bytes: ${buf.toString('utf8', 0, len)}`); // Prints: 12 bytes: ½ + ¼ = ¾ const buffer = Buffer.alloc(10); const length = buffer.write('abcd', 8); console.log(`${length} bytes: ${buffer.toString('utf8', 8, 10)}`); // Prints: 2 bytes : ab ``` ### `buf.writeBigInt64BE(value[, offset])` ### `buf.writeBigInt64LE(value[, offset])` * `value` {bigint} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy: `0 <= offset <= buf.length - 8`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with the specified [endianness][] (`writeBigInt64BE()` writes as big endian, `writeBigInt64LE()` writes as little endian). `value` is interpreted and written as a two's complement signed integer. ```js const buf = Buffer.allocUnsafe(8); buf.writeBigInt64BE(0x0102030405060708n, 0); console.log(buf); // Prints: ``` ### `buf.writeBigUInt64BE(value[, offset])` ### `buf.writeBigUInt64LE(value[, offset])` * `value` {bigint} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy: `0 <= offset <= buf.length - 8`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with specified [endianness][] (`writeBigUInt64BE()` writes as big endian, `writeBigUInt64LE()` writes as little endian). ```js const buf = Buffer.allocUnsafe(8); buf.writeBigUInt64LE(0xdecafafecacefaden, 0); console.log(buf); // Prints: ``` ### `buf.writeDoubleBE(value[, offset])` ### `buf.writeDoubleLE(value[, offset])` * `value` {number} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 8`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with the specified [endianness][] (`writeDoubleBE()` writes as big endian, `writeDoubleLE()` writes as little endian). `value` must be a JavaScript number. Behavior is undefined when `value` is anything other than a JavaScript number. ```js const buf = Buffer.allocUnsafe(8); buf.writeDoubleBE(123.456, 0); console.log(buf); // Prints: buf.writeDoubleLE(123.456, 0); console.log(buf); // Prints: ``` ### `buf.writeFloatBE(value[, offset])` ### `buf.writeFloatLE(value[, offset])` * `value` {number} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 4`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with specified [endianness][] (`writeFloatBE()` writes as big endian, `writeFloatLE()` writes as little endian). `value` must be a JavaScript number. Behavior is undefined when `value` is anything other than a JavaScript number. ```js const buf = Buffer.allocUnsafe(4); buf.writeFloatBE(0xcafebabe, 0); console.log(buf); // Prints: buf.writeFloatLE(0xcafebabe, 0); console.log(buf); // Prints: ``` ### `buf.writeInt8(value[, offset])` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 1`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset`. `value` must be a valid signed 8-bit integer. Behavior is undefined when `value` is anything other than a signed 8-bit integer. `value` is interpreted and written as a two's complement signed integer. ```js const buf = Buffer.allocUnsafe(2); buf.writeInt8(2, 0); buf.writeInt8(-2, 1); console.log(buf); // Prints: ``` ### `buf.writeInt16BE(value[, offset])` ### `buf.writeInt16LE(value[, offset])` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 2`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with the specified [endianness][] (`writeInt16BE()` writes as big endian, `writeInt16LE()` writes as little endian). `value` must be a valid signed 16-bit integer. Behavior is undefined when `value` is anything other than a signed 16-bit integer. `value` is interpreted and written as a two's complement signed integer. ```js const buf = Buffer.allocUnsafe(4); buf.writeInt16BE(0x0102, 0); buf.writeInt16LE(0x0304, 2); console.log(buf); // Prints: ``` ### `buf.writeInt32BE(value[, offset])` ### `buf.writeInt32LE(value[, offset])` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 4`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with the specified [endianness][] (`writeInt32BE()` writes aS big endian, `writeInt32LE()` writes as little endian). `value` must be a valid signed 32-bit integer. Behavior is undefined when `value` is anything other than a signed 32-bit integer. `value` is interpreted and written as a two's complement signed integer. ```js const buf = Buffer.allocUnsafe(8); buf.writeInt32BE(0x01020304, 0); buf.writeInt32LE(0x05060708, 4); console.log(buf); // Prints: ``` ### `buf.writeIntBE(value, offset, byteLength)` ### `buf.writeIntLE(value, offset, byteLength)` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - byteLength`. * `byteLength` {integer} Number of bytes to write. Must satisfy `0 < byteLength <= 6`. * Returns: {integer} `offset` plus the number of bytes written. Writes `byteLength` bytes of `value` to `buf` at the specified `offset`. Supports up to 48 bits of accuracy. Behavior is undefined when `value` is anything other than a signed integer. ```js const buf = Buffer.allocUnsafe(6); buf.writeIntBE(0x1234567890ab, 0, 6); console.log(buf); // Prints: buf.writeIntLE(0x1234567890ab, 0, 6); console.log(buf); // Prints: ``` ### `buf.writeUInt8(value[, offset])` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 1`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset`. `value` must be a valid unsigned 8-bit integer. Behavior is undefined when `value` is anything other than an unsigned 8-bit integer. ```js const buf = Buffer.allocUnsafe(4); buf.writeUInt8(0x3, 0); buf.writeUInt8(0x4, 1); buf.writeUInt8(0x23, 2); buf.writeUInt8(0x42, 3); console.log(buf); // Prints: ``` ### `buf.writeUInt16BE(value[, offset])` ### `buf.writeUInt16LE(value[, offset])` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 2`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with the specified [endianness][] (`writeUInt16BE()` writes as big endian, `writeUInt16LE()` writes as little endian). `value` must be a valid unsigned 16-bit integer. Behavior is undefined when `value` is anything other than an unsigned 16-bit integer. ```js const buf = Buffer.allocUnsafe(4); buf.writeUInt16BE(0xdead, 0); buf.writeUInt16BE(0xbeef, 2); console.log(buf); // Prints: buf.writeUInt16LE(0xdead, 0); buf.writeUInt16LE(0xbeef, 2); console.log(buf); // Prints: ``` ### `buf.writeUInt32BE(value[, offset])` ### `buf.writeUInt32LE(value[, offset])` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - 4`. **Default:** `0`. * Returns: {integer} `offset` plus the number of bytes written. Writes `value` to `buf` at the specified `offset` with the specified [endianness][] (`writeUInt32BE()` writes as big endian, `writeUInt32LE()` writes as little endian). `value` must be a valid unsigned 32-bit integer. Behavior is undefined when `value` is anything other than an unsigned 32-bit integer. ```js const buf = Buffer.allocUnsafe(4); buf.writeUInt32BE(0xfeedface, 0); console.log(buf); // Prints: buf.writeUInt32LE(0xfeedface, 0); console.log(buf); // Prints: ``` ### `buf.writeUIntBE(value, offset, byteLength)` ### `buf.writeUIntLE(value, offset, byteLength)` * `value` {integer} Number to be written to `buf`. * `offset` {integer} Number of bytes to skip before starting to write. Must satisfy `0 <= offset <= buf.length - byteLength`. * `byteLength` {integer} Number of bytes to write. Must satisfy `0 < byteLength <= 6`. * Returns: {integer} `offset` plus the number of bytes written. Writes `byteLength` bytes of `value` to `buf` at the specified `offset`. Supports up to 48 bits of accuracy. Behavior is undefined when `value` is anything other than an unsigned integer. ```js const buf = Buffer.allocUnsafe(6); buf.writeUIntBE(0x1234567890ab, 0, 6); console.log(buf); // Prints: buf.writeUIntLE(0x1234567890ab, 0, 6); console.log(buf); // Prints: ``` ### `new Buffer(array)` > Stability: 0 - Deprecated: Use [`Buffer.from(array)`][] instead. * `array` {integer[]} An array of bytes to copy from. See [`Buffer.from(array)`][]. ### `new Buffer(arrayBuffer[, byteOffset[, length]])` > Stability: 0 - Deprecated: Use > [`Buffer.from(arrayBuffer[, byteOffset[, length]])`][`Buffer.from(arrayBuf)`] > instead. * `arrayBuffer` {ArrayBuffer|SharedArrayBuffer} An [`ArrayBuffer`][], [`SharedArrayBuffer`][] or the `.buffer` property of a [`TypedArray`][]. * `byteOffset` {integer} Index of first byte to expose. **Default:** `0`. * `length` {integer} Number of bytes to expose. **Default:** `arrayBuffer.byteLength - byteOffset`. See [`Buffer.from(arrayBuffer[, byteOffset[, length]])`][`Buffer.from(arrayBuf)`]. ### `new Buffer(buffer)` > Stability: 0 - Deprecated: Use [`Buffer.from(buffer)`][] instead. * `buffer` {Buffer|Uint8Array} An existing `Buffer` or [`Uint8Array`][] from which to copy data. See [`Buffer.from(buffer)`][]. ### `new Buffer(size)` > Stability: 0 - Deprecated: Use [`Buffer.alloc()`][] instead (also see > [`Buffer.allocUnsafe()`][]). * `size` {integer} The desired length of the new `Buffer`. See [`Buffer.alloc()`][] and [`Buffer.allocUnsafe()`][]. This variant of the constructor is equivalent to [`Buffer.alloc()`][]. ### `new Buffer(string[, encoding])` > Stability: 0 - Deprecated: > Use [`Buffer.from(string[, encoding])`][`Buffer.from(string)`] instead. * `string` {string} String to encode. * `encoding` {string} The encoding of `string`. **Default:** `'utf8'`. See [`Buffer.from(string[, encoding])`][`Buffer.from(string)`]. ## `buffer.INSPECT_MAX_BYTES` * {integer} **Default:** `50` Returns the maximum number of bytes that will be returned when `buf.inspect()` is called. This can be overridden by user modules. See [`util.inspect()`][] for more details on `buf.inspect()` behavior. This is a property on the `buffer` module returned by `require('buffer')`, not on the `Buffer` global or a `Buffer` instance. ## `buffer.kMaxLength` * {integer} The largest size allowed for a single `Buffer` instance. An alias for [`buffer.constants.MAX_LENGTH`][]. This is a property on the `buffer` module returned by `require('buffer')`, not on the `Buffer` global or a `Buffer` instance. ## `buffer.transcode(source, fromEnc, toEnc)` * `source` {Buffer|Uint8Array} A `Buffer` or `Uint8Array` instance. * `fromEnc` {string} The current encoding. * `toEnc` {string} To target encoding. * Returns: {Buffer} Re-encodes the given `Buffer` or `Uint8Array` instance from one character encoding to another. Returns a new `Buffer` instance. Throws if the `fromEnc` or `toEnc` specify invalid character encodings or if conversion from `fromEnc` to `toEnc` is not permitted. Encodings supported by `buffer.transcode()` are: `'ascii'`, `'utf8'`, `'utf16le'`, `'ucs2'`, `'latin1'`, and `'binary'`. The transcoding process will use substitution characters if a given byte sequence cannot be adequately represented in the target encoding. For instance: ```js const buffer = require('buffer'); const newBuf = buffer.transcode(Buffer.from('€'), 'utf8', 'ascii'); console.log(newBuf.toString('ascii')); // Prints: '?' ``` Because the Euro (`€`) sign is not representable in US-ASCII, it is replaced with `?` in the transcoded `Buffer`. This is a property on the `buffer` module returned by `require('buffer')`, not on the `Buffer` global or a `Buffer` instance. ## Class: `SlowBuffer` > Stability: 0 - Deprecated: Use [`Buffer.allocUnsafeSlow()`][] instead. See [`Buffer.allocUnsafeSlow()`][]. This was never a class in the sense that the constructor always returned a `Buffer` instance, rather than a `SlowBuffer` instance. ### `new SlowBuffer(size)` > Stability: 0 - Deprecated: Use [`Buffer.allocUnsafeSlow()`][] instead. * `size` {integer} The desired length of the new `SlowBuffer`. See [`Buffer.allocUnsafeSlow()`][]. ## Buffer Constants `buffer.constants` is a property on the `buffer` module returned by `require('buffer')`, not on the `Buffer` global or a `Buffer` instance. ### `buffer.constants.MAX_LENGTH` * {integer} The largest size allowed for a single `Buffer` instance. On 32-bit architectures, this value currently is `(2^30)-1` (~1GB). On 64-bit architectures, this value currently is `(2^31)-1` (~2GB). This value is also available as [`buffer.kMaxLength`][]. ### `buffer.constants.MAX_STRING_LENGTH` * {integer} The largest length allowed for a single `string` instance. Represents the largest `length` that a `string` primitive can have, counted in UTF-16 code units. This value may depend on the JS engine that is being used. ## `Buffer.from()`, `Buffer.alloc()`, and `Buffer.allocUnsafe()` In versions of Node.js prior to 6.0.0, `Buffer` instances were created using the `Buffer` constructor function, which allocates the returned `Buffer` differently based on what arguments are provided: * Passing a number as the first argument to `Buffer()` (e.g. `new Buffer(10)`) allocates a new `Buffer` object of the specified size. Prior to Node.js 8.0.0, the memory allocated for such `Buffer` instances is *not* initialized and *can contain sensitive data*. Such `Buffer` instances *must* be subsequently initialized by using either [`buf.fill(0)`][`buf.fill()`] or by writing to the entire `Buffer` before reading data from the `Buffer`. While this behavior is *intentional* to improve performance, development experience has demonstrated that a more explicit distinction is required between creating a fast-but-uninitialized `Buffer` versus creating a slower-but-safer `Buffer`. Since Node.js 8.0.0, `Buffer(num)` and `new Buffer(num)` return a `Buffer` with initialized memory. * Passing a string, array, or `Buffer` as the first argument copies the passed object's data into the `Buffer`. * Passing an [`ArrayBuffer`][] or a [`SharedArrayBuffer`][] returns a `Buffer` that shares allocated memory with the given array buffer. Because the behavior of `new Buffer()` is different depending on the type of the first argument, security and reliability issues can be inadvertently introduced into applications when argument validation or `Buffer` initialization is not performed. For example, if an attacker can cause an application to receive a number where a string is expected, the application may call `new Buffer(100)` instead of `new Buffer("100")`, leading it to allocate a 100 byte buffer instead of allocating a 3 byte buffer with content `"100"`. This is commonly possible using JSON API calls. Since JSON distinguishes between numeric and string types, it allows injection of numbers where a naively written application that does not validate its input sufficiently might expect to always receive a string. Before Node.js 8.0.0, the 100 byte buffer might contain arbitrary pre-existing in-memory data, so may be used to expose in-memory secrets to a remote attacker. Since Node.js 8.0.0, exposure of memory cannot occur because the data is zero-filled. However, other attacks are still possible, such as causing very large buffers to be allocated by the server, leading to performance degradation or crashing on memory exhaustion. To make the creation of `Buffer` instances more reliable and less error-prone, the various forms of the `new Buffer()` constructor have been **deprecated** and replaced by separate `Buffer.from()`, [`Buffer.alloc()`][], and [`Buffer.allocUnsafe()`][] methods. *Developers should migrate all existing uses of the `new Buffer()` constructors to one of these new APIs.* * [`Buffer.from(array)`][] returns a new `Buffer` that *contains a copy* of the provided octets. * [`Buffer.from(arrayBuffer[, byteOffset[, length]])`][`Buffer.from(arrayBuf)`] returns a new `Buffer` that *shares the same allocated memory* as the given [`ArrayBuffer`][]. * [`Buffer.from(buffer)`][] returns a new `Buffer` that *contains a copy* of the contents of the given `Buffer`. * [`Buffer.from(string[, encoding])`][`Buffer.from(string)`] returns a new `Buffer` that *contains a copy* of the provided string. * [`Buffer.alloc(size[, fill[, encoding]])`][`Buffer.alloc()`] returns a new initialized `Buffer` of the specified size. This method is slower than [`Buffer.allocUnsafe(size)`][`Buffer.allocUnsafe()`] but guarantees that newly created `Buffer` instances never contain old data that is potentially sensitive. A `TypeError` will be thrown if `size` is not a number. * [`Buffer.allocUnsafe(size)`][`Buffer.allocUnsafe()`] and [`Buffer.allocUnsafeSlow(size)`][`Buffer.allocUnsafeSlow()`] each return a new uninitialized `Buffer` of the specified `size`. Because the `Buffer` is uninitialized, the allocated segment of memory might contain old data that is potentially sensitive. `Buffer` instances returned by [`Buffer.allocUnsafe()`][] and [`Buffer.from(array)`][] *may* be allocated off a shared internal memory pool if `size` is less than or equal to half [`Buffer.poolSize`][]. Instances returned by [`Buffer.allocUnsafeSlow()`][] *never* use the shared internal memory pool. ### The `--zero-fill-buffers` command line option Node.js can be started using the `--zero-fill-buffers` command line option to cause all newly-allocated `Buffer` instances to be zero-filled upon creation by default. Without the option, buffers created with [`Buffer.allocUnsafe()`][], [`Buffer.allocUnsafeSlow()`][], and `new SlowBuffer(size)` are not zero-filled. Use of this flag can have a measurable negative impact on performance. Use the `--zero-fill-buffers` option only when necessary to enforce that newly allocated `Buffer` instances cannot contain old data that is potentially sensitive. ```console $ node --zero-fill-buffers > Buffer.allocUnsafe(5); ``` ### What makes `Buffer.allocUnsafe()` and `Buffer.allocUnsafeSlow()` "unsafe"? When calling [`Buffer.allocUnsafe()`][] and [`Buffer.allocUnsafeSlow()`][], the segment of allocated memory is *uninitialized* (it is not zeroed-out). While this design makes the allocation of memory quite fast, the allocated segment of memory might contain old data that is potentially sensitive. Using a `Buffer` created by [`Buffer.allocUnsafe()`][] without *completely* overwriting the memory can allow this old data to be leaked when the `Buffer` memory is read. While there are clear performance advantages to using [`Buffer.allocUnsafe()`][], extra care *must* be taken in order to avoid introducing security vulnerabilities into an application. [RFC 4648, Section 5]: https://tools.ietf.org/html/rfc4648#section-5 [WHATWG Encoding Standard]: https://encoding.spec.whatwg.org/ [`ArrayBuffer`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer [`Buffer.alloc()`]: #buffer_class_method_buffer_alloc_size_fill_encoding [`Buffer.allocUnsafe()`]: #buffer_class_method_buffer_allocunsafe_size [`Buffer.allocUnsafeSlow()`]: #buffer_class_method_buffer_allocunsafeslow_size [`Buffer.from(array)`]: #buffer_class_method_buffer_from_array [`Buffer.from(arrayBuf)`]: #buffer_class_method_buffer_from_arraybuffer_byteoffset_length [`Buffer.from(buffer)`]: #buffer_class_method_buffer_from_buffer [`Buffer.from(string)`]: #buffer_class_method_buffer_from_string_encoding [`Buffer.poolSize`]: #buffer_class_property_buffer_poolsize [`DataView`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/DataView [`ERR_INVALID_BUFFER_SIZE`]: errors.html#ERR_INVALID_BUFFER_SIZE [`ERR_INVALID_OPT_VALUE`]: errors.html#ERR_INVALID_OPT_VALUE [`ERR_OUT_OF_RANGE`]: errors.html#ERR_OUT_OF_RANGE [`JSON.stringify()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify [`SharedArrayBuffer`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/SharedArrayBuffer [`String#indexOf()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/indexOf [`String#lastIndexOf()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/lastIndexOf [`String.prototype.length`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/length [`TypedArray.from()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray/from [`TypedArray#set()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray/set [`TypedArray#slice()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray/slice [`TypedArray#subarray()`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray/subarray [`TypedArray`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray [`Uint32Array`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint32Array [`Uint8Array`]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Uint8Array [`buf.buffer`]: #buffer_buf_buffer [`buf.compare()`]: #buffer_buf_compare_target_targetstart_targetend_sourcestart_sourceend [`buf.entries()`]: #buffer_buf_entries [`buf.fill()`]: #buffer_buf_fill_value_offset_end_encoding [`buf.indexOf()`]: #buffer_buf_indexof_value_byteoffset_encoding [`buf.keys()`]: #buffer_buf_keys [`buf.length`]: #buffer_buf_length [`buf.slice()`]: #buffer_buf_slice_start_end [`buf.toString()`]: #buffer_buf_tostring_encoding_start_end [`buf.values()`]: #buffer_buf_values [`buffer.constants.MAX_LENGTH`]: #buffer_buffer_constants_max_length [`buffer.constants.MAX_STRING_LENGTH`]: #buffer_buffer_constants_max_string_length [`buffer.kMaxLength`]: #buffer_buffer_kmaxlength [`util.inspect()`]: util.html#util_util_inspect_object_options [ASCII]: https://en.wikipedia.org/wiki/ASCII [Base64]: https://en.wikipedia.org/wiki/Base64 [ISO-8859-1]: https://en.wikipedia.org/wiki/ISO-8859-1 [UTF-8]: https://en.wikipedia.org/wiki/UTF-8 [UTF-16]: https://en.wikipedia.org/wiki/UTF-16 [binary strings]: https://developer.mozilla.org/en-US/docs/Web/API/DOMString/Binary [endianness]: https://en.wikipedia.org/wiki/Endianness [iterator]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols