## TLS (SSL) Use `require('tls')` to access this module. The `tls` module uses OpenSSL to provide Transport Layer Security and/or Secure Socket Layer: encrypted stream communication. TLS/SSL is a public/private key infrastructure. Each client and each server must have a private key. A private key is created like this openssl genrsa -out ryans-key.pem 1024 All severs and some clients need to have a certificate. Certificates are public keys signed by a Certificate Authority or self-signed. The first step to getting a certificate is to create a "Certificate Signing Request" (CSR) file. This is done with: openssl req -new -key ryans-key.pem -out ryans-csr.pem To create a self-signed certificate with the CSR, do this: openssl x509 -req -in ryans-csr.pem -signkey ryans-key.pem -out ryans-cert.pem Alternatively you can send the CSR to a Certificate Authority for signing. (TODO: docs on creating a CA, for now interested users should just look at `test/fixtures/keys/Makefile` in the Node source code) ### tls.Server This class is a subclass of `net.Server` and has the same methods on it. Instead of accepting just raw TCP connections, this accepts encrypted connections using TLS or SSL. Here is a simple example echo server: var tls = require('tls'); var fs = require('fs'); var options = { key: fs.readFileSync('server-key.pem'), cert: fs.readFileSync('server-cert.pem') }; tls.createServer(options, function (s) { s.write("welcome!\n"); s.pipe(s); }).listen(8000); You can test this server by connecting to it with `openssl s_client`: openssl s_client -connect 127.0.0.1:8000 #### tls.createServer(options, secureConnectionListener) This is a constructor for the `tls.Server` class. The options object has these possibilities: - `key`: A string or `Buffer` containing the private key of the server in PEM format. (Required) - `cert`: A string or `Buffer` containing the certificate key of the server in PEM format. (Required) - `ca`: An array of strings or `Buffer`s of trusted certificates. If this is omitted several well known "root" CAs will be used, like VeriSign. These are used to authorize connections. - `requestCert`: If `true` the server will request a certificate from clients that connect and attempt to verify that certificate. Default: `false`. - `rejectUnauthorized`: If `true` the server will reject any connection which is not authorized with the list of supplied CAs. This option only has an effect if `requestCert` is `true`. Default: `false`. #### Event: 'secureConnection' `function (cleartextStream) {}` This event is emitted after a new connection has been successfully handshaked. The argument is a duplex instance of `stream.Stream`. It has all the common stream methods and events. `cleartextStream.authorized` is a boolean value which indicates if the client has verified by one of the supplied cerificate authorities for the server. If `cleartextStream.authorized` is false, then `cleartextStream.authorizationError` is set to describe how authorization failed. Implied but worth mentioning: depending on the settings of the TLS server, you unauthorized connections may be accepted. #### server.listen(port, [host], [callback]) Begin accepting connections on the specified `port` and `host`. If the `host` is omitted, the server will accept connections directed to any IPv4 address (`INADDR_ANY`). This function is asynchronous. The last parameter `callback` will be called when the server has been bound. See `net.Server` for more information. #### server.close() Stops the server from accepting new connections. This function is asynchronous, the server is finally closed when the server emits a `'close'` event. #### server.maxConnections Set this property to reject connections when the server's connection count gets high. #### server.connections The number of concurrent connections on the server.