# Crypto > Stability: 2 - Stable The `crypto` module provides cryptographic functionality that includes a set of wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions. Use `require('crypto')` to access this module. ```js const crypto = require('crypto'); const secret = 'abcdefg'; const hash = crypto.createHmac('sha256', secret) .update('I love cupcakes') .digest('hex'); console.log(hash); // Prints: // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e ``` ## Determining if crypto support is unavailable It is possible for Node.js to be built without including support for the `crypto` module. In such cases, calling `require('crypto')` will result in an error being thrown. ```js let crypto; try { crypto = require('crypto'); } catch (err) { console.log('crypto support is disabled!'); } ``` ## Class: Certificate SPKAC is a Certificate Signing Request mechanism originally implemented by Netscape and now specified formally as part of [HTML5's `keygen` element][]. The `crypto` module provides the `Certificate` class for working with SPKAC data. The most common usage is handling output generated by the HTML5 `` element. Node.js uses [OpenSSL's SPKAC implementation][] internally. ### Certificate.exportChallenge(spkac) - `spkac` {string | Buffer | TypedArray | DataView} - Returns {Buffer} The challenge component of the `spkac` data structure, which includes a public key and a challenge. ```js const { Certificate } = require('crypto'); const spkac = getSpkacSomehow(); const challenge = Certificate.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string ``` ### Certificate.exportPublicKey(spkac[, encoding]) - `spkac` {string | Buffer | TypedArray | DataView} - `encoding` {string} - Returns {Buffer} The public key component of the `spkac` data structure, which includes a public key and a challenge. ```js const { Certificate } = require('crypto'); const spkac = getSpkacSomehow(); const publicKey = Certificate.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as ``` ### Certificate.verifySpkac(spkac) - `spkac` {Buffer | TypedArray | DataView} - Returns {boolean} `true` if the given `spkac` data structure is valid, `false` otherwise. ```js const { Certificate } = require('crypto'); const spkac = getSpkacSomehow(); console.log(Certificate.verifySpkac(Buffer.from(spkac))); // Prints: true or false ``` ### Legacy API As a still supported legacy interface, it is possible (but not recommended) to create new instances of the `crypto.Certificate` class as illustrated in the examples below. #### new crypto.Certificate() Instances of the `Certificate` class can be created using the `new` keyword or by calling `crypto.Certificate()` as a function: ```js const crypto = require('crypto'); const cert1 = new crypto.Certificate(); const cert2 = crypto.Certificate(); ``` #### certificate.exportChallenge(spkac) - `spkac` {string | Buffer | TypedArray | DataView} - Returns {Buffer} The challenge component of the `spkac` data structure, which includes a public key and a challenge. ```js const cert = require('crypto').Certificate(); const spkac = getSpkacSomehow(); const challenge = cert.exportChallenge(spkac); console.log(challenge.toString('utf8')); // Prints: the challenge as a UTF8 string ``` #### certificate.exportPublicKey(spkac) - `spkac` {string | Buffer | TypedArray | DataView} - Returns {Buffer} The public key component of the `spkac` data structure, which includes a public key and a challenge. ```js const cert = require('crypto').Certificate(); const spkac = getSpkacSomehow(); const publicKey = cert.exportPublicKey(spkac); console.log(publicKey); // Prints: the public key as ``` #### certificate.verifySpkac(spkac) - `spkac` {Buffer | TypedArray | DataView} - Returns {boolean} `true` if the given `spkac` data structure is valid, `false` otherwise. ```js const cert = require('crypto').Certificate(); const spkac = getSpkacSomehow(); console.log(cert.verifySpkac(Buffer.from(spkac))); // Prints: true or false ``` ## Class: Cipher Instances of the `Cipher` class are used to encrypt data. The class can be used in one of two ways: - As a [stream][] that is both readable and writable, where plain unencrypted data is written to produce encrypted data on the readable side, or - Using the [`cipher.update()`][] and [`cipher.final()`][] methods to produce the encrypted data. The [`crypto.createCipher()`][] or [`crypto.createCipheriv()`][] methods are used to create `Cipher` instances. `Cipher` objects are not to be created directly using the `new` keyword. Example: Using `Cipher` objects as streams: ```js const crypto = require('crypto'); const cipher = crypto.createCipher('aes192', 'a password'); let encrypted = ''; cipher.on('readable', () => { const data = cipher.read(); if (data) encrypted += data.toString('hex'); }); cipher.on('end', () => { console.log(encrypted); // Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504 }); cipher.write('some clear text data'); cipher.end(); ``` Example: Using `Cipher` and piped streams: ```js const crypto = require('crypto'); const fs = require('fs'); const cipher = crypto.createCipher('aes192', 'a password'); const input = fs.createReadStream('test.js'); const output = fs.createWriteStream('test.enc'); input.pipe(cipher).pipe(output); ``` Example: Using the [`cipher.update()`][] and [`cipher.final()`][] methods: ```js const crypto = require('crypto'); const cipher = crypto.createCipher('aes192', 'a password'); let encrypted = cipher.update('some clear text data', 'utf8', 'hex'); encrypted += cipher.final('hex'); console.log(encrypted); // Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504 ``` ### cipher.final([outputEncoding]) - `outputEncoding` {string} Returns any remaining enciphered contents. If `outputEncoding` parameter is one of `'latin1'`, `'base64'` or `'hex'`, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned. Once the `cipher.final()` method has been called, the `Cipher` object can no longer be used to encrypt data. Attempts to call `cipher.final()` more than once will result in an error being thrown. ### cipher.setAAD(buffer) - `buffer` {Buffer} - Returns the {Cipher} for method chaining. When using an authenticated encryption mode (only `GCM` is currently supported), the `cipher.setAAD()` method sets the value used for the _additional authenticated data_ (AAD) input parameter. The `cipher.setAAD()` method must be called before [`cipher.update()`][]. ### cipher.getAuthTag() When using an authenticated encryption mode (only `GCM` is currently supported), the `cipher.getAuthTag()` method returns a [`Buffer`][] containing the _authentication tag_ that has been computed from the given data. The `cipher.getAuthTag()` method should only be called after encryption has been completed using the [`cipher.final()`][] method. ### cipher.setAutoPadding([autoPadding]) - `autoPadding` {boolean} Defaults to `true`. - Returns the {Cipher} for method chaining. When using block encryption algorithms, the `Cipher` class will automatically add padding to the input data to the appropriate block size. To disable the default padding call `cipher.setAutoPadding(false)`. When `autoPadding` is `false`, the length of the entire input data must be a multiple of the cipher's block size or [`cipher.final()`][] will throw an Error. Disabling automatic padding is useful for non-standard padding, for instance using `0x0` instead of PKCS padding. The `cipher.setAutoPadding()` method must be called before [`cipher.final()`][]. ### cipher.update(data[, inputEncoding][, outputEncoding]) - `data` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} - `outputEncoding` {string} Updates the cipher with `data`. If the `inputEncoding` argument is given, its value must be one of `'utf8'`, `'ascii'`, or `'latin1'` and the `data` argument is a string using the specified encoding. If the `inputEncoding` argument is not given, `data` must be a [`Buffer`][], `TypedArray`, or `DataView`. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. The `outputEncoding` specifies the output format of the enciphered data, and can be `'latin1'`, `'base64'` or `'hex'`. If the `outputEncoding` is specified, a string using the specified encoding is returned. If no `outputEncoding` is provided, a [`Buffer`][] is returned. The `cipher.update()` method can be called multiple times with new data until [`cipher.final()`][] is called. Calling `cipher.update()` after [`cipher.final()`][] will result in an error being thrown. ## Class: Decipher Instances of the `Decipher` class are used to decrypt data. The class can be used in one of two ways: - As a [stream][] that is both readable and writable, where plain encrypted data is written to produce unencrypted data on the readable side, or - Using the [`decipher.update()`][] and [`decipher.final()`][] methods to produce the unencrypted data. The [`crypto.createDecipher()`][] or [`crypto.createDecipheriv()`][] methods are used to create `Decipher` instances. `Decipher` objects are not to be created directly using the `new` keyword. Example: Using `Decipher` objects as streams: ```js const crypto = require('crypto'); const decipher = crypto.createDecipher('aes192', 'a password'); let decrypted = ''; decipher.on('readable', () => { const data = decipher.read(); if (data) decrypted += data.toString('utf8'); }); decipher.on('end', () => { console.log(decrypted); // Prints: some clear text data }); const encrypted = 'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504'; decipher.write(encrypted, 'hex'); decipher.end(); ``` Example: Using `Decipher` and piped streams: ```js const crypto = require('crypto'); const fs = require('fs'); const decipher = crypto.createDecipher('aes192', 'a password'); const input = fs.createReadStream('test.enc'); const output = fs.createWriteStream('test.js'); input.pipe(decipher).pipe(output); ``` Example: Using the [`decipher.update()`][] and [`decipher.final()`][] methods: ```js const crypto = require('crypto'); const decipher = crypto.createDecipher('aes192', 'a password'); const encrypted = 'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504'; let decrypted = decipher.update(encrypted, 'hex', 'utf8'); decrypted += decipher.final('utf8'); console.log(decrypted); // Prints: some clear text data ``` ### decipher.final([outputEncoding]) - `outputEncoding` {string} Returns any remaining deciphered contents. If `outputEncoding` parameter is one of `'latin1'`, `'ascii'` or `'utf8'`, a string is returned. If an `outputEncoding` is not provided, a [`Buffer`][] is returned. Once the `decipher.final()` method has been called, the `Decipher` object can no longer be used to decrypt data. Attempts to call `decipher.final()` more than once will result in an error being thrown. ### decipher.setAAD(buffer) - `buffer` {Buffer | TypedArray | DataView} - Returns the {Cipher} for method chaining. When using an authenticated encryption mode (only `GCM` is currently supported), the `decipher.setAAD()` method sets the value used for the _additional authenticated data_ (AAD) input parameter. The `decipher.setAAD()` method must be called before [`decipher.update()`][]. ### decipher.setAuthTag(buffer) - `buffer` {Buffer | TypedArray | DataView} - Returns the {Cipher} for method chaining. When using an authenticated encryption mode (only `GCM` is currently supported), the `decipher.setAuthTag()` method is used to pass in the received _authentication tag_. If no tag is provided, or if the cipher text has been tampered with, [`decipher.final()`][] with throw, indicating that the cipher text should be discarded due to failed authentication. The `decipher.setAuthTag()` method must be called before [`decipher.final()`][]. ### decipher.setAutoPadding([autoPadding]) - `autoPadding` {boolean} Defaults to `true`. - Returns the {Cipher} for method chaining. When data has been encrypted without standard block padding, calling `decipher.setAutoPadding(false)` will disable automatic padding to prevent [`decipher.final()`][] from checking for and removing padding. Turning auto padding off will only work if the input data's length is a multiple of the ciphers block size. The `decipher.setAutoPadding()` method must be called before [`decipher.final()`][]. ### decipher.update(data[, inputEncoding][, outputEncoding]) - `data` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} - `outputEncoding` {string} Updates the decipher with `data`. If the `inputEncoding` argument is given, its value must be one of `'latin1'`, `'base64'`, or `'hex'` and the `data` argument is a string using the specified encoding. If the `inputEncoding` argument is not given, `data` must be a [`Buffer`][]. If `data` is a [`Buffer`][] then `inputEncoding` is ignored. The `outputEncoding` specifies the output format of the enciphered data, and can be `'latin1'`, `'ascii'` or `'utf8'`. If the `outputEncoding` is specified, a string using the specified encoding is returned. If no `outputEncoding` is provided, a [`Buffer`][] is returned. The `decipher.update()` method can be called multiple times with new data until [`decipher.final()`][] is called. Calling `decipher.update()` after [`decipher.final()`][] will result in an error being thrown. ## Class: DiffieHellman The `DiffieHellman` class is a utility for creating Diffie-Hellman key exchanges. Instances of the `DiffieHellman` class can be created using the [`crypto.createDiffieHellman()`][] function. ```js const crypto = require('crypto'); const assert = require('assert'); // Generate Alice's keys... const alice = crypto.createDiffieHellman(2048); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = crypto.createDiffieHellman(alice.getPrime(), alice.getGenerator()); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); // OK assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); ``` ### diffieHellman.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding]) - `otherPublicKey` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} - `outputEncoding` {string} Computes the shared secret using `otherPublicKey` as the other party's public key and returns the computed shared secret. The supplied key is interpreted using the specified `inputEncoding`, and secret is encoded using specified `outputEncoding`. Encodings can be `'latin1'`, `'hex'`, or `'base64'`. If the `inputEncoding` is not provided, `otherPublicKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. If `outputEncoding` is given a string is returned; otherwise, a [`Buffer`][] is returned. ### diffieHellman.generateKeys([encoding]) - `encoding` {string} Generates private and public Diffie-Hellman key values, and returns the public key in the specified `encoding`. This key should be transferred to the other party. Encoding can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### diffieHellman.getGenerator([encoding]) - `encoding` {string} Returns the Diffie-Hellman generator in the specified `encoding`, which can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### diffieHellman.getPrime([encoding]) - `encoding` {string} Returns the Diffie-Hellman prime in the specified `encoding`, which can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### diffieHellman.getPrivateKey([encoding]) - `encoding` {string} Returns the Diffie-Hellman private key in the specified `encoding`, which can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### diffieHellman.getPublicKey([encoding]) - `encoding` {string} Returns the Diffie-Hellman public key in the specified `encoding`, which can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### diffieHellman.setPrivateKey(privateKey[, encoding]) - `privateKey` {string | Buffer | TypedArray | DataView} - `encoding` {string} Sets the Diffie-Hellman private key. If the `encoding` argument is provided and is either `'latin1'`, `'hex'`, or `'base64'`, `privateKey` is expected to be a string. If no `encoding` is provided, `privateKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. ### diffieHellman.setPublicKey(publicKey[, encoding]) - `publicKey` {string | Buffer | TypedArray | DataView} - `encoding` {string} Sets the Diffie-Hellman public key. If the `encoding` argument is provided and is either `'latin1'`, `'hex'` or `'base64'`, `publicKey` is expected to be a string. If no `encoding` is provided, `publicKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. ### diffieHellman.verifyError A bit field containing any warnings and/or errors resulting from a check performed during initialization of the `DiffieHellman` object. The following values are valid for this property (as defined in `constants` module): * `DH_CHECK_P_NOT_SAFE_PRIME` * `DH_CHECK_P_NOT_PRIME` * `DH_UNABLE_TO_CHECK_GENERATOR` * `DH_NOT_SUITABLE_GENERATOR` ## Class: ECDH The `ECDH` class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH) key exchanges. Instances of the `ECDH` class can be created using the [`crypto.createECDH()`][] function. ```js const crypto = require('crypto'); const assert = require('assert'); // Generate Alice's keys... const alice = crypto.createECDH('secp521r1'); const aliceKey = alice.generateKeys(); // Generate Bob's keys... const bob = crypto.createECDH('secp521r1'); const bobKey = bob.generateKeys(); // Exchange and generate the secret... const aliceSecret = alice.computeSecret(bobKey); const bobSecret = bob.computeSecret(aliceKey); assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex')); // OK ``` ### ecdh.computeSecret(otherPublicKey[, inputEncoding][, outputEncoding]) - `otherPublicKey` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} - `outputEncoding` {string} Computes the shared secret using `otherPublicKey` as the other party's public key and returns the computed shared secret. The supplied key is interpreted using specified `inputEncoding`, and the returned secret is encoded using the specified `outputEncoding`. Encodings can be `'latin1'`, `'hex'`, or `'base64'`. If the `inputEncoding` is not provided, `otherPublicKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. If `outputEncoding` is given a string will be returned; otherwise a [`Buffer`][] is returned. `ecdh.computeSecret` will throw an `ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY` error when `otherPublicKey` lies outside of the elliptic curve. Since `otherPublicKey` is usually supplied from a remote user over an insecure network, its recommended for developers to handle this exception accordingly. ### ecdh.generateKeys([encoding[, format]]) - `encoding` {string} - `format` {string} Defaults to `uncompressed`. Generates private and public EC Diffie-Hellman key values, and returns the public key in the specified `format` and `encoding`. This key should be transferred to the other party. The `format` argument specifies point encoding and can be `'compressed'` or `'uncompressed'`. If `format` is not specified, the point will be returned in `'uncompressed'` format. The `encoding` argument can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### ecdh.getPrivateKey([encoding]) - `encoding` {string} Returns the EC Diffie-Hellman private key in the specified `encoding`, which can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned. ### ecdh.getPublicKey([encoding][, format]) - `encoding` {string} - `format` {string} Defaults to `uncompressed`. Returns the EC Diffie-Hellman public key in the specified `encoding` and `format`. The `format` argument specifies point encoding and can be `'compressed'` or `'uncompressed'`. If `format` is not specified the point will be returned in `'uncompressed'` format. The `encoding` argument can be `'latin1'`, `'hex'`, or `'base64'`. If `encoding` is specified, a string is returned; otherwise a [`Buffer`][] is returned. ### ecdh.setPrivateKey(privateKey[, encoding]) - `privateKey` {string | Buffer | TypedArray | DataView} - `encoding` {string} Sets the EC Diffie-Hellman private key. The `encoding` can be `'latin1'`, `'hex'` or `'base64'`. If `encoding` is provided, `privateKey` is expected to be a string; otherwise `privateKey` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. If `privateKey` is not valid for the curve specified when the `ECDH` object was created, an error is thrown. Upon setting the private key, the associated public point (key) is also generated and set in the ECDH object. ### ecdh.setPublicKey(publicKey[, encoding]) > Stability: 0 - Deprecated - `publicKey` {string | Buffer | TypedArray | DataView} - `encoding` {string} Sets the EC Diffie-Hellman public key. Key encoding can be `'latin1'`, `'hex'` or `'base64'`. If `encoding` is provided `publicKey` is expected to be a string; otherwise a [`Buffer`][], `TypedArray`, or `DataView` is expected. Note that there is not normally a reason to call this method because `ECDH` only requires a private key and the other party's public key to compute the shared secret. Typically either [`ecdh.generateKeys()`][] or [`ecdh.setPrivateKey()`][] will be called. The [`ecdh.setPrivateKey()`][] method attempts to generate the public point/key associated with the private key being set. Example (obtaining a shared secret): ```js const crypto = require('crypto'); const alice = crypto.createECDH('secp256k1'); const bob = crypto.createECDH('secp256k1'); // Note: This is a shortcut way to specify one of Alice's previous private // keys. It would be unwise to use such a predictable private key in a real // application. alice.setPrivateKey( crypto.createHash('sha256').update('alice', 'utf8').digest() ); // Bob uses a newly generated cryptographically strong // pseudorandom key pair bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); // aliceSecret and bobSecret should be the same shared secret value console.log(aliceSecret === bobSecret); ``` ## Class: Hash The `Hash` class is a utility for creating hash digests of data. It can be used in one of two ways: - As a [stream][] that is both readable and writable, where data is written to produce a computed hash digest on the readable side, or - Using the [`hash.update()`][] and [`hash.digest()`][] methods to produce the computed hash. The [`crypto.createHash()`][] method is used to create `Hash` instances. `Hash` objects are not to be created directly using the `new` keyword. Example: Using `Hash` objects as streams: ```js const crypto = require('crypto'); const hash = crypto.createHash('sha256'); hash.on('readable', () => { const data = hash.read(); if (data) { console.log(data.toString('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 } }); hash.write('some data to hash'); hash.end(); ``` Example: Using `Hash` and piped streams: ```js const crypto = require('crypto'); const fs = require('fs'); const hash = crypto.createHash('sha256'); const input = fs.createReadStream('test.js'); input.pipe(hash).pipe(process.stdout); ``` Example: Using the [`hash.update()`][] and [`hash.digest()`][] methods: ```js const crypto = require('crypto'); const hash = crypto.createHash('sha256'); hash.update('some data to hash'); console.log(hash.digest('hex')); // Prints: // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50 ``` ### hash.digest([encoding]) - `encoding` {string} Calculates the digest of all of the data passed to be hashed (using the [`hash.update()`][] method). The `encoding` can be `'hex'`, `'latin1'` or `'base64'`. If `encoding` is provided a string will be returned; otherwise a [`Buffer`][] is returned. The `Hash` object can not be used again after `hash.digest()` method has been called. Multiple calls will cause an error to be thrown. ### hash.update(data[, inputEncoding]) - `data` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} Updates the hash content with the given `data`, the encoding of which is given in `inputEncoding` and can be `'utf8'`, `'ascii'` or `'latin1'`. If `encoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ## Class: Hmac The `Hmac` Class is a utility for creating cryptographic HMAC digests. It can be used in one of two ways: - As a [stream][] that is both readable and writable, where data is written to produce a computed HMAC digest on the readable side, or - Using the [`hmac.update()`][] and [`hmac.digest()`][] methods to produce the computed HMAC digest. The [`crypto.createHmac()`][] method is used to create `Hmac` instances. `Hmac` objects are not to be created directly using the `new` keyword. Example: Using `Hmac` objects as streams: ```js const crypto = require('crypto'); const hmac = crypto.createHmac('sha256', 'a secret'); hmac.on('readable', () => { const data = hmac.read(); if (data) { console.log(data.toString('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e } }); hmac.write('some data to hash'); hmac.end(); ``` Example: Using `Hmac` and piped streams: ```js const crypto = require('crypto'); const fs = require('fs'); const hmac = crypto.createHmac('sha256', 'a secret'); const input = fs.createReadStream('test.js'); input.pipe(hmac).pipe(process.stdout); ``` Example: Using the [`hmac.update()`][] and [`hmac.digest()`][] methods: ```js const crypto = require('crypto'); const hmac = crypto.createHmac('sha256', 'a secret'); hmac.update('some data to hash'); console.log(hmac.digest('hex')); // Prints: // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e ``` ### hmac.digest([encoding]) - `encoding` {string} Calculates the HMAC digest of all of the data passed using [`hmac.update()`][]. The `encoding` can be `'hex'`, `'latin1'` or `'base64'`. If `encoding` is provided a string is returned; otherwise a [`Buffer`][] is returned; The `Hmac` object can not be used again after `hmac.digest()` has been called. Multiple calls to `hmac.digest()` will result in an error being thrown. ### hmac.update(data[, inputEncoding]) - `data` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} Updates the `Hmac` content with the given `data`, the encoding of which is given in `inputEncoding` and can be `'utf8'`, `'ascii'` or `'latin1'`. If `encoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ## Class: Sign The `Sign` Class is a utility for generating signatures. It can be used in one of two ways: - As a writable [stream][], where data to be signed is written and the [`sign.sign()`][] method is used to generate and return the signature, or - Using the [`sign.update()`][] and [`sign.sign()`][] methods to produce the signature. The [`crypto.createSign()`][] method is used to create `Sign` instances. The argument is the string name of the hash function to use. `Sign` objects are not to be created directly using the `new` keyword. Example: Using `Sign` objects as streams: ```js const crypto = require('crypto'); const sign = crypto.createSign('SHA256'); sign.write('some data to sign'); sign.end(); const privateKey = getPrivateKeySomehow(); console.log(sign.sign(privateKey, 'hex')); // Prints: the calculated signature using the specified private key and // SHA-256. For RSA keys, the algorithm is RSASSA-PKCS1-v1_5 (see padding // parameter below for RSASSA-PSS). For EC keys, the algorithm is ECDSA. ``` Example: Using the [`sign.update()`][] and [`sign.sign()`][] methods: ```js const crypto = require('crypto'); const sign = crypto.createSign('SHA256'); sign.update('some data to sign'); const privateKey = getPrivateKeySomehow(); console.log(sign.sign(privateKey, 'hex')); // Prints: the calculated signature ``` In some cases, a `Sign` instance can also be created by passing in a signature algorithm name, such as 'RSA-SHA256'. This will use the corresponding digest algorithm. This does not work for all signature algorithms, such as 'ecdsa-with-SHA256'. Use digest names instead. Example: signing using legacy signature algorithm name ```js const crypto = require('crypto'); const sign = crypto.createSign('RSA-SHA256'); sign.update('some data to sign'); const privateKey = getPrivateKeySomehow(); console.log(sign.sign(privateKey, 'hex')); // Prints: the calculated signature ``` ### sign.sign(privateKey[, outputFormat]) - `privateKey` {string | Object} - `key` {string} - `passphrase` {string} - `outputFormat` {string} Calculates the signature on all the data passed through using either [`sign.update()`][] or [`sign.write()`][stream-writable-write]. The `privateKey` argument can be an object or a string. If `privateKey` is a string, it is treated as a raw key with no passphrase. If `privateKey` is an object, it must contain one or more of the following properties: * `key`: {string} - PEM encoded private key (required) * `passphrase`: {string} - passphrase for the private key * `padding`: {integer} - Optional padding value for RSA, one of the following: * `crypto.constants.RSA_PKCS1_PADDING` (default) * `crypto.constants.RSA_PKCS1_PSS_PADDING` Note that `RSA_PKCS1_PSS_PADDING` will use MGF1 with the same hash function used to sign the message as specified in section 3.1 of [RFC 4055][]. * `saltLength`: {integer} - salt length for when padding is `RSA_PKCS1_PSS_PADDING`. The special value `crypto.constants.RSA_PSS_SALTLEN_DIGEST` sets the salt length to the digest size, `crypto.constants.RSA_PSS_SALTLEN_MAX_SIGN` (default) sets it to the maximum permissible value. The `outputFormat` can specify one of `'latin1'`, `'hex'` or `'base64'`. If `outputFormat` is provided a string is returned; otherwise a [`Buffer`][] is returned. The `Sign` object can not be again used after `sign.sign()` method has been called. Multiple calls to `sign.sign()` will result in an error being thrown. ### sign.update(data[, inputEncoding]) - `data` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} Updates the `Sign` content with the given `data`, the encoding of which is given in `inputEncoding` and can be `'utf8'`, `'ascii'` or `'latin1'`. If `encoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ## Class: Verify The `Verify` class is a utility for verifying signatures. It can be used in one of two ways: - As a writable [stream][] where written data is used to validate against the supplied signature, or - Using the [`verify.update()`][] and [`verify.verify()`][] methods to verify the signature. The [`crypto.createVerify()`][] method is used to create `Verify` instances. `Verify` objects are not to be created directly using the `new` keyword. Example: Using `Verify` objects as streams: ```js const crypto = require('crypto'); const verify = crypto.createVerify('SHA256'); verify.write('some data to sign'); verify.end(); const publicKey = getPublicKeySomehow(); const signature = getSignatureToVerify(); console.log(verify.verify(publicKey, signature)); // Prints: true or false ``` Example: Using the [`verify.update()`][] and [`verify.verify()`][] methods: ```js const crypto = require('crypto'); const verify = crypto.createVerify('SHA256'); verify.update('some data to sign'); const publicKey = getPublicKeySomehow(); const signature = getSignatureToVerify(); console.log(verify.verify(publicKey, signature)); // Prints: true or false ``` ### verify.update(data[, inputEncoding]) - `data` {string | Buffer | TypedArray | DataView} - `inputEncoding` {string} Updates the `Verify` content with the given `data`, the encoding of which is given in `inputEncoding` and can be `'utf8'`, `'ascii'` or `'latin1'`. If `encoding` is not provided, and the `data` is a string, an encoding of `'utf8'` is enforced. If `data` is a [`Buffer`][], `TypedArray`, or `DataView`, then `inputEncoding` is ignored. This can be called many times with new data as it is streamed. ### verify.verify(object, signature[, signatureFormat]) - `object` {string | Object} - `signature` {string | Buffer | TypedArray | DataView} - `signatureFormat` {string} Verifies the provided data using the given `object` and `signature`. The `object` argument can be either a string containing a PEM encoded object, which can be an RSA public key, a DSA public key, or an X.509 certificate, or an object with one or more of the following properties: * `key`: {string} - PEM encoded public key (required) * `padding`: {integer} - Optional padding value for RSA, one of the following: * `crypto.constants.RSA_PKCS1_PADDING` (default) * `crypto.constants.RSA_PKCS1_PSS_PADDING` Note that `RSA_PKCS1_PSS_PADDING` will use MGF1 with the same hash function used to verify the message as specified in section 3.1 of [RFC 4055][]. * `saltLength`: {integer} - salt length for when padding is `RSA_PKCS1_PSS_PADDING`. The special value `crypto.constants.RSA_PSS_SALTLEN_DIGEST` sets the salt length to the digest size, `crypto.constants.RSA_PSS_SALTLEN_AUTO` (default) causes it to be determined automatically. The `signature` argument is the previously calculated signature for the data, in the `signatureFormat` which can be `'latin1'`, `'hex'` or `'base64'`. If a `signatureFormat` is specified, the `signature` is expected to be a string; otherwise `signature` is expected to be a [`Buffer`][], `TypedArray`, or `DataView`. Returns `true` or `false` depending on the validity of the signature for the data and public key. The `verify` object can not be used again after `verify.verify()` has been called. Multiple calls to `verify.verify()` will result in an error being thrown. ## `crypto` module methods and properties ### crypto.constants Returns an object containing commonly used constants for crypto and security related operations. The specific constants currently defined are described in [Crypto Constants][]. ### crypto.DEFAULT_ENCODING The default encoding to use for functions that can take either strings or [buffers][`Buffer`]. The default value is `'buffer'`, which makes methods default to [`Buffer`][] objects. The `crypto.DEFAULT_ENCODING` mechanism is provided for backwards compatibility with legacy programs that expect `'latin1'` to be the default encoding. New applications should expect the default to be `'buffer'`. This property may become deprecated in a future Node.js release. ### crypto.fips Property for checking and controlling whether a FIPS compliant crypto provider is currently in use. Setting to true requires a FIPS build of Node.js. ### crypto.createCipher(algorithm, password[, options]) - `algorithm` {string} - `password` {string | Buffer | TypedArray | DataView} - `options` {Object} [`stream.transform` options][] Creates and returns a `Cipher` object that uses the given `algorithm` and `password`. Optional `options` argument controls stream behavior. The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On recent OpenSSL releases, `openssl list-cipher-algorithms` will display the available cipher algorithms. The `password` is used to derive the cipher key and initialization vector (IV). The value must be either a `'latin1'` encoded string, a [`Buffer`][], a `TypedArray`, or a `DataView`. The implementation of `crypto.createCipher()` derives keys using the OpenSSL function [`EVP_BytesToKey`][] with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly. In line with OpenSSL's recommendation to use pbkdf2 instead of [`EVP_BytesToKey`][] it is recommended that developers derive a key and IV on their own using [`crypto.pbkdf2()`][] and to use [`crypto.createCipheriv()`][] to create the `Cipher` object. Users should not use ciphers with counter mode (e.g. CTR, GCM or CCM) in `crypto.createCipher()`. A warning is emitted when they are used in order to avoid the risk of IV reuse that causes vulnerabilities. For the case when IV is reused in GCM, see [Nonce-Disrespecting Adversaries][] for details. ### crypto.createCipheriv(algorithm, key, iv[, options]) - `algorithm` {string} - `key` {string | Buffer | TypedArray | DataView} - `iv` {string | Buffer | TypedArray | DataView} - `options` {Object} [`stream.transform` options][] Creates and returns a `Cipher` object, with the given `algorithm`, `key` and initialization vector (`iv`). Optional `options` argument controls stream behavior. The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On recent OpenSSL releases, `openssl list-cipher-algorithms` will display the available cipher algorithms. The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector][]. Both arguments must be `'utf8'` encoded strings, [Buffers][`Buffer`], `TypedArray`, or `DataView`s. ### crypto.createCredentials(details) > Stability: 0 - Deprecated: Use [`tls.createSecureContext()`][] instead. - `details` {Object} Identical to [`tls.createSecureContext()`][]. The `crypto.createCredentials()` method is a deprecated function for creating and returning a `tls.SecureContext`. It should not be used. Replace it with [`tls.createSecureContext()`][] which has the exact same arguments and return value. Returns a `tls.SecureContext`, as-if [`tls.createSecureContext()`][] had been called. ### crypto.createDecipher(algorithm, password[, options]) - `algorithm` {string} - `password` {string | Buffer | TypedArray | DataView} - `options` {Object} [`stream.transform` options][] Creates and returns a `Decipher` object that uses the given `algorithm` and `password` (key). Optional `options` argument controls stream behavior. The implementation of `crypto.createDecipher()` derives keys using the OpenSSL function [`EVP_BytesToKey`][] with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly. In line with OpenSSL's recommendation to use pbkdf2 instead of [`EVP_BytesToKey`][] it is recommended that developers derive a key and IV on their own using [`crypto.pbkdf2()`][] and to use [`crypto.createDecipheriv()`][] to create the `Decipher` object. ### crypto.createDecipheriv(algorithm, key, iv[, options]) - `algorithm` {string} - `key` {string | Buffer | TypedArray | DataView} - `iv` {string | Buffer | TypedArray | DataView} - `options` {Object} [`stream.transform` options][] Creates and returns a `Decipher` object that uses the given `algorithm`, `key` and initialization vector (`iv`). Optional `options` argument controls stream behavior. The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On recent OpenSSL releases, `openssl list-cipher-algorithms` will display the available cipher algorithms. The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector][]. Both arguments must be `'utf8'` encoded strings or [buffers][`Buffer`]. ### crypto.createDiffieHellman(prime[, primeEncoding][, generator][, generatorEncoding]) - `prime` {string | Buffer | TypedArray | DataView} - `primeEncoding` {string} - `generator` {number | string | Buffer | TypedArray | DataView} Defaults to `2`. - `generatorEncoding` {string} Creates a `DiffieHellman` key exchange object using the supplied `prime` and an optional specific `generator`. The `generator` argument can be a number, string, or [`Buffer`][]. If `generator` is not specified, the value `2` is used. The `primeEncoding` and `generatorEncoding` arguments can be `'latin1'`, `'hex'`, or `'base64'`. If `primeEncoding` is specified, `prime` is expected to be a string; otherwise a [`Buffer`][], `TypedArray`, or `DataView` is expected. If `generatorEncoding` is specified, `generator` is expected to be a string; otherwise a number, [`Buffer`][], `TypedArray`, or `DataView` is expected. ### crypto.createDiffieHellman(primeLength[, generator]) - `primeLength` {number} - `generator` {number | string | Buffer | TypedArray | DataView} Defaults to `2`. Creates a `DiffieHellman` key exchange object and generates a prime of `primeLength` bits using an optional specific numeric `generator`. If `generator` is not specified, the value `2` is used. ### crypto.createECDH(curveName) - `curveName` {string} Creates an Elliptic Curve Diffie-Hellman (`ECDH`) key exchange object using a predefined curve specified by the `curveName` string. Use [`crypto.getCurves()`][] to obtain a list of available curve names. On recent OpenSSL releases, `openssl ecparam -list_curves` will also display the name and description of each available elliptic curve. ### crypto.createHash(algorithm[, options]) - `algorithm` {string} - `options` {Object} [`stream.transform` options][] Creates and returns a `Hash` object that can be used to generate hash digests using the given `algorithm`. Optional `options` argument controls stream behavior. The `algorithm` is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. On recent releases of OpenSSL, `openssl list-message-digest-algorithms` will display the available digest algorithms. Example: generating the sha256 sum of a file ```js const filename = process.argv[2]; const crypto = require('crypto'); const fs = require('fs'); const hash = crypto.createHash('sha256'); const input = fs.createReadStream(filename); input.on('readable', () => { const data = input.read(); if (data) hash.update(data); else { console.log(`${hash.digest('hex')} ${filename}`); } }); ``` ### crypto.createHmac(algorithm, key[, options]) - `algorithm` {string} - `key` {string | Buffer | TypedArray | DataView} - `options` {Object} [`stream.transform` options][] Creates and returns an `Hmac` object that uses the given `algorithm` and `key`. Optional `options` argument controls stream behavior. The `algorithm` is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. On recent releases of OpenSSL, `openssl list-message-digest-algorithms` will display the available digest algorithms. The `key` is the HMAC key used to generate the cryptographic HMAC hash. Example: generating the sha256 HMAC of a file ```js const filename = process.argv[2]; const crypto = require('crypto'); const fs = require('fs'); const hmac = crypto.createHmac('sha256', 'a secret'); const input = fs.createReadStream(filename); input.on('readable', () => { const data = input.read(); if (data) hmac.update(data); else { console.log(`${hmac.digest('hex')} ${filename}`); } }); ``` ### crypto.createSign(algorithm[, options]) - `algorithm` {string} - `options` {Object} [`stream.Writable` options][] Creates and returns a `Sign` object that uses the given `algorithm`. Use [`crypto.getHashes()`][] to obtain an array of names of the available signing algorithms. Optional `options` argument controls the `stream.Writable` behavior. ### crypto.createVerify(algorithm[, options]) - `algorithm` {string} - `options` {Object} [`stream.Writable` options][] Creates and returns a `Verify` object that uses the given algorithm. Use [`crypto.getHashes()`][] to obtain an array of names of the available signing algorithms. Optional `options` argument controls the `stream.Writable` behavior. ### crypto.getCiphers() Returns an array with the names of the supported cipher algorithms. Example: ```js const ciphers = crypto.getCiphers(); console.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...] ``` ### crypto.getCurves() Returns an array with the names of the supported elliptic curves. Example: ```js const curves = crypto.getCurves(); console.log(curves); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...] ``` ### crypto.getDiffieHellman(groupName) - `groupName` {string} Creates a predefined `DiffieHellman` key exchange object. The supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in [RFC 2412][], but see [Caveats][]) and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`, `'modp18'` (defined in [RFC 3526][]). The returned object mimics the interface of objects created by [`crypto.createDiffieHellman()`][], but will not allow changing the keys (with [`diffieHellman.setPublicKey()`][] for example). The advantage of using this method is that the parties do not have to generate nor exchange a group modulus beforehand, saving both processor and communication time. Example (obtaining a shared secret): ```js const crypto = require('crypto'); const alice = crypto.getDiffieHellman('modp14'); const bob = crypto.getDiffieHellman('modp14'); alice.generateKeys(); bob.generateKeys(); const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); /* aliceSecret and bobSecret should be the same */ console.log(aliceSecret === bobSecret); ``` ### crypto.getHashes() Returns an array of the names of the supported hash algorithms, such as `RSA-SHA256`. Example: ```js const hashes = crypto.getHashes(); console.log(hashes); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...] ``` ### crypto.pbkdf2(password, salt, iterations, keylen, digest, callback) - `password` {string|Buffer|TypedArray} - `salt` {string|Buffer|TypedArray} - `iterations` {number} - `keylen` {number} - `digest` {string} - `callback` {Function} - `err` {Error} - `derivedKey` {Buffer} Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by `digest` is applied to derive a key of the requested byte length (`keylen`) from the `password`, `salt` and `iterations`. The supplied `callback` function is called with two arguments: `err` and `derivedKey`. If an error occurs while deriving the key, `err` will be set; otherwise `err` will be null. By default, the successfully generated `derivedKey` will be passed to the callback as a [`Buffer`][]. An error will be thrown if any of the input arguments specify invalid values or types. The `iterations` argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete. The `salt` should also be as unique as possible. It is recommended that the salts are random and their lengths are greater than 16 bytes. See [NIST SP 800-132][] for details. Example: ```js const crypto = require('crypto'); crypto.pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => { if (err) throw err; console.log(derivedKey.toString('hex')); // '3745e48...08d59ae' }); ``` The `crypto.DEFAULT_ENCODING` may be used to change the way the `derivedKey` is passed to the callback: ```js const crypto = require('crypto'); crypto.DEFAULT_ENCODING = 'hex'; crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => { if (err) throw err; console.log(derivedKey); // '3745e48...aa39b34' }); ``` An array of supported digest functions can be retrieved using [`crypto.getHashes()`][]. Note that this API uses libuv's threadpool, which can have surprising and negative performance implications for some applications, see the [`UV_THREADPOOL_SIZE`][] documentation for more information. ### crypto.pbkdf2Sync(password, salt, iterations, keylen, digest) - `password` {string|Buffer|TypedArray} - `salt` {string|Buffer|TypedArray} - `iterations` {number} - `keylen` {number} - `digest` {string} Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2) implementation. A selected HMAC digest algorithm specified by `digest` is applied to derive a key of the requested byte length (`keylen`) from the `password`, `salt` and `iterations`. If an error occurs an Error will be thrown, otherwise the derived key will be returned as a [`Buffer`][]. The `iterations` argument must be a number set as high as possible. The higher the number of iterations, the more secure the derived key will be, but will take a longer amount of time to complete. The `salt` should also be as unique as possible. It is recommended that the salts are random and their lengths are greater than 16 bytes. See [NIST SP 800-132][] for details. Example: ```js const crypto = require('crypto'); const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512'); console.log(key.toString('hex')); // '3745e48...08d59ae' ``` The `crypto.DEFAULT_ENCODING` may be used to change the way the `derivedKey` is returned: ```js const crypto = require('crypto'); crypto.DEFAULT_ENCODING = 'hex'; const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512'); console.log(key); // '3745e48...aa39b34' ``` An array of supported digest functions can be retrieved using [`crypto.getHashes()`][]. ### crypto.privateDecrypt(privateKey, buffer) - `privateKey` {Object | string} - `key` {string} A PEM encoded private key. - `passphrase` {string} An optional passphrase for the private key. - `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`. - `buffer` {Buffer | TypedArray | DataView} - Returns: {Buffer} A new `Buffer` with the decrypted content. Decrypts `buffer` with `privateKey`. `privateKey` can be an object or a string. If `privateKey` is a string, it is treated as the key with no passphrase and will use `RSA_PKCS1_OAEP_PADDING`. ### crypto.privateEncrypt(privateKey, buffer) - `privateKey` {Object | string} - `key` {string} A PEM encoded private key. - `passphrase` {string} An optional passphrase for the private key. - `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `RSA_PKCS1_PADDING`. - `buffer` {Buffer | TypedArray | DataView} - Returns: {Buffer} A new `Buffer` with the encrypted content. Encrypts `buffer` with `privateKey`. `privateKey` can be an object or a string. If `privateKey` is a string, it is treated as the key with no passphrase and will use `RSA_PKCS1_PADDING`. ### crypto.publicDecrypt(key, buffer) - `key` {Object | string} - `key` {string} A PEM encoded public or private key. - `passphrase` {string} An optional passphrase for the private key. - `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING` or `RSA_PKCS1_PADDING`. - `buffer` {Buffer | TypedArray | DataView} - Returns: {Buffer} A new `Buffer` with the decrypted content. Decrypts `buffer` with `key`. `key` can be an object or a string. If `key` is a string, it is treated as the key with no passphrase and will use `RSA_PKCS1_PADDING`. Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key. ### crypto.publicEncrypt(key, buffer) - `key` {Object | string} - `key` {string} A PEM encoded public or private key. - `passphrase` {string} An optional passphrase for the private key. - `padding` {crypto.constants} An optional padding value defined in `crypto.constants`, which may be: `crypto.constants.RSA_NO_PADDING`, `RSA_PKCS1_PADDING`, or `crypto.constants.RSA_PKCS1_OAEP_PADDING`. - `buffer` {Buffer | TypedArray | DataView} - Returns: {Buffer} A new `Buffer` with the encrypted content. Encrypts the content of `buffer` with `key` and returns a new [`Buffer`][] with encrypted content. `key` can be an object or a string. If `key` is a string, it is treated as the key with no passphrase and will use `RSA_PKCS1_OAEP_PADDING`. Because RSA public keys can be derived from private keys, a private key may be passed instead of a public key. ### crypto.randomBytes(size[, callback]) - `size` {number} - `callback` {Function} - `err` {Error} - `buf` {Buffer} Generates cryptographically strong pseudo-random data. The `size` argument is a number indicating the number of bytes to generate. If a `callback` function is provided, the bytes are generated asynchronously and the `callback` function is invoked with two arguments: `err` and `buf`. If an error occurs, `err` will be an Error object; otherwise it is null. The `buf` argument is a [`Buffer`][] containing the generated bytes. ```js // Asynchronous const crypto = require('crypto'); crypto.randomBytes(256, (err, buf) => { if (err) throw err; console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`); }); ``` If the `callback` function is not provided, the random bytes are generated synchronously and returned as a [`Buffer`][]. An error will be thrown if there is a problem generating the bytes. ```js // Synchronous const buf = crypto.randomBytes(256); console.log( `${buf.length} bytes of random data: ${buf.toString('hex')}`); ``` The `crypto.randomBytes()` method will not complete until there is sufficient entropy available. This should normally never take longer than a few milliseconds. The only time when generating the random bytes may conceivably block for a longer period of time is right after boot, when the whole system is still low on entropy. Note that this API uses libuv's threadpool, which can have surprising and negative performance implications for some applications, see the [`UV_THREADPOOL_SIZE`][] documentation for more information. *Note*: The asynchronous version of `crypto.randomBytes()` is carried out in a single threadpool request. To minimize threadpool task length variation, partition large `randomBytes` requests when doing so as part of fulfilling a client request. ### crypto.randomFillSync(buffer[, offset][, size]) * `buffer` {Buffer|Uint8Array|ArrayBufferView} Must be supplied. * `offset` {number} Defaults to `0`. * `size` {number} Defaults to `buffer.length - offset`. Synchronous version of [`crypto.randomFill()`][]. Returns `buffer` ```js const buf = Buffer.alloc(10); console.log(crypto.randomFillSync(buf).toString('hex')); crypto.randomFillSync(buf, 5); console.log(buf.toString('hex')); // The above is equivalent to the following: crypto.randomFillSync(buf, 5, 5); console.log(buf.toString('hex')); ``` Any `TypedArray` or `DataView` instance may be passed as `buffer`. ```js const a = new Uint32Array(10); console.log(crypto.randomFillSync(a).toString('hex')); const b = new Float64Array(10); console.log(crypto.randomFillSync(a).toString('hex')); const c = new DataView(new ArrayBuffer(10)); console.log(crypto.randomFillSync(a).toString('hex')); ``` ### crypto.randomFill(buffer[, offset][, size], callback) * `buffer` {Buffer|Uint8Array|ArrayBufferView} Must be supplied. * `offset` {number} Defaults to `0`. * `size` {number} Defaults to `buffer.length - offset`. * `callback` {Function} `function(err, buf) {}`. This function is similar to [`crypto.randomBytes()`][] but requires the first argument to be a [`Buffer`][] that will be filled. It also requires that a callback is passed in. If the `callback` function is not provided, an error will be thrown. ```js const buf = Buffer.alloc(10); crypto.randomFill(buf, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); crypto.randomFill(buf, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); // The above is equivalent to the following: crypto.randomFill(buf, 5, 5, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); ``` Any `TypedArray` or `DataView` instance may be passed as `buffer`. ```js const a = new Uint32Array(10); crypto.randomFill(a, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); const b = new Float64Array(10); crypto.randomFill(b, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); const c = new DataView(new ArrayBuffer(10)); crypto.randomFill(c, (err, buf) => { if (err) throw err; console.log(buf.toString('hex')); }); ``` Note that this API uses libuv's threadpool, which can have surprising and negative performance implications for some applications, see the [`UV_THREADPOOL_SIZE`][] documentation for more information. *Note*: The asynchronous version of `crypto.randomFill()` is carried out in a single threadpool request. To minimize threadpool task length variation, partition large `randomFill` requests when doing so as part of fulfilling a client request. ### crypto.setEngine(engine[, flags]) - `engine` {string} - `flags` {crypto.constants} Defaults to `crypto.constants.ENGINE_METHOD_ALL`. Load and set the `engine` for some or all OpenSSL functions (selected by flags). `engine` could be either an id or a path to the engine's shared library. The optional `flags` argument uses `ENGINE_METHOD_ALL` by default. The `flags` is a bit field taking one of or a mix of the following flags (defined in `crypto.constants`): * `crypto.constants.ENGINE_METHOD_RSA` * `crypto.constants.ENGINE_METHOD_DSA` * `crypto.constants.ENGINE_METHOD_DH` * `crypto.constants.ENGINE_METHOD_RAND` * `crypto.constants.ENGINE_METHOD_ECDH` * `crypto.constants.ENGINE_METHOD_ECDSA` * `crypto.constants.ENGINE_METHOD_CIPHERS` * `crypto.constants.ENGINE_METHOD_DIGESTS` * `crypto.constants.ENGINE_METHOD_STORE` * `crypto.constants.ENGINE_METHOD_PKEY_METHS` * `crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS` * `crypto.constants.ENGINE_METHOD_ALL` * `crypto.constants.ENGINE_METHOD_NONE` ### crypto.timingSafeEqual(a, b) - `a` {Buffer | TypedArray | DataView} - `b` {Buffer | TypedArray | DataView} This function is based on a constant-time algorithm. Returns true if `a` is equal to `b`, without leaking timing information that would allow an attacker to guess one of the values. This is suitable for comparing HMAC digests or secret values like authentication cookies or [capability urls](https://www.w3.org/TR/capability-urls/). `a` and `b` must both be `Buffer`s, `TypedArray`s, or `DataView`s, and they must have the same length. *Note*: Use of `crypto.timingSafeEqual` does not guarantee that the *surrounding* code is timing-safe. Care should be taken to ensure that the surrounding code does not introduce timing vulnerabilities. ## Notes ### Legacy Streams API (pre Node.js v0.10) The Crypto module was added to Node.js before there was the concept of a unified Stream API, and before there were [`Buffer`][] objects for handling binary data. As such, the many of the `crypto` defined classes have methods not typically found on other Node.js classes that implement the [streams][stream] API (e.g. `update()`, `final()`, or `digest()`). Also, many methods accepted and returned `'latin1'` encoded strings by default rather than Buffers. This default was changed after Node.js v0.8 to use [`Buffer`][] objects by default instead. ### Recent ECDH Changes Usage of `ECDH` with non-dynamically generated key pairs has been simplified. Now, [`ecdh.setPrivateKey()`][] can be called with a preselected private key and the associated public point (key) will be computed and stored in the object. This allows code to only store and provide the private part of the EC key pair. [`ecdh.setPrivateKey()`][] now also validates that the private key is valid for the selected curve. The [`ecdh.setPublicKey()`][] method is now deprecated as its inclusion in the API is not useful. Either a previously stored private key should be set, which automatically generates the associated public key, or [`ecdh.generateKeys()`][] should be called. The main drawback of using [`ecdh.setPublicKey()`][] is that it can be used to put the ECDH key pair into an inconsistent state. ### Support for weak or compromised algorithms The `crypto` module still supports some algorithms which are already compromised and are not currently recommended for use. The API also allows the use of ciphers and hashes with a small key size that are considered to be too weak for safe use. Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements. Based on the recommendations of [NIST SP 800-131A][]: - MD5 and SHA-1 are no longer acceptable where collision resistance is required such as digital signatures. - The key used with RSA, DSA and DH algorithms is recommended to have at least 2048 bits and that of the curve of ECDSA and ECDH at least 224 bits, to be safe to use for several years. - The DH groups of `modp1`, `modp2` and `modp5` have a key size smaller than 2048 bits and are not recommended. See the reference for other recommendations and details. ## Crypto Constants The following constants exported by `crypto.constants` apply to various uses of the `crypto`, `tls`, and `https` modules and are generally specific to OpenSSL. ### OpenSSL Options
Constant Description
SSL_OP_ALL Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for detail.
SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CIPHER_SERVER_PREFERENCE Attempts to use the server's preferences instead of the client's when selecting a cipher. Behavior depends on protocol version. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html.
SSL_OP_CISCO_ANYCONNECT Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER.
SSL_OP_COOKIE_EXCHANGE Instructs OpenSSL to turn on cookie exchange.
SSL_OP_CRYPTOPRO_TLSEXT_BUG Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft.
SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d.
SSL_OP_EPHEMERAL_RSA Instructs OpenSSL to always use the tmp_rsa key when performing RSA operations.
SSL_OP_LEGACY_SERVER_CONNECT Allows initial connection to servers that do not support RI.
SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER
SSL_OP_MICROSOFT_SESS_ID_BUG
SSL_OP_MSIE_SSLV2_RSA_PADDING Instructs OpenSSL to disable the workaround for a man-in-the-middle protocol-version vulnerability in the SSL 2.0 server implementation.
SSL_OP_NETSCAPE_CA_DN_BUG
SSL_OP_NETSCAPE_CHALLENGE_BUG
SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG
SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG
SSL_OP_NO_COMPRESSION Instructs OpenSSL to disable support for SSL/TLS compression.
SSL_OP_NO_QUERY_MTU
SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION Instructs OpenSSL to always start a new session when performing renegotiation.
SSL_OP_NO_SSLv2 Instructs OpenSSL to turn off SSL v2
SSL_OP_NO_SSLv3 Instructs OpenSSL to turn off SSL v3
SSL_OP_NO_TICKET Instructs OpenSSL to disable use of RFC4507bis tickets.
SSL_OP_NO_TLSv1 Instructs OpenSSL to turn off TLS v1
SSL_OP_NO_TLSv1_1 Instructs OpenSSL to turn off TLS v1.1
SSL_OP_NO_TLSv1_2 Instructs OpenSSL to turn off TLS v1.2
SSL_OP_PKCS1_CHECK_1
SSL_OP_PKCS1_CHECK_2
SSL_OP_SINGLE_DH_USE Instructs OpenSSL to always create a new key when using temporary/ephemeral DH parameters.
SSL_OP_SINGLE_ECDH_USE Instructs OpenSSL to always create a new key when using temporary/ephemeral ECDH parameters.
SSL_OP_SSLEAY_080_CLIENT_DH_BUG
SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG
SSL_OP_TLS_BLOCK_PADDING_BUG
SSL_OP_TLS_D5_BUG
SSL_OP_TLS_ROLLBACK_BUG Instructs OpenSSL to disable version rollback attack detection.
### OpenSSL Engine Constants
Constant Description
ENGINE_METHOD_RSA Limit engine usage to RSA
ENGINE_METHOD_DSA Limit engine usage to DSA
ENGINE_METHOD_DH Limit engine usage to DH
ENGINE_METHOD_RAND Limit engine usage to RAND
ENGINE_METHOD_ECDH Limit engine usage to ECDH
ENGINE_METHOD_ECDSA Limit engine usage to ECDSA
ENGINE_METHOD_CIPHERS Limit engine usage to CIPHERS
ENGINE_METHOD_DIGESTS Limit engine usage to DIGESTS
ENGINE_METHOD_STORE Limit engine usage to STORE
ENGINE_METHOD_PKEY_METHS Limit engine usage to PKEY_METHDS
ENGINE_METHOD_PKEY_ASN1_METHS Limit engine usage to PKEY_ASN1_METHS
ENGINE_METHOD_ALL
ENGINE_METHOD_NONE
### Other OpenSSL Constants
Constant Description
DH_CHECK_P_NOT_SAFE_PRIME
DH_CHECK_P_NOT_PRIME
DH_UNABLE_TO_CHECK_GENERATOR
DH_NOT_SUITABLE_GENERATOR
NPN_ENABLED
ALPN_ENABLED
RSA_PKCS1_PADDING
RSA_SSLV23_PADDING
RSA_NO_PADDING
RSA_PKCS1_OAEP_PADDING
RSA_X931_PADDING
RSA_PKCS1_PSS_PADDING
RSA_PSS_SALTLEN_DIGEST Sets the salt length for `RSA_PKCS1_PSS_PADDING` to the digest size when signing or verifying.
RSA_PSS_SALTLEN_MAX_SIGN Sets the salt length for `RSA_PKCS1_PSS_PADDING` to the maximum permissible value when signing data.
RSA_PSS_SALTLEN_AUTO Causes the salt length for `RSA_PKCS1_PSS_PADDING` to be determined automatically when verifying a signature.
POINT_CONVERSION_COMPRESSED
POINT_CONVERSION_UNCOMPRESSED
POINT_CONVERSION_HYBRID
### Node.js Crypto Constants
Constant Description
defaultCoreCipherList Specifies the built-in default cipher list used by Node.js.
defaultCipherList Specifies the active default cipher list used by the current Node.js process.
[`Buffer`]: buffer.html [`EVP_BytesToKey`]: https://www.openssl.org/docs/man1.0.2/crypto/EVP_BytesToKey.html [`UV_THREADPOOL_SIZE`]: cli.html#cli_uv_threadpool_size_size [`cipher.final()`]: #crypto_cipher_final_outputencoding [`cipher.update()`]: #crypto_cipher_update_data_inputencoding_outputencoding [`crypto.createCipher()`]: #crypto_crypto_createcipher_algorithm_password_options [`crypto.createCipheriv()`]: #crypto_crypto_createcipheriv_algorithm_key_iv_options [`crypto.createDecipher()`]: #crypto_crypto_createdecipher_algorithm_password_options [`crypto.createDecipheriv()`]: #crypto_crypto_createdecipheriv_algorithm_key_iv_options [`crypto.createDiffieHellman()`]: #crypto_crypto_creatediffiehellman_prime_primeencoding_generator_generatorencoding [`crypto.createECDH()`]: #crypto_crypto_createecdh_curvename [`crypto.createHash()`]: #crypto_crypto_createhash_algorithm_options [`crypto.createHmac()`]: #crypto_crypto_createhmac_algorithm_key_options [`crypto.createSign()`]: #crypto_crypto_createsign_algorithm_options [`crypto.createVerify()`]: #crypto_crypto_createverify_algorithm_options [`crypto.getCurves()`]: #crypto_crypto_getcurves [`crypto.getHashes()`]: #crypto_crypto_gethashes [`crypto.pbkdf2()`]: #crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback [`crypto.randomBytes()`]: #crypto_crypto_randombytes_size_callback [`crypto.randomFill()`]: #crypto_crypto_randomfill_buffer_offset_size_callback [`decipher.final()`]: #crypto_decipher_final_outputencoding [`decipher.update()`]: #crypto_decipher_update_data_inputencoding_outputencoding [`diffieHellman.setPublicKey()`]: #crypto_diffiehellman_setpublickey_publickey_encoding [`ecdh.generateKeys()`]: #crypto_ecdh_generatekeys_encoding_format [`ecdh.setPrivateKey()`]: #crypto_ecdh_setprivatekey_privatekey_encoding [`ecdh.setPublicKey()`]: #crypto_ecdh_setpublickey_publickey_encoding [`hash.digest()`]: #crypto_hash_digest_encoding [`hash.update()`]: #crypto_hash_update_data_inputencoding [`hmac.digest()`]: #crypto_hmac_digest_encoding [`hmac.update()`]: #crypto_hmac_update_data_inputencoding [`sign.sign()`]: #crypto_sign_sign_privatekey_outputformat [`sign.update()`]: #crypto_sign_update_data_inputencoding [`stream.transform` options]: stream.html#stream_new_stream_transform_options [`stream.Writable` options]: stream.html#stream_constructor_new_stream_writable_options [`tls.createSecureContext()`]: tls.html#tls_tls_createsecurecontext_options [`verify.update()`]: #crypto_verify_update_data_inputencoding [`verify.verify()`]: #crypto_verify_verify_object_signature_signatureformat [Caveats]: #crypto_support_for_weak_or_compromised_algorithms [Crypto Constants]: #crypto_crypto_constants_1 [HTML5's `keygen` element]: https://www.w3.org/TR/html5/forms.html#the-keygen-element [NIST SP 800-131A]: http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf [NIST SP 800-132]: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf [Nonce-Disrespecting Adversaries]: https://github.com/nonce-disrespect/nonce-disrespect [OpenSSL's SPKAC implementation]: https://www.openssl.org/docs/man1.0.2/apps/spkac.html [RFC 2412]: https://www.rfc-editor.org/rfc/rfc2412.txt [RFC 3526]: https://www.rfc-editor.org/rfc/rfc3526.txt [RFC 4055]: https://www.rfc-editor.org/rfc/rfc4055.txt [initialization vector]: https://en.wikipedia.org/wiki/Initialization_vector [stream-writable-write]: stream.html#stream_writable_write_chunk_encoding_callback [stream]: stream.html