// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; const { ArrayIsArray, NumberIsInteger, NumberIsNaN, ObjectDefineProperties, ObjectSetPrototypeOf, Set, SymbolAsyncIterator, Symbol } = primordials; module.exports = Readable; Readable.ReadableState = ReadableState; const EE = require('events'); const Stream = require('stream'); const { Buffer } = require('buffer'); const debug = require('internal/util/debuglog').debuglog('stream'); const BufferList = require('internal/streams/buffer_list'); const destroyImpl = require('internal/streams/destroy'); const { getHighWaterMark, getDefaultHighWaterMark } = require('internal/streams/state'); const { ERR_INVALID_ARG_TYPE, ERR_STREAM_PUSH_AFTER_EOF, ERR_METHOD_NOT_IMPLEMENTED, ERR_STREAM_UNSHIFT_AFTER_END_EVENT } = require('internal/errors').codes; const kPaused = Symbol('kPaused'); // Lazy loaded to improve the startup performance. let StringDecoder; let createReadableStreamAsyncIterator; let from; ObjectSetPrototypeOf(Readable.prototype, Stream.prototype); ObjectSetPrototypeOf(Readable, Stream); const { errorOrDestroy } = destroyImpl; const kProxyEvents = ['error', 'close', 'destroy', 'pause', 'resume']; function prependListener(emitter, event, fn) { // Sadly this is not cacheable as some libraries bundle their own // event emitter implementation with them. if (typeof emitter.prependListener === 'function') return emitter.prependListener(event, fn); // This is a hack to make sure that our error handler is attached before any // userland ones. NEVER DO THIS. This is here only because this code needs // to continue to work with older versions of Node.js that do not include // the prependListener() method. The goal is to eventually remove this hack. if (!emitter._events || !emitter._events[event]) emitter.on(event, fn); else if (ArrayIsArray(emitter._events[event])) emitter._events[event].unshift(fn); else emitter._events[event] = [fn, emitter._events[event]]; } function ReadableState(options, stream, isDuplex) { // Duplex streams are both readable and writable, but share // the same options object. // However, some cases require setting options to different // values for the readable and the writable sides of the duplex stream. // These options can be provided separately as readableXXX and writableXXX. if (typeof isDuplex !== 'boolean') isDuplex = stream instanceof Stream.Duplex; // Object stream flag. Used to make read(n) ignore n and to // make all the buffer merging and length checks go away. this.objectMode = !!(options && options.objectMode); if (isDuplex) this.objectMode = this.objectMode || !!(options && options.readableObjectMode); // The point at which it stops calling _read() to fill the buffer // Note: 0 is a valid value, means "don't call _read preemptively ever" this.highWaterMark = options ? getHighWaterMark(this, options, 'readableHighWaterMark', isDuplex) : getDefaultHighWaterMark(false); // A linked list is used to store data chunks instead of an array because the // linked list can remove elements from the beginning faster than // array.shift(). this.buffer = new BufferList(); this.length = 0; this.pipes = []; this.flowing = null; this.ended = false; this.endEmitted = false; this.reading = false; // A flag to be able to tell if the event 'readable'/'data' is emitted // immediately, or on a later tick. We set this to true at first, because // any actions that shouldn't happen until "later" should generally also // not happen before the first read call. this.sync = true; // Whenever we return null, then we set a flag to say // that we're awaiting a 'readable' event emission. this.needReadable = false; this.emittedReadable = false; this.readableListening = false; this.resumeScheduled = false; this[kPaused] = null; // True if the error was already emitted and should not be thrown again. this.errorEmitted = false; // Should close be emitted on destroy. Defaults to true. this.emitClose = !options || options.emitClose !== false; // Should .destroy() be called after 'end' (and potentially 'finish'). this.autoDestroy = !options || options.autoDestroy !== false; // Has it been destroyed. this.destroyed = false; // Indicates whether the stream has errored. When true no further // _read calls, 'data' or 'readable' events should occur. This is needed // since when autoDestroy is disabled we need a way to tell whether the // stream has failed. this.errored = false; // Indicates whether the stream has finished destroying. this.closed = false; // True if close has been emitted or would have been emitted // depending on emitClose. this.closeEmitted = false; // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. this.defaultEncoding = (options && options.defaultEncoding) || 'utf8'; // Ref the piped dest which we need a drain event on it // type: null | Writable | Set. this.awaitDrainWriters = null; this.multiAwaitDrain = false; // If true, a maybeReadMore has been scheduled. this.readingMore = false; this.decoder = null; this.encoding = null; if (options && options.encoding) { if (!StringDecoder) StringDecoder = require('string_decoder').StringDecoder; this.decoder = new StringDecoder(options.encoding); this.encoding = options.encoding; } } function Readable(options) { if (!(this instanceof Readable)) return new Readable(options); // Checking for a Stream.Duplex instance is faster here instead of inside // the ReadableState constructor, at least with V8 6.5. const isDuplex = this instanceof Stream.Duplex; this._readableState = new ReadableState(options, this, isDuplex); if (options) { if (typeof options.read === 'function') this._read = options.read; if (typeof options.destroy === 'function') this._destroy = options.destroy; } Stream.call(this, options); } Readable.prototype.destroy = destroyImpl.destroy; Readable.prototype._undestroy = destroyImpl.undestroy; Readable.prototype._destroy = function(err, cb) { cb(err); }; Readable.prototype[EE.captureRejectionSymbol] = function(err) { this.destroy(err); }; // Manually shove something into the read() buffer. // This returns true if the highWaterMark has not been hit yet, // similar to how Writable.write() returns true if you should // write() some more. Readable.prototype.push = function(chunk, encoding) { return readableAddChunk(this, chunk, encoding, false); }; // Unshift should *always* be something directly out of read(). Readable.prototype.unshift = function(chunk, encoding) { return readableAddChunk(this, chunk, encoding, true); }; function readableAddChunk(stream, chunk, encoding, addToFront) { debug('readableAddChunk', chunk); const state = stream._readableState; let err; if (!state.objectMode) { if (typeof chunk === 'string') { encoding = encoding || state.defaultEncoding; if (state.encoding !== encoding) { if (addToFront && state.encoding) { // When unshifting, if state.encoding is set, we have to save // the string in the BufferList with the state encoding. chunk = Buffer.from(chunk, encoding).toString(state.encoding); } else { chunk = Buffer.from(chunk, encoding); encoding = ''; } } } else if (chunk instanceof Buffer) { encoding = ''; } else if (Stream._isUint8Array(chunk)) { chunk = Stream._uint8ArrayToBuffer(chunk); encoding = ''; } else if (chunk != null) { err = new ERR_INVALID_ARG_TYPE( 'chunk', ['string', 'Buffer', 'Uint8Array'], chunk); } } if (err) { errorOrDestroy(stream, err); } else if (chunk === null) { state.reading = false; onEofChunk(stream, state); } else if (state.objectMode || (chunk && chunk.length > 0)) { if (addToFront) { if (state.endEmitted) errorOrDestroy(stream, new ERR_STREAM_UNSHIFT_AFTER_END_EVENT()); else addChunk(stream, state, chunk, true); } else if (state.ended) { errorOrDestroy(stream, new ERR_STREAM_PUSH_AFTER_EOF()); } else if (state.destroyed || state.errored) { return false; } else { state.reading = false; if (state.decoder && !encoding) { chunk = state.decoder.write(chunk); if (state.objectMode || chunk.length !== 0) addChunk(stream, state, chunk, false); else maybeReadMore(stream, state); } else { addChunk(stream, state, chunk, false); } } } else if (!addToFront) { state.reading = false; maybeReadMore(stream, state); } // We can push more data if we are below the highWaterMark. // Also, if we have no data yet, we can stand some more bytes. // This is to work around cases where hwm=0, such as the repl. return !state.ended && (state.length < state.highWaterMark || state.length === 0); } function addChunk(stream, state, chunk, addToFront) { if (state.flowing && state.length === 0 && !state.sync) { // Use the guard to avoid creating `Set()` repeatedly // when we have multiple pipes. if (state.multiAwaitDrain) { state.awaitDrainWriters.clear(); } else { state.awaitDrainWriters = null; } stream.emit('data', chunk); } else { // Update the buffer info. state.length += state.objectMode ? 1 : chunk.length; if (addToFront) state.buffer.unshift(chunk); else state.buffer.push(chunk); if (state.needReadable) emitReadable(stream); } maybeReadMore(stream, state); } Readable.prototype.isPaused = function() { const state = this._readableState; return state[kPaused] === true || state.flowing === false; }; // Backwards compatibility. Readable.prototype.setEncoding = function(enc) { if (!StringDecoder) StringDecoder = require('string_decoder').StringDecoder; const decoder = new StringDecoder(enc); this._readableState.decoder = decoder; // If setEncoding(null), decoder.encoding equals utf8. this._readableState.encoding = this._readableState.decoder.encoding; const buffer = this._readableState.buffer; // Iterate over current buffer to convert already stored Buffers: let content = ''; for (const data of buffer) { content += decoder.write(data); } buffer.clear(); if (content !== '') buffer.push(content); this._readableState.length = content.length; return this; }; // Don't raise the hwm > 1GB. const MAX_HWM = 0x40000000; function computeNewHighWaterMark(n) { if (n >= MAX_HWM) { // TODO(ronag): Throw ERR_VALUE_OUT_OF_RANGE. n = MAX_HWM; } else { // Get the next highest power of 2 to prevent increasing hwm excessively in // tiny amounts. n--; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; n++; } return n; } // This function is designed to be inlinable, so please take care when making // changes to the function body. function howMuchToRead(n, state) { if (n <= 0 || (state.length === 0 && state.ended)) return 0; if (state.objectMode) return 1; if (NumberIsNaN(n)) { // Only flow one buffer at a time. if (state.flowing && state.length) return state.buffer.first().length; return state.length; } if (n <= state.length) return n; return state.ended ? state.length : 0; } // You can override either this method, or the async _read(n) below. Readable.prototype.read = function(n) { debug('read', n); // Same as parseInt(undefined, 10), however V8 7.3 performance regressed // in this scenario, so we are doing it manually. if (n === undefined) { n = NaN; } else if (!NumberIsInteger(n)) { n = parseInt(n, 10); } const state = this._readableState; const nOrig = n; // If we're asking for more than the current hwm, then raise the hwm. if (n > state.highWaterMark) state.highWaterMark = computeNewHighWaterMark(n); if (n !== 0) state.emittedReadable = false; // If we're doing read(0) to trigger a readable event, but we // already have a bunch of data in the buffer, then just trigger // the 'readable' event and move on. if (n === 0 && state.needReadable && ((state.highWaterMark !== 0 ? state.length >= state.highWaterMark : state.length > 0) || state.ended)) { debug('read: emitReadable', state.length, state.ended); if (state.length === 0 && state.ended) endReadable(this); else emitReadable(this); return null; } n = howMuchToRead(n, state); // If we've ended, and we're now clear, then finish it up. if (n === 0 && state.ended) { if (state.length === 0) endReadable(this); return null; } // All the actual chunk generation logic needs to be // *below* the call to _read. The reason is that in certain // synthetic stream cases, such as passthrough streams, _read // may be a completely synchronous operation which may change // the state of the read buffer, providing enough data when // before there was *not* enough. // // So, the steps are: // 1. Figure out what the state of things will be after we do // a read from the buffer. // // 2. If that resulting state will trigger a _read, then call _read. // Note that this may be asynchronous, or synchronous. Yes, it is // deeply ugly to write APIs this way, but that still doesn't mean // that the Readable class should behave improperly, as streams are // designed to be sync/async agnostic. // Take note if the _read call is sync or async (ie, if the read call // has returned yet), so that we know whether or not it's safe to emit // 'readable' etc. // // 3. Actually pull the requested chunks out of the buffer and return. // if we need a readable event, then we need to do some reading. let doRead = state.needReadable; debug('need readable', doRead); // If we currently have less than the highWaterMark, then also read some. if (state.length === 0 || state.length - n < state.highWaterMark) { doRead = true; debug('length less than watermark', doRead); } // However, if we've ended, then there's no point, if we're already // reading, then it's unnecessary, and if we're destroyed or errored, // then it's not allowed. if (state.ended || state.reading || state.destroyed || state.errored) { doRead = false; debug('reading or ended', doRead); } else if (doRead) { debug('do read'); state.reading = true; state.sync = true; // If the length is currently zero, then we *need* a readable event. if (state.length === 0) state.needReadable = true; // Call internal read method this._read(state.highWaterMark); state.sync = false; // If _read pushed data synchronously, then `reading` will be false, // and we need to re-evaluate how much data we can return to the user. if (!state.reading) n = howMuchToRead(nOrig, state); } let ret; if (n > 0) ret = fromList(n, state); else ret = null; if (ret === null) { state.needReadable = state.length <= state.highWaterMark; n = 0; } else { state.length -= n; if (state.multiAwaitDrain) { state.awaitDrainWriters.clear(); } else { state.awaitDrainWriters = null; } } if (state.length === 0) { // If we have nothing in the buffer, then we want to know // as soon as we *do* get something into the buffer. if (!state.ended) state.needReadable = true; // If we tried to read() past the EOF, then emit end on the next tick. if (nOrig !== n && state.ended) endReadable(this); } if (ret !== null) this.emit('data', ret); return ret; }; function onEofChunk(stream, state) { debug('onEofChunk'); if (state.ended) return; if (state.decoder) { const chunk = state.decoder.end(); if (chunk && chunk.length) { state.buffer.push(chunk); state.length += state.objectMode ? 1 : chunk.length; } } state.ended = true; if (state.sync) { // If we are sync, wait until next tick to emit the data. // Otherwise we risk emitting data in the flow() // the readable code triggers during a read() call. emitReadable(stream); } else { // Emit 'readable' now to make sure it gets picked up. state.needReadable = false; state.emittedReadable = true; // We have to emit readable now that we are EOF. Modules // in the ecosystem (e.g. dicer) rely on this event being sync. emitReadable_(stream); } } // Don't emit readable right away in sync mode, because this can trigger // another read() call => stack overflow. This way, it might trigger // a nextTick recursion warning, but that's not so bad. function emitReadable(stream) { const state = stream._readableState; debug('emitReadable', state.needReadable, state.emittedReadable); state.needReadable = false; if (!state.emittedReadable) { debug('emitReadable', state.flowing); state.emittedReadable = true; process.nextTick(emitReadable_, stream); } } function emitReadable_(stream) { const state = stream._readableState; debug('emitReadable_', state.destroyed, state.length, state.ended); if (!state.destroyed && !state.errored && (state.length || state.ended)) { stream.emit('readable'); state.emittedReadable = false; } // The stream needs another readable event if: // 1. It is not flowing, as the flow mechanism will take // care of it. // 2. It is not ended. // 3. It is below the highWaterMark, so we can schedule // another readable later. state.needReadable = !state.flowing && !state.ended && state.length <= state.highWaterMark; flow(stream); } // At this point, the user has presumably seen the 'readable' event, // and called read() to consume some data. that may have triggered // in turn another _read(n) call, in which case reading = true if // it's in progress. // However, if we're not ended, or reading, and the length < hwm, // then go ahead and try to read some more preemptively. function maybeReadMore(stream, state) { if (!state.readingMore) { state.readingMore = true; process.nextTick(maybeReadMore_, stream, state); } } function maybeReadMore_(stream, state) { // Attempt to read more data if we should. // // The conditions for reading more data are (one of): // - Not enough data buffered (state.length < state.highWaterMark). The loop // is responsible for filling the buffer with enough data if such data // is available. If highWaterMark is 0 and we are not in the flowing mode // we should _not_ attempt to buffer any extra data. We'll get more data // when the stream consumer calls read() instead. // - No data in the buffer, and the stream is in flowing mode. In this mode // the loop below is responsible for ensuring read() is called. Failing to // call read here would abort the flow and there's no other mechanism for // continuing the flow if the stream consumer has just subscribed to the // 'data' event. // // In addition to the above conditions to keep reading data, the following // conditions prevent the data from being read: // - The stream has ended (state.ended). // - There is already a pending 'read' operation (state.reading). This is a // case where the the stream has called the implementation defined _read() // method, but they are processing the call asynchronously and have _not_ // called push() with new data. In this case we skip performing more // read()s. The execution ends in this method again after the _read() ends // up calling push() with more data. while (!state.reading && !state.ended && (state.length < state.highWaterMark || (state.flowing && state.length === 0))) { const len = state.length; debug('maybeReadMore read 0'); stream.read(0); if (len === state.length) // Didn't get any data, stop spinning. break; } state.readingMore = false; } // Abstract method. to be overridden in specific implementation classes. // call cb(er, data) where data is <= n in length. // for virtual (non-string, non-buffer) streams, "length" is somewhat // arbitrary, and perhaps not very meaningful. Readable.prototype._read = function(n) { throw new ERR_METHOD_NOT_IMPLEMENTED('_read()'); }; Readable.prototype.pipe = function(dest, pipeOpts) { const src = this; const state = this._readableState; if (state.pipes.length === 1) { if (!state.multiAwaitDrain) { state.multiAwaitDrain = true; state.awaitDrainWriters = new Set( state.awaitDrainWriters ? [state.awaitDrainWriters] : [] ); } } state.pipes.push(dest); debug('pipe count=%d opts=%j', state.pipes.length, pipeOpts); const doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr; const endFn = doEnd ? onend : unpipe; if (state.endEmitted) process.nextTick(endFn); else src.once('end', endFn); dest.on('unpipe', onunpipe); function onunpipe(readable, unpipeInfo) { debug('onunpipe'); if (readable === src) { if (unpipeInfo && unpipeInfo.hasUnpiped === false) { unpipeInfo.hasUnpiped = true; cleanup(); } } } function onend() { debug('onend'); dest.end(); } let ondrain; let cleanedUp = false; function cleanup() { debug('cleanup'); // Cleanup event handlers once the pipe is broken. dest.removeListener('close', onclose); dest.removeListener('finish', onfinish); if (ondrain) { dest.removeListener('drain', ondrain); } dest.removeListener('error', onerror); dest.removeListener('unpipe', onunpipe); src.removeListener('end', onend); src.removeListener('end', unpipe); src.removeListener('data', ondata); cleanedUp = true; // If the reader is waiting for a drain event from this // specific writer, then it would cause it to never start // flowing again. // So, if this is awaiting a drain, then we just call it now. // If we don't know, then assume that we are waiting for one. if (ondrain && state.awaitDrainWriters && (!dest._writableState || dest._writableState.needDrain)) ondrain(); } src.on('data', ondata); function ondata(chunk) { debug('ondata'); const ret = dest.write(chunk); debug('dest.write', ret); if (ret === false) { // If the user unpiped during `dest.write()`, it is possible // to get stuck in a permanently paused state if that write // also returned false. // => Check whether `dest` is still a piping destination. if (!cleanedUp) { if (state.pipes.length === 1 && state.pipes[0] === dest) { debug('false write response, pause', 0); state.awaitDrainWriters = dest; state.multiAwaitDrain = false; } else if (state.pipes.length > 1 && state.pipes.includes(dest)) { debug('false write response, pause', state.awaitDrainWriters.size); state.awaitDrainWriters.add(dest); } src.pause(); } if (!ondrain) { // When the dest drains, it reduces the awaitDrain counter // on the source. This would be more elegant with a .once() // handler in flow(), but adding and removing repeatedly is // too slow. ondrain = pipeOnDrain(src, dest); dest.on('drain', ondrain); } } } // If the dest has an error, then stop piping into it. // However, don't suppress the throwing behavior for this. function onerror(er) { debug('onerror', er); unpipe(); dest.removeListener('error', onerror); if (EE.listenerCount(dest, 'error') === 0) { const s = dest._writableState || dest._readableState; if (s && !s.errorEmitted) { // User incorrectly emitted 'error' directly on the stream. errorOrDestroy(dest, er); } else { dest.emit('error', er); } } } // Make sure our error handler is attached before userland ones. prependListener(dest, 'error', onerror); // Both close and finish should trigger unpipe, but only once. function onclose() { dest.removeListener('finish', onfinish); unpipe(); } dest.once('close', onclose); function onfinish() { debug('onfinish'); dest.removeListener('close', onclose); unpipe(); } dest.once('finish', onfinish); function unpipe() { debug('unpipe'); src.unpipe(dest); } // Tell the dest that it's being piped to. dest.emit('pipe', src); // Start the flow if it hasn't been started already. if (!state.flowing) { debug('pipe resume'); src.resume(); } return dest; }; function pipeOnDrain(src, dest) { return function pipeOnDrainFunctionResult() { const state = src._readableState; // `ondrain` will call directly, // `this` maybe not a reference to dest, // so we use the real dest here. if (state.awaitDrainWriters === dest) { debug('pipeOnDrain', 1); state.awaitDrainWriters = null; } else if (state.multiAwaitDrain) { debug('pipeOnDrain', state.awaitDrainWriters.size); state.awaitDrainWriters.delete(dest); } if ((!state.awaitDrainWriters || state.awaitDrainWriters.size === 0) && EE.listenerCount(src, 'data')) { state.flowing = true; flow(src); } }; } Readable.prototype.unpipe = function(dest) { const state = this._readableState; const unpipeInfo = { hasUnpiped: false }; // If we're not piping anywhere, then do nothing. if (state.pipes.length === 0) return this; if (!dest) { // remove all. const dests = state.pipes; state.pipes = []; this.pause(); for (const dest of dests) dest.emit('unpipe', this, { hasUnpiped: false }); return this; } // Try to find the right one. const index = state.pipes.indexOf(dest); if (index === -1) return this; state.pipes.splice(index, 1); if (state.pipes.length === 0) this.pause(); dest.emit('unpipe', this, unpipeInfo); return this; }; // Set up data events if they are asked for // Ensure readable listeners eventually get something. Readable.prototype.on = function(ev, fn) { const res = Stream.prototype.on.call(this, ev, fn); const state = this._readableState; if (ev === 'data') { // Update readableListening so that resume() may be a no-op // a few lines down. This is needed to support once('readable'). state.readableListening = this.listenerCount('readable') > 0; // Try start flowing on next tick if stream isn't explicitly paused. if (state.flowing !== false) this.resume(); } else if (ev === 'readable') { if (!state.endEmitted && !state.readableListening) { state.readableListening = state.needReadable = true; state.flowing = false; state.emittedReadable = false; debug('on readable', state.length, state.reading); if (state.length) { emitReadable(this); } else if (!state.reading) { process.nextTick(nReadingNextTick, this); } } } return res; }; Readable.prototype.addListener = Readable.prototype.on; Readable.prototype.removeListener = function(ev, fn) { const res = Stream.prototype.removeListener.call(this, ev, fn); if (ev === 'readable') { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this); } return res; }; Readable.prototype.off = Readable.prototype.removeListener; Readable.prototype.removeAllListeners = function(ev) { const res = Stream.prototype.removeAllListeners.apply(this, arguments); if (ev === 'readable' || ev === undefined) { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this); } return res; }; function updateReadableListening(self) { const state = self._readableState; state.readableListening = self.listenerCount('readable') > 0; if (state.resumeScheduled && state[kPaused] === false) { // Flowing needs to be set to true now, otherwise // the upcoming resume will not flow. state.flowing = true; // Crude way to check if we should resume. } else if (self.listenerCount('data') > 0) { self.resume(); } else if (!state.readableListening) { state.flowing = null; } } function nReadingNextTick(self) { debug('readable nexttick read 0'); self.read(0); } // pause() and resume() are remnants of the legacy readable stream API // If the user uses them, then switch into old mode. Readable.prototype.resume = function() { const state = this._readableState; if (!state.flowing) { debug('resume'); // We flow only if there is no one listening // for readable, but we still have to call // resume(). state.flowing = !state.readableListening; resume(this, state); } state[kPaused] = false; return this; }; function resume(stream, state) { if (!state.resumeScheduled) { state.resumeScheduled = true; process.nextTick(resume_, stream, state); } } function resume_(stream, state) { debug('resume', state.reading); if (!state.reading) { stream.read(0); } state.resumeScheduled = false; stream.emit('resume'); flow(stream); if (state.flowing && !state.reading) stream.read(0); } Readable.prototype.pause = function() { debug('call pause flowing=%j', this._readableState.flowing); if (this._readableState.flowing !== false) { debug('pause'); this._readableState.flowing = false; this.emit('pause'); } this._readableState[kPaused] = true; return this; }; function flow(stream) { const state = stream._readableState; debug('flow', state.flowing); while (state.flowing && stream.read() !== null); } // Wrap an old-style stream as the async data source. // This is *not* part of the readable stream interface. // It is an ugly unfortunate mess of history. Readable.prototype.wrap = function(stream) { const state = this._readableState; let paused = false; stream.on('end', () => { debug('wrapped end'); if (state.decoder && !state.ended) { const chunk = state.decoder.end(); if (chunk && chunk.length) this.push(chunk); } this.push(null); }); stream.on('data', (chunk) => { debug('wrapped data'); if (state.decoder) chunk = state.decoder.write(chunk); // Don't skip over falsy values in objectMode. if (state.objectMode && (chunk === null || chunk === undefined)) return; else if (!state.objectMode && (!chunk || !chunk.length)) return; const ret = this.push(chunk); if (!ret) { paused = true; stream.pause(); } }); // Proxy all the other methods. Important when wrapping filters and duplexes. for (const i in stream) { if (this[i] === undefined && typeof stream[i] === 'function') { this[i] = function methodWrap(method) { return function methodWrapReturnFunction() { return stream[method].apply(stream, arguments); }; }(i); } } // Proxy certain important events. for (const kProxyEvent of kProxyEvents) { stream.on(kProxyEvent, this.emit.bind(this, kProxyEvent)); } // When we try to consume some more bytes, simply unpause the // underlying stream. this._read = (n) => { debug('wrapped _read', n); if (paused) { paused = false; stream.resume(); } }; return this; }; Readable.prototype[SymbolAsyncIterator] = function() { if (createReadableStreamAsyncIterator === undefined) { createReadableStreamAsyncIterator = require('internal/streams/async_iterator'); } return createReadableStreamAsyncIterator(this); }; // Making it explicit these properties are not enumerable // because otherwise some prototype manipulation in // userland will fail. ObjectDefineProperties(Readable.prototype, { readable: { get() { const r = this._readableState; // r.readable === false means that this is part of a Duplex stream // where the readable side was disabled upon construction. // Compat. The user might manually disable readable side through // deprecated setter. return !!r && r.readable !== false && !r.destroyed && !r.errorEmitted && !r.endEmitted; }, set(val) { // Backwards compat. if (this._readableState) { this._readableState.readable = !!val; } } }, readableHighWaterMark: { enumerable: false, get: function() { return this._readableState.highWaterMark; } }, readableBuffer: { enumerable: false, get: function() { return this._readableState && this._readableState.buffer; } }, readableFlowing: { enumerable: false, get: function() { return this._readableState.flowing; }, set: function(state) { if (this._readableState) { this._readableState.flowing = state; } } }, readableLength: { enumerable: false, get() { return this._readableState.length; } }, readableObjectMode: { enumerable: false, get() { return this._readableState ? this._readableState.objectMode : false; } }, readableEncoding: { enumerable: false, get() { return this._readableState ? this._readableState.encoding : null; } }, destroyed: { enumerable: false, get() { if (this._readableState === undefined) { return false; } return this._readableState.destroyed; }, set(value) { // We ignore the value if the stream // has not been initialized yet. if (!this._readableState) { return; } // Backward compatibility, the user is explicitly // managing destroyed. this._readableState.destroyed = value; } }, readableEnded: { enumerable: false, get() { return this._readableState ? this._readableState.endEmitted : false; } }, // Legacy getter for `pipesCount` pipesCount: { get() { return this.pipes.length; } }, paused: { get() { return this[kPaused] !== false; }, set(value) { this[kPaused] = !!value; } } }); // Exposed for testing purposes only. Readable._fromList = fromList; // Pluck off n bytes from an array of buffers. // Length is the combined lengths of all the buffers in the list. // This function is designed to be inlinable, so please take care when making // changes to the function body. function fromList(n, state) { // nothing buffered. if (state.length === 0) return null; let ret; if (state.objectMode) ret = state.buffer.shift(); else if (!n || n >= state.length) { // Read it all, truncate the list. if (state.decoder) ret = state.buffer.join(''); else if (state.buffer.length === 1) ret = state.buffer.first(); else ret = state.buffer.concat(state.length); state.buffer.clear(); } else { // read part of list. ret = state.buffer.consume(n, state.decoder); } return ret; } function endReadable(stream) { const state = stream._readableState; debug('endReadable', state.endEmitted); if (!state.endEmitted) { state.ended = true; process.nextTick(endReadableNT, state, stream); } } function endReadableNT(state, stream) { debug('endReadableNT', state.endEmitted, state.length); // Check that we didn't get one last unshift. if (!state.errorEmitted && !state.closeEmitted && !state.endEmitted && state.length === 0) { state.endEmitted = true; stream.emit('end'); if (stream.writable && stream.allowHalfOpen === false) { process.nextTick(endWritableNT, state, stream); } else if (state.autoDestroy) { // In case of duplex streams we need a way to detect // if the writable side is ready for autoDestroy as well. const wState = stream._writableState; const autoDestroy = !wState || ( wState.autoDestroy && // We don't expect the writable to ever 'finish' // if writable is explicitly set to false. (wState.finished || wState.writable === false) ); if (autoDestroy) { stream.destroy(); } } } } function endWritableNT(state, stream) { const writable = stream.writable && !stream.writableEnded && !stream.destroyed; if (writable) { stream.end(); } } Readable.from = function(iterable, opts) { if (from === undefined) { from = require('internal/streams/from'); } return from(Readable, iterable, opts); };