# Crypto Stability: 2 - Stable Use `require('crypto')` to access this module. The crypto module offers a way of encapsulating secure credentials to be used as part of a secure HTTPS net or http connection. It also offers a set of wrappers for OpenSSL's hash, hmac, cipher, decipher, sign and verify methods. ## Class: Certificate The class used for working with signed public key & challenges. The most common usage for this series of functions is when dealing with the `` element. https://www.openssl.org/docs/apps/spkac.html Returned by `crypto.Certificate`. ### Certificate.exportChallenge(spkac) Exports the encoded challenge associated with the SPKAC. ### Certificate.exportPublicKey(spkac) Exports the encoded public key from the supplied SPKAC. ### Certificate.verifySpkac(spkac) Returns true of false based on the validity of the SPKAC. ## Class: Cipher Class for encrypting data. Returned by `crypto.createCipher` and `crypto.createCipheriv`. Cipher objects are [streams][] that are both readable and writable. The written plain text data is used to produce the encrypted data on the readable side. The legacy `update` and `final` methods are also supported. ### cipher.final([output_encoding]) Returns any remaining enciphered contents, with `output_encoding` being one of: `'binary'`, `'base64'` or `'hex'`. If no encoding is provided, then a buffer is returned. Note: `cipher` object can not be used after `final()` method has been called. ### cipher.getAuthTag() For authenticated encryption modes (currently supported: GCM), this method returns a `Buffer` that represents the _authentication tag_ that has been computed from the given data. Should be called after encryption has been completed using the `final` method! ### cipher.setAAD(buffer) For authenticated encryption modes (currently supported: GCM), this method sets the value used for the additional authenticated data (AAD) input parameter. ### cipher.setAutoPadding(auto_padding=true) You can disable automatic padding of the input data to block size. If `auto_padding` is false, the length of the entire input data must be a multiple of the cipher's block size or `final` will fail. Useful for non-standard padding, e.g. using `0x0` instead of PKCS padding. You must call this before `cipher.final`. ### cipher.update(data[, input_encoding][, output_encoding]) Updates the cipher with `data`, the encoding of which is given in `input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`. If no encoding is provided, then a buffer is expected. If `data` is a `Buffer` then `input_encoding` is ignored. The `output_encoding` specifies the output format of the enciphered data, and can be `'binary'`, `'base64'` or `'hex'`. If no encoding is provided, then a buffer is returned. Returns the enciphered contents, and can be called many times with new data as it is streamed. ## Class: Decipher Class for decrypting data. Returned by [`crypto.createDecipher`][] and [`crypto.createDecipheriv`][]. Decipher objects are [streams][] that are both readable and writable. The written enciphered data is used to produce the plain-text data on the the readable side. The legacy `update` and `final` methods are also supported. ### decipher.final([output_encoding]) Returns any remaining plaintext which is deciphered, with `output_encoding` being one of: `'binary'`, `'ascii'` or `'utf8'`. If no encoding is provided, then a buffer is returned. Note: `decipher` object can not be used after `final()` method has been called. ### decipher.setAAD(buffer) For authenticated encryption modes (currently supported: GCM), this method sets the value used for the additional authenticated data (AAD) input parameter. ### decipher.setAuthTag(buffer) For authenticated encryption modes (currently supported: GCM), this method must be used to pass in the received _authentication tag_. If no tag is provided or if the ciphertext has been tampered with, `final` will throw, thus indicating that the ciphertext should be discarded due to failed authentication. ### decipher.setAutoPadding(auto_padding=true) You can disable auto padding if the data has been encrypted without standard block padding to prevent `decipher.final` from checking and removing it. This will only work if the input data's length is a multiple of the ciphers block size. You must call this before streaming data to [`decipher.update`][]. ### decipher.update(data[, input_encoding][, output_encoding]) Updates the decipher with `data`, which is encoded in `'binary'`, `'base64'` or `'hex'`. If no encoding is provided, then a buffer is expected. If `data` is a `Buffer` then `input_encoding` is ignored. The `output_decoding` specifies in what format to return the deciphered plaintext: `'binary'`, `'ascii'` or `'utf8'`. If no encoding is provided, then a buffer is returned. ## Class: DiffieHellman The class for creating Diffie-Hellman key exchanges. Returned by `crypto.createDiffieHellman`. ### diffieHellman.computeSecret(other_public_key[, input_encoding][, output_encoding]) Computes the shared secret using `other_public_key` as the other party's public key and returns the computed shared secret. Supplied key is interpreted using specified `input_encoding`, and secret is encoded using specified `output_encoding`. Encodings can be `'binary'`, `'hex'`, or `'base64'`. If the input encoding is not provided, then a buffer is expected. If no output encoding is given, then a buffer is returned. ### diffieHellman.generateKeys([encoding]) Generates private and public Diffie-Hellman key values, and returns the public key in the specified encoding. This key should be transferred to the other party. Encoding can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### diffieHellman.getGenerator([encoding]) Returns the Diffie-Hellman generator in the specified encoding, which can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### diffieHellman.getPrime([encoding]) Returns the Diffie-Hellman prime in the specified encoding, which can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### diffieHellman.getPrivateKey([encoding]) Returns the Diffie-Hellman private key in the specified encoding, which can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### diffieHellman.getPublicKey([encoding]) Returns the Diffie-Hellman public key in the specified encoding, which can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### diffieHellman.setPrivateKey(private_key[, encoding]) Sets the Diffie-Hellman private key. Key encoding can be `'binary'`, `'hex'` or `'base64'`. If no encoding is provided, then a buffer is expected. ### diffieHellman.setPublicKey(public_key[, encoding]) Sets the Diffie-Hellman public key. Key encoding can be `'binary'`, `'hex'` or `'base64'`. If no encoding is provided, then a buffer is expected. ### diffieHellman.verifyError A bit field containing any warnings and/or errors as a result of a check performed during initialization. The following values are valid for this property (defined in `constants` module): * `DH_CHECK_P_NOT_SAFE_PRIME` * `DH_CHECK_P_NOT_PRIME` * `DH_UNABLE_TO_CHECK_GENERATOR` * `DH_NOT_SUITABLE_GENERATOR` ## Class: ECDH The class for creating EC Diffie-Hellman key exchanges. Returned by `crypto.createECDH`. ### ECDH.computeSecret(other_public_key[, input_encoding][, output_encoding]) Computes the shared secret using `other_public_key` as the other party's public key and returns the computed shared secret. Supplied key is interpreted using specified `input_encoding`, and secret is encoded using specified `output_encoding`. Encodings can be `'binary'`, `'hex'`, or `'base64'`. If the input encoding is not provided, then a buffer is expected. If no output encoding is given, then a buffer is returned. ### ECDH.generateKeys([encoding[, format]]) Generates private and public EC Diffie-Hellman key values, and returns the public key in the specified format and encoding. This key should be transferred to the other party. Format specifies point encoding and can be `'compressed'`, `'uncompressed'`, or `'hybrid'`. If no format is provided - the point will be returned in `'uncompressed'` format. Encoding can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### ECDH.getPrivateKey([encoding]) Returns the EC Diffie-Hellman private key in the specified encoding, which can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### ECDH.getPublicKey([encoding[, format]]) Returns the EC Diffie-Hellman public key in the specified encoding and format. Format specifies point encoding and can be `'compressed'`, `'uncompressed'`, or `'hybrid'`. If no format is provided - the point will be returned in `'uncompressed'` format. Encoding can be `'binary'`, `'hex'`, or `'base64'`. If no encoding is provided, then a buffer is returned. ### ECDH.setPrivateKey(private_key[, encoding]) Sets the EC Diffie-Hellman private key. Key encoding can be `'binary'`, `'hex'` or `'base64'`. If no encoding is provided, then a buffer is expected. If `private_key` is not valid for the curve specified when the ECDH object was created, then an error is thrown. Upon setting the private key, the associated public point (key) is also generated and set in the ECDH object. ### ECDH.setPublicKey(public_key[, encoding]) Stability: 0 - Deprecated Sets the EC Diffie-Hellman public key. Key encoding can be `'binary'`, `'hex'` or `'base64'`. If no encoding is provided, then a buffer is expected. Note that there is not normally a reason to call this method. This is because ECDH only needs your private key and the other party's public key to compute the shared secret. Thus, usually either `generateKeys` or `setPrivateKey` will be called. Note that `setPrivateKey` attempts to generate the public point/key associated with the private key being set. Example (obtaining a shared secret): const crypto = require('crypto'); const alice = crypto.createECDH('secp256k1'); const bob = crypto.createECDH('secp256k1'); // Note: This is a shortcut way to specify one of Alice's previous private // keys. It would be unwise to use such a predictable private key in a real // application. alice.setPrivateKey( crypto.createHash('sha256').update('alice', 'utf8').digest() ); // Bob uses a newly generated cryptographically strong pseudorandom key pair bob.generateKeys(); const alice_secret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bob_secret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); // alice_secret and bob_secret should be the same shared secret value console.log(alice_secret === bob_secret); ## Class: Hash The class for creating hash digests of data. It is a [stream][] that is both readable and writable. The written data is used to compute the hash. Once the writable side of the stream is ended, use the `read()` method to get the computed hash digest. The legacy `update` and `digest` methods are also supported. Returned by `crypto.createHash`. ### hash.digest([encoding]) Calculates the digest of all of the passed data to be hashed. The `encoding` can be `'hex'`, `'binary'` or `'base64'`. If no encoding is provided, then a buffer is returned. Note: `hash` object can not be used after `digest()` method has been called. ### hash.update(data[, input_encoding]) Updates the hash content with the given `data`, the encoding of which is given in `input_encoding` and can be `'utf8'`, `'ascii'` or `'binary'`. If no encoding is provided, and the input is a string, an encoding of `'binary'` is enforced. If `data` is a `Buffer` then `input_encoding` is ignored. This can be called many times with new data as it is streamed. ## Class: Hmac Class for creating cryptographic hmac content. Returned by `crypto.createHmac`. ### hmac.digest([encoding]) Calculates the digest of all of the passed data to the hmac. The `encoding` can be `'hex'`, `'binary'` or `'base64'`. If no encoding is provided, then a buffer is returned. Note: `hmac` object can not be used after `digest()` method has been called. ### hmac.update(data) Update the hmac content with the given `data`. This can be called many times with new data as it is streamed. ## Class: Sign Class for generating signatures. Returned by `crypto.createSign`. Sign objects are writable [streams][]. The written data is used to generate the signature. Once all of the data has been written, the `sign` method will return the signature. The legacy `update` method is also supported. ### sign.sign(private_key[, output_format]) Calculates the signature on all the updated data passed through the sign. `private_key` can be an object or a string. If `private_key` is a string, it is treated as the key with no passphrase. `private_key`: * `key` : A string holding the PEM encoded private key * `passphrase` : A string of passphrase for the private key Returns the signature in `output_format` which can be `'binary'`, `'hex'` or `'base64'`. If no encoding is provided, then a buffer is returned. Note: `sign` object can not be used after `sign()` method has been called. ### sign.update(data) Updates the sign object with data. This can be called many times with new data as it is streamed. ## Class: Verify Class for verifying signatures. Returned by `crypto.createVerify`. Verify objects are writable [streams][]. The written data is used to validate against the supplied signature. Once all of the data has been written, the `verify` method will return true if the supplied signature is valid. The legacy `update` method is also supported. ### verifier.update(data) Updates the verifier object with data. This can be called many times with new data as it is streamed. ### verifier.verify(object, signature[, signature_format]) Verifies the signed data by using the `object` and `signature`. `object` is a string containing a PEM encoded object, which can be one of RSA public key, DSA public key, or X.509 certificate. `signature` is the previously calculated signature for the data, in the `signature_format` which can be `'binary'`, `'hex'` or `'base64'`. If no encoding is specified, then a buffer is expected. Returns true or false depending on the validity of the signature for the data and public key. Note: `verifier` object can not be used after `verify()` method has been called. ## crypto.DEFAULT_ENCODING The default encoding to use for functions that can take either strings or buffers. The default value is `'buffer'`, which makes it default to using Buffer objects. This is here to make the crypto module more easily compatible with legacy programs that expected `'binary'` to be the default encoding. Note that new programs will probably expect buffers, so only use this as a temporary measure. ## crypto.createCipher(algorithm, password) Creates and returns a cipher object, with the given algorithm and password. `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On recent releases, `openssl list-cipher-algorithms` will display the available cipher algorithms. `password` is used to derive key and IV, which must be a `'binary'` encoded string or a [buffer][]. It is a [stream][] that is both readable and writable. The written data is used to compute the hash. Once the writable side of the stream is ended, use the `read()` method to get the enciphered contents. The legacy `update` and `final` methods are also supported. Note: `createCipher` derives keys with the OpenSSL function [`EVP_BytesToKey`][] with the digest algorithm set to MD5, one iteration, and no salt. The lack of salt allows dictionary attacks as the same password always creates the same key. The low iteration count and non-cryptographically secure hash algorithm allow passwords to be tested very rapidly. In line with OpenSSL's recommendation to use pbkdf2 instead of [`EVP_BytesToKey`][] it is recommended you derive a key and iv yourself with [`crypto.pbkdf2`][] and to then use [`createCipheriv()`][] to create the cipher stream. ## crypto.createCipheriv(algorithm, key, iv) Creates and returns a cipher object, with the given algorithm, key and iv. `algorithm` is the same as the argument to `createCipher()`. `key` is the raw key used by the algorithm. `iv` is an [initialization vector][]. `key` and `iv` must be `'binary'` encoded strings or [buffers][]. ## crypto.createCredentials(details) Stability: 0 - Deprecated: Use [`tls.createSecureContext`][] instead. Creates a credentials object, with the optional details being a dictionary with keys: * `pfx` : A string or buffer holding the PFX or PKCS12 encoded private key, certificate and CA certificates * `key` : A string holding the PEM encoded private key * `passphrase` : A string of passphrase for the private key or pfx * `cert` : A string holding the PEM encoded certificate * `ca` : Either a string or list of strings of PEM encoded CA certificates to trust. * `crl` : Either a string or list of strings of PEM encoded CRLs (Certificate Revocation List) * `ciphers`: A string describing the ciphers to use or exclude. Consult for details on the format. If no 'ca' details are given, then Node.js will use the default publicly trusted list of CAs as given in . ## crypto.createDecipher(algorithm, password) Creates and returns a decipher object, with the given algorithm and key. This is the mirror of the [`createCipher()`][] above. ## crypto.createDecipheriv(algorithm, key, iv) Creates and returns a decipher object, with the given algorithm, key and iv. This is the mirror of the [`createCipheriv()`][] above. ## crypto.createDiffieHellman(prime[, prime_encoding][, generator][, generator_encoding]) Creates a Diffie-Hellman key exchange object using the supplied `prime` and an optional specific `generator`. `generator` can be a number, string, or Buffer. If no `generator` is specified, then `2` is used. `prime_encoding` and `generator_encoding` can be `'binary'`, `'hex'`, or `'base64'`. If no `prime_encoding` is specified, then a Buffer is expected for `prime`. If no `generator_encoding` is specified, then a Buffer is expected for `generator`. ## crypto.createDiffieHellman(prime_length[, generator]) Creates a Diffie-Hellman key exchange object and generates a prime of `prime_length` bits and using an optional specific numeric `generator`. If no `generator` is specified, then `2` is used. ## crypto.createECDH(curve_name) Creates an Elliptic Curve (EC) Diffie-Hellman key exchange object using a predefined curve specified by the `curve_name` string. Use [`getCurves()`][] to obtain a list of available curve names. On recent releases, `openssl ecparam -list_curves` will also display the name and description of each available elliptic curve. ## crypto.createHash(algorithm) Creates and returns a hash object, a cryptographic hash with the given algorithm which can be used to generate hash digests. `algorithm` is dependent on the available algorithms supported by the version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc. On recent releases, `openssl list-message-digest-algorithms` will display the available digest algorithms. Example: this program that takes the sha256 sum of a file const filename = process.argv[2]; const crypto = require('crypto'); const fs = require('fs'); const shasum = crypto.createHash('sha256'); const s = fs.ReadStream(filename); s.on('data', (d) => { shasum.update(d); }); s.on('end', () => { var d = shasum.digest('hex'); console.log(`${d} ${filename}`); }); ## crypto.createHmac(algorithm, key) Creates and returns a hmac object, a cryptographic hmac with the given algorithm and key. It is a [stream][] that is both readable and writable. The written data is used to compute the hmac. Once the writable side of the stream is ended, use the `read()` method to get the computed digest. The legacy `update` and `digest` methods are also supported. `algorithm` is dependent on the available algorithms supported by OpenSSL - see createHash above. `key` is the hmac key to be used. ## crypto.createSign(algorithm) Creates and returns a signing object, with the given algorithm. On recent OpenSSL releases, `openssl list-public-key-algorithms` will display the available signing algorithms. Examples are `'RSA-SHA256'`. ## crypto.createVerify(algorithm) Creates and returns a verification object, with the given algorithm. This is the mirror of the signing object above. ## crypto.getCiphers() Returns an array with the names of the supported ciphers. Example: const ciphers = crypto.getCiphers(); console.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...] ## crypto.getCurves() Returns an array with the names of the supported elliptic curves. Example: const curves = crypto.getCurves(); console.log(curves); // ['secp256k1', 'secp384r1', ...] ## crypto.getDiffieHellman(group_name) Creates a predefined Diffie-Hellman key exchange object. The supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in [RFC 2412][], but see [Caveats][]) and `'modp14'`, `'modp15'`, `'modp16'`, `'modp17'`, `'modp18'` (defined in [RFC 3526][]). The returned object mimics the interface of objects created by [`crypto.createDiffieHellman()`][] above, but will not allow changing the keys (with [`diffieHellman.setPublicKey()`][] for example). The advantage of using this routine is that the parties do not have to generate nor exchange group modulus beforehand, saving both processor and communication time. Example (obtaining a shared secret): const crypto = require('crypto'); const alice = crypto.getDiffieHellman('modp14'); const bob = crypto.getDiffieHellman('modp14'); alice.generateKeys(); bob.generateKeys(); const alice_secret = alice.computeSecret(bob.getPublicKey(), null, 'hex'); const bob_secret = bob.computeSecret(alice.getPublicKey(), null, 'hex'); /* alice_secret and bob_secret should be the same */ console.log(alice_secret == bob_secret); ## crypto.getHashes() Returns an array with the names of the supported hash algorithms. Example: const hashes = crypto.getHashes(); console.log(hashes); // ['sha', 'sha1', 'sha1WithRSAEncryption', ...] ## crypto.pbkdf2(password, salt, iterations, keylen[, digest], callback) Asynchronous PBKDF2 function. Applies the selected HMAC digest function (default: SHA1) to derive a key of the requested byte length from the password, salt and number of iterations. The callback gets two arguments: `(err, derivedKey)`. The number of iterations passed to pbkdf2 should be as high as possible, the higher the number, the more secure it will be, but will take a longer amount of time to complete. Chosen salts should also be unique. It is recommended that the salts are random and their length is greater than 16 bytes. See [NIST SP 800-132] for details. Example: crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', function(err, key) { if (err) throw err; console.log(key.toString('hex')); // 'c5e478d...1469e50' }); You can get a list of supported digest functions with [`crypto.getHashes()`][]. ## crypto.pbkdf2Sync(password, salt, iterations, keylen[, digest]) Synchronous PBKDF2 function. Returns derivedKey or throws error. ## crypto.privateDecrypt(private_key, buffer) Decrypts `buffer` with `private_key`. `private_key` can be an object or a string. If `private_key` is a string, it is treated as the key with no passphrase and will use `RSA_PKCS1_OAEP_PADDING`. `private_key`: * `key` : A string holding the PEM encoded private key * `passphrase` : An optional string of passphrase for the private key * `padding` : An optional padding value, one of the following: * `constants.RSA_NO_PADDING` * `constants.RSA_PKCS1_PADDING` * `constants.RSA_PKCS1_OAEP_PADDING` NOTE: All paddings are defined in `constants` module. ## crypto.privateEncrypt(private_key, buffer) See above for details. Has the same API as `crypto.privateDecrypt`. Default padding is `RSA_PKCS1_PADDING`. ## crypto.publicDecrypt(public_key, buffer) See above for details. Has the same API as `crypto.publicEncrypt`. Default padding is `RSA_PKCS1_PADDING`. ## crypto.publicEncrypt(public_key, buffer) Encrypts `buffer` with `public_key`. Only RSA is currently supported. `public_key` can be an object or a string. If `public_key` is a string, it is treated as the key with no passphrase and will use `RSA_PKCS1_OAEP_PADDING`. Since RSA public keys may be derived from private keys you may pass a private key to this method. `public_key`: * `key` : A string holding the PEM encoded private key * `passphrase` : An optional string of passphrase for the private key * `padding` : An optional padding value, one of the following: * `constants.RSA_NO_PADDING` * `constants.RSA_PKCS1_PADDING` * `constants.RSA_PKCS1_OAEP_PADDING` NOTE: All paddings are defined in `constants` module. ## crypto.randomBytes(size[, callback]) Generates cryptographically strong pseudo-random data. Usage: // async crypto.randomBytes(256, (ex, buf) => { if (ex) throw ex; console.log('Have %d bytes of random data: %s', buf.length, buf); }); // sync const buf = crypto.randomBytes(256); console.log('Have %d bytes of random data: %s', buf.length, buf); NOTE: This will block if there is insufficient entropy, although it should normally never take longer than a few milliseconds. The only time when this may conceivably block is right after boot, when the whole system is still low on entropy. ## crypto.setEngine(engine[, flags]) Load and set engine for some/all OpenSSL functions (selected by flags). `engine` could be either an id or a path to the engine's shared library. `flags` is optional and has `ENGINE_METHOD_ALL` value by default. It could take one of or mix of following flags (defined in `constants` module): * `ENGINE_METHOD_RSA` * `ENGINE_METHOD_DSA` * `ENGINE_METHOD_DH` * `ENGINE_METHOD_RAND` * `ENGINE_METHOD_ECDH` * `ENGINE_METHOD_ECDSA` * `ENGINE_METHOD_CIPHERS` * `ENGINE_METHOD_DIGESTS` * `ENGINE_METHOD_STORE` * `ENGINE_METHOD_PKEY_METH` * `ENGINE_METHOD_PKEY_ASN1_METH` * `ENGINE_METHOD_ALL` * `ENGINE_METHOD_NONE` ## Recent API Changes The Crypto module was added to Node.js before there was the concept of a unified Stream API, and before there were Buffer objects for handling binary data. As such, the streaming classes don't have the typical methods found on other Node.js classes, and many methods accepted and returned Binary-encoded strings by default rather than Buffers. This was changed to use Buffers by default instead. This is a breaking change for some use cases, but not all. For example, if you currently use the default arguments to the Sign class, and then pass the results to the Verify class, without ever inspecting the data, then it will continue to work as before. Where you once got a binary string and then presented the binary string to the Verify object, you'll now get a Buffer, and present the Buffer to the Verify object. However, if you were doing things with the string data that will not work properly on Buffers (such as, concatenating them, storing in databases, etc.), or you are passing binary strings to the crypto functions without an encoding argument, then you will need to start providing encoding arguments to specify which encoding you'd like to use. To switch to the previous style of using binary strings by default, set the `crypto.DEFAULT_ENCODING` field to 'binary'. Note that new programs will probably expect buffers, so only use this as a temporary measure. Usage of `ECDH` with non-dynamically generated key pairs has been simplified. Now, `setPrivateKey` can be called with a preselected private key and the associated public point (key) will be computed and stored in the object. This allows you to only store and provide the private part of the EC key pair. `setPrivateKey` now also validates that the private key is valid for the curve. `ECDH.setPublicKey` is now deprecated as its inclusion in the API is not useful. Either a previously stored private key should be set, which automatically generates the associated public key, or `generateKeys` should be called. The main drawback of `ECDH.setPublicKey` is that it can be used to put the ECDH key pair into an inconsistent state. ## Caveats The crypto module still supports some algorithms which are already compromised. And the API also allows the use of ciphers and hashes with a small key size that are considered to be too weak for safe use. Users should take full responsibility for selecting the crypto algorithm and key size according to their security requirements. Based on the recommendations of [NIST SP 800-131A]: - MD5 and SHA-1 are no longer acceptable where collision resistance is required such as digital signatures. - The key used with RSA, DSA and DH algorithms is recommended to have at least 2048 bits and that of the curve of ECDSA and ECDH at least 224 bits, to be safe to use for several years. - The DH groups of `modp1`, `modp2` and `modp5` have a key size smaller than 2048 bits and are not recommended. See the reference for other recommendations and details. [`createCipher()`]: #crypto_crypto_createcipher_algorithm_password [`createCipheriv()`]: #crypto_crypto_createcipheriv_algorithm_key_iv [`crypto.createDecipher`]: #crypto_crypto_createdecipher_algorithm_password [`crypto.createDecipheriv`]: #crypto_crypto_createdecipheriv_algorithm_key_iv [`crypto.createDiffieHellman()`]: #crypto_crypto_creatediffiehellman_prime_prime_encoding_generator_generator_encoding [`crypto.getHashes()`]: #crypto_crypto_gethashes [`crypto.pbkdf2`]: #crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback [`decipher.update`]: #crypto_decipher_update_data_input_encoding_output_encoding [`diffieHellman.setPublicKey()`]: #crypto_diffiehellman_setpublickey_public_key_encoding [`EVP_BytesToKey`]: https://www.openssl.org/docs/crypto/EVP_BytesToKey.html [`getCurves()`]: #crypto_crypto_getcurves [`tls.createSecureContext`]: tls.html#tls_tls_createsecurecontext_details [buffer]: buffer.html [buffers]: buffer.html [Caveats]: #crypto_caveats [initialization vector]: https://en.wikipedia.org/wiki/Initialization_vector [NIST SP 800-131A]: http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf [NIST SP 800-132]: http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf [RFC 2412]: https://www.rfc-editor.org/rfc/rfc2412.txt [RFC 3526]: https://www.rfc-editor.org/rfc/rfc3526.txt [stream]: stream.html [streams]: stream.html