// Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. 'use strict'; const { ArrayBuffer, MathMax, NumberIsNaN, ObjectDefineProperties, ObjectDefineProperty, ObjectEntries, ObjectFreeze, ObjectKeys, ObjectSetPrototypeOf, ReflectApply, Symbol, Uint32Array, } = primordials; const { codes: { ERR_BROTLI_INVALID_PARAM, ERR_BUFFER_TOO_LARGE, ERR_INVALID_ARG_TYPE, ERR_OUT_OF_RANGE, }, genericNodeError, } = require('internal/errors'); const { Transform, finished } = require('stream'); const { isArrayBufferView, isAnyArrayBuffer, isUint8Array, } = require('internal/util/types'); const binding = internalBinding('zlib'); const { crc32: crc32Native } = binding; const assert = require('internal/assert'); const { Buffer, kMaxLength, } = require('buffer'); const { owner_symbol } = require('internal/async_hooks').symbols; const { checkRangesOrGetDefault, validateFunction, validateUint32, validateFiniteNumber, } = require('internal/validators'); const kFlushFlag = Symbol('kFlushFlag'); const kError = Symbol('kError'); const constants = internalBinding('constants').zlib; const { // Zlib flush levels Z_NO_FLUSH, Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, Z_FULL_FLUSH, Z_FINISH, // Zlib option values Z_MIN_CHUNK, Z_MIN_WINDOWBITS, Z_MAX_WINDOWBITS, Z_MIN_LEVEL, Z_MAX_LEVEL, Z_MIN_MEMLEVEL, Z_MAX_MEMLEVEL, Z_DEFAULT_CHUNK, Z_DEFAULT_COMPRESSION, Z_DEFAULT_STRATEGY, Z_DEFAULT_WINDOWBITS, Z_DEFAULT_MEMLEVEL, Z_FIXED, // Node's compression stream modes (node_zlib_mode) DEFLATE, DEFLATERAW, INFLATE, INFLATERAW, GZIP, GUNZIP, UNZIP, BROTLI_DECODE, BROTLI_ENCODE, // Brotli operations (~flush levels) BROTLI_OPERATION_PROCESS, BROTLI_OPERATION_FLUSH, BROTLI_OPERATION_FINISH, BROTLI_OPERATION_EMIT_METADATA, } = constants; // Translation table for return codes. const codes = { Z_OK: constants.Z_OK, Z_STREAM_END: constants.Z_STREAM_END, Z_NEED_DICT: constants.Z_NEED_DICT, Z_ERRNO: constants.Z_ERRNO, Z_STREAM_ERROR: constants.Z_STREAM_ERROR, Z_DATA_ERROR: constants.Z_DATA_ERROR, Z_MEM_ERROR: constants.Z_MEM_ERROR, Z_BUF_ERROR: constants.Z_BUF_ERROR, Z_VERSION_ERROR: constants.Z_VERSION_ERROR, }; for (const ckey of ObjectKeys(codes)) { codes[codes[ckey]] = ckey; } function zlibBuffer(engine, buffer, callback) { validateFunction(callback, 'callback'); // Streams do not support non-Uint8Array ArrayBufferViews yet. Convert it to a // Buffer without copying. if (isArrayBufferView(buffer) && !isUint8Array(buffer)) { buffer = Buffer.from(buffer.buffer, buffer.byteOffset, buffer.byteLength); } else if (isAnyArrayBuffer(buffer)) { buffer = Buffer.from(buffer); } engine.buffers = null; engine.nread = 0; engine.cb = callback; engine.on('data', zlibBufferOnData); engine.on('error', zlibBufferOnError); engine.on('end', zlibBufferOnEnd); engine.end(buffer); } function zlibBufferOnData(chunk) { if (!this.buffers) { this.buffers = [chunk]; } else { this.buffers.push(chunk); } this.nread += chunk.length; if (this.nread > this._maxOutputLength) { this.close(); this.removeAllListeners('end'); this.cb(new ERR_BUFFER_TOO_LARGE(this._maxOutputLength)); } } function zlibBufferOnError(err) { this.removeAllListeners('end'); this.cb(err); } function zlibBufferOnEnd() { let buf; if (this.nread === 0) { buf = Buffer.alloc(0); } else { const bufs = this.buffers; buf = (bufs.length === 1 ? bufs[0] : Buffer.concat(bufs, this.nread)); } this.close(); if (this._info) this.cb(null, { buffer: buf, engine: this }); else this.cb(null, buf); } function zlibBufferSync(engine, buffer) { if (typeof buffer === 'string') { buffer = Buffer.from(buffer); } else if (!isArrayBufferView(buffer)) { if (isAnyArrayBuffer(buffer)) { buffer = Buffer.from(buffer); } else { throw new ERR_INVALID_ARG_TYPE( 'buffer', ['string', 'Buffer', 'TypedArray', 'DataView', 'ArrayBuffer'], buffer, ); } } buffer = processChunkSync(engine, buffer, engine._finishFlushFlag); if (engine._info) return { buffer, engine }; return buffer; } function zlibOnError(message, errno, code) { const self = this[owner_symbol]; // There is no way to cleanly recover. // Continuing only obscures problems. const error = genericNodeError(message, { errno, code }); error.errno = errno; error.code = code; self.destroy(error); self[kError] = error; } const FLUSH_BOUND = [ [ Z_NO_FLUSH, Z_BLOCK ], [ BROTLI_OPERATION_PROCESS, BROTLI_OPERATION_EMIT_METADATA ], ]; const FLUSH_BOUND_IDX_NORMAL = 0; const FLUSH_BOUND_IDX_BROTLI = 1; // The base class for all Zlib-style streams. function ZlibBase(opts, mode, handle, { flush, finishFlush, fullFlush }) { let chunkSize = Z_DEFAULT_CHUNK; let maxOutputLength = kMaxLength; // The ZlibBase class is not exported to user land, the mode should only be // passed in by us. assert(typeof mode === 'number'); assert(mode >= DEFLATE && mode <= BROTLI_ENCODE); let flushBoundIdx; if (mode !== BROTLI_ENCODE && mode !== BROTLI_DECODE) { flushBoundIdx = FLUSH_BOUND_IDX_NORMAL; } else { flushBoundIdx = FLUSH_BOUND_IDX_BROTLI; } if (opts) { chunkSize = opts.chunkSize; if (!validateFiniteNumber(chunkSize, 'options.chunkSize')) { chunkSize = Z_DEFAULT_CHUNK; } else if (chunkSize < Z_MIN_CHUNK) { throw new ERR_OUT_OF_RANGE('options.chunkSize', `>= ${Z_MIN_CHUNK}`, chunkSize); } flush = checkRangesOrGetDefault( opts.flush, 'options.flush', FLUSH_BOUND[flushBoundIdx][0], FLUSH_BOUND[flushBoundIdx][1], flush); finishFlush = checkRangesOrGetDefault( opts.finishFlush, 'options.finishFlush', FLUSH_BOUND[flushBoundIdx][0], FLUSH_BOUND[flushBoundIdx][1], finishFlush); maxOutputLength = checkRangesOrGetDefault( opts.maxOutputLength, 'options.maxOutputLength', 1, kMaxLength, kMaxLength); if (opts.encoding || opts.objectMode || opts.writableObjectMode) { opts = { ...opts }; opts.encoding = null; opts.objectMode = false; opts.writableObjectMode = false; } } ReflectApply(Transform, this, [{ autoDestroy: true, ...opts }]); this[kError] = null; this.bytesWritten = 0; this._handle = handle; handle[owner_symbol] = this; // Used by processCallback() and zlibOnError() handle.onerror = zlibOnError; this._outBuffer = Buffer.allocUnsafe(chunkSize); this._outOffset = 0; this._chunkSize = chunkSize; this._defaultFlushFlag = flush; this._finishFlushFlag = finishFlush; this._defaultFullFlushFlag = fullFlush; this._info = opts?.info; this._maxOutputLength = maxOutputLength; } ObjectSetPrototypeOf(ZlibBase.prototype, Transform.prototype); ObjectSetPrototypeOf(ZlibBase, Transform); ObjectDefineProperty(ZlibBase.prototype, '_closed', { __proto__: null, configurable: true, enumerable: true, get() { return !this._handle; }, }); /** * @this ZlibBase * @returns {void} */ ZlibBase.prototype.reset = function() { assert(this._handle, 'zlib binding closed'); return this._handle.reset(); }; // This is the _flush function called by the transform class, // internally, when the last chunk has been written. ZlibBase.prototype._flush = function(callback) { this._transform(Buffer.alloc(0), '', callback); }; // Force Transform compat behavior. ZlibBase.prototype._final = function(callback) { callback(); }; // If a flush is scheduled while another flush is still pending, a way to figure // out which one is the "stronger" flush is needed. // This is currently only used to figure out which flush flag to use for the // last chunk. // Roughly, the following holds: // Z_NO_FLUSH (< Z_TREES) < Z_BLOCK < Z_PARTIAL_FLUSH < // Z_SYNC_FLUSH < Z_FULL_FLUSH < Z_FINISH const flushiness = []; const kFlushFlagList = [Z_NO_FLUSH, Z_BLOCK, Z_PARTIAL_FLUSH, Z_SYNC_FLUSH, Z_FULL_FLUSH, Z_FINISH]; for (let i = 0; i < kFlushFlagList.length; i++) { flushiness[kFlushFlagList[i]] = i; } function maxFlush(a, b) { return flushiness[a] > flushiness[b] ? a : b; } // Set up a list of 'special' buffers that can be written using .write() // from the .flush() code as a way of introducing flushing operations into the // write sequence. const kFlushBuffers = []; { const dummyArrayBuffer = new ArrayBuffer(); for (const flushFlag of kFlushFlagList) { kFlushBuffers[flushFlag] = Buffer.from(dummyArrayBuffer); kFlushBuffers[flushFlag][kFlushFlag] = flushFlag; } } ZlibBase.prototype.flush = function(kind, callback) { if (typeof kind === 'function' || (kind === undefined && !callback)) { callback = kind; kind = this._defaultFullFlushFlag; } if (this.writableFinished) { if (callback) process.nextTick(callback); } else if (this.writableEnded) { if (callback) this.once('end', callback); } else { this.write(kFlushBuffers[kind], '', callback); } }; /** * @this import('stream').Transform * @param {(err?: Error) => any} [callback] */ ZlibBase.prototype.close = function(callback) { if (callback) finished(this, callback); this.destroy(); }; ZlibBase.prototype._destroy = function(err, callback) { _close(this); callback(err); }; ZlibBase.prototype._transform = function(chunk, encoding, cb) { let flushFlag = this._defaultFlushFlag; // We use a 'fake' zero-length chunk to carry information about flushes from // the public API to the actual stream implementation. if (typeof chunk[kFlushFlag] === 'number') { flushFlag = chunk[kFlushFlag]; } // For the last chunk, also apply `_finishFlushFlag`. if (this.writableEnded && this.writableLength === chunk.byteLength) { flushFlag = maxFlush(flushFlag, this._finishFlushFlag); } processChunk(this, chunk, flushFlag, cb); }; ZlibBase.prototype._processChunk = function(chunk, flushFlag, cb) { // _processChunk() is left for backwards compatibility if (typeof cb === 'function') processChunk(this, chunk, flushFlag, cb); else return processChunkSync(this, chunk, flushFlag); }; function processChunkSync(self, chunk, flushFlag) { let availInBefore = chunk.byteLength; let availOutBefore = self._chunkSize - self._outOffset; let inOff = 0; let availOutAfter; let availInAfter; const buffers = []; let nread = 0; let inputRead = 0; const state = self._writeState; const handle = self._handle; let buffer = self._outBuffer; let offset = self._outOffset; const chunkSize = self._chunkSize; let error; self.on('error', function onError(er) { error = er; }); while (true) { handle.writeSync(flushFlag, chunk, // in inOff, // in_off availInBefore, // in_len buffer, // out offset, // out_off availOutBefore); // out_len if (error) throw error; else if (self[kError]) throw self[kError]; availOutAfter = state[0]; availInAfter = state[1]; const inDelta = (availInBefore - availInAfter); inputRead += inDelta; const have = availOutBefore - availOutAfter; if (have > 0) { const out = buffer.slice(offset, offset + have); offset += have; buffers.push(out); nread += out.byteLength; if (nread > self._maxOutputLength) { _close(self); throw new ERR_BUFFER_TOO_LARGE(self._maxOutputLength); } } else { assert(have === 0, 'have should not go down'); } // Exhausted the output buffer, or used all the input create a new one. if (availOutAfter === 0 || offset >= chunkSize) { availOutBefore = chunkSize; offset = 0; buffer = Buffer.allocUnsafe(chunkSize); } if (availOutAfter === 0) { // Not actually done. Need to reprocess. // Also, update the availInBefore to the availInAfter value, // so that if we have to hit it a third (fourth, etc.) time, // it'll have the correct byte counts. inOff += inDelta; availInBefore = availInAfter; } else { break; } } self.bytesWritten = inputRead; _close(self); if (nread === 0) return Buffer.alloc(0); return (buffers.length === 1 ? buffers[0] : Buffer.concat(buffers, nread)); } function processChunk(self, chunk, flushFlag, cb) { const handle = self._handle; if (!handle) return process.nextTick(cb); handle.buffer = chunk; handle.cb = cb; handle.availOutBefore = self._chunkSize - self._outOffset; handle.availInBefore = chunk.byteLength; handle.inOff = 0; handle.flushFlag = flushFlag; handle.write(flushFlag, chunk, // in 0, // in_off handle.availInBefore, // in_len self._outBuffer, // out self._outOffset, // out_off handle.availOutBefore); // out_len } function processCallback() { // This callback's context (`this`) is the `_handle` (ZCtx) object. It is // important to null out the values once they are no longer needed since // `_handle` can stay in memory long after the buffer is needed. const handle = this; const self = this[owner_symbol]; const state = self._writeState; if (self.destroyed) { this.buffer = null; this.cb(); return; } const availOutAfter = state[0]; const availInAfter = state[1]; const inDelta = handle.availInBefore - availInAfter; self.bytesWritten += inDelta; const have = handle.availOutBefore - availOutAfter; let streamBufferIsFull = false; if (have > 0) { const out = self._outBuffer.slice(self._outOffset, self._outOffset + have); self._outOffset += have; streamBufferIsFull = !self.push(out); } else { assert(have === 0, 'have should not go down'); } if (self.destroyed) { this.cb(); return; } // Exhausted the output buffer, or used all the input create a new one. if (availOutAfter === 0 || self._outOffset >= self._chunkSize) { handle.availOutBefore = self._chunkSize; self._outOffset = 0; self._outBuffer = Buffer.allocUnsafe(self._chunkSize); } if (availOutAfter === 0) { // Not actually done. Need to reprocess. // Also, update the availInBefore to the availInAfter value, // so that if we have to hit it a third (fourth, etc.) time, // it'll have the correct byte counts. handle.inOff += inDelta; handle.availInBefore = availInAfter; if (!streamBufferIsFull) { this.write(handle.flushFlag, this.buffer, // in handle.inOff, // in_off handle.availInBefore, // in_len self._outBuffer, // out self._outOffset, // out_off self._chunkSize); // out_len } else { const oldRead = self._read; self._read = (n) => { self._read = oldRead; this.write(handle.flushFlag, this.buffer, // in handle.inOff, // in_off handle.availInBefore, // in_len self._outBuffer, // out self._outOffset, // out_off self._chunkSize); // out_len self._read(n); }; } return; } if (availInAfter > 0) { // If we have more input that should be written, but we also have output // space available, that means that the compression library was not // interested in receiving more data, and in particular that the input // stream has ended early. // This applies to streams where we don't check data past the end of // what was consumed; that is, everything except Gunzip/Unzip. self.push(null); } // Finished with the chunk. this.buffer = null; this.cb(); } /** * @param {ZlibBase} engine * @private */ function _close(engine) { // Caller may invoke .close after a zlib error (which will null _handle) engine._handle?.close(); engine._handle = null; } const zlibDefaultOpts = { flush: Z_NO_FLUSH, finishFlush: Z_FINISH, fullFlush: Z_FULL_FLUSH, }; // Base class for all streams actually backed by zlib and using zlib-specific // parameters. function Zlib(opts, mode) { let windowBits = Z_DEFAULT_WINDOWBITS; let level = Z_DEFAULT_COMPRESSION; let memLevel = Z_DEFAULT_MEMLEVEL; let strategy = Z_DEFAULT_STRATEGY; let dictionary; if (opts) { // windowBits is special. On the compression side, 0 is an invalid value. // But on the decompression side, a value of 0 for windowBits tells zlib // to use the window size in the zlib header of the compressed stream. if ((opts.windowBits == null || opts.windowBits === 0) && (mode === INFLATE || mode === GUNZIP || mode === UNZIP)) { windowBits = 0; } else { // `{ windowBits: 8 }` is valid for deflate but not gzip. const min = Z_MIN_WINDOWBITS + (mode === GZIP ? 1 : 0); windowBits = checkRangesOrGetDefault( opts.windowBits, 'options.windowBits', min, Z_MAX_WINDOWBITS, Z_DEFAULT_WINDOWBITS); } level = checkRangesOrGetDefault( opts.level, 'options.level', Z_MIN_LEVEL, Z_MAX_LEVEL, Z_DEFAULT_COMPRESSION); memLevel = checkRangesOrGetDefault( opts.memLevel, 'options.memLevel', Z_MIN_MEMLEVEL, Z_MAX_MEMLEVEL, Z_DEFAULT_MEMLEVEL); strategy = checkRangesOrGetDefault( opts.strategy, 'options.strategy', Z_DEFAULT_STRATEGY, Z_FIXED, Z_DEFAULT_STRATEGY); dictionary = opts.dictionary; if (dictionary !== undefined && !isArrayBufferView(dictionary)) { if (isAnyArrayBuffer(dictionary)) { dictionary = Buffer.from(dictionary); } else { throw new ERR_INVALID_ARG_TYPE( 'options.dictionary', ['Buffer', 'TypedArray', 'DataView', 'ArrayBuffer'], dictionary, ); } } } const handle = new binding.Zlib(mode); // Ideally, we could let ZlibBase() set up _writeState. I haven't been able // to come up with a good solution that doesn't break our internal API, // and with it all supported npm versions at the time of writing. this._writeState = new Uint32Array(2); handle.init(windowBits, level, memLevel, strategy, this._writeState, processCallback, dictionary); ReflectApply(ZlibBase, this, [opts, mode, handle, zlibDefaultOpts]); this._level = level; this._strategy = strategy; } ObjectSetPrototypeOf(Zlib.prototype, ZlibBase.prototype); ObjectSetPrototypeOf(Zlib, ZlibBase); // This callback is used by `.params()` to wait until a full flush happened // before adjusting the parameters. In particular, the call to the native // `params()` function should not happen while a write is currently in progress // on the threadpool. function paramsAfterFlushCallback(level, strategy, callback) { assert(this._handle, 'zlib binding closed'); this._handle.params(level, strategy); if (!this.destroyed) { this._level = level; this._strategy = strategy; if (callback) callback(); } } Zlib.prototype.params = function params(level, strategy, callback) { checkRangesOrGetDefault(level, 'level', Z_MIN_LEVEL, Z_MAX_LEVEL); checkRangesOrGetDefault(strategy, 'strategy', Z_DEFAULT_STRATEGY, Z_FIXED); if (this._level !== level || this._strategy !== strategy) { this.flush( Z_SYNC_FLUSH, paramsAfterFlushCallback.bind(this, level, strategy, callback), ); } else { process.nextTick(callback); } }; // generic zlib // minimal 2-byte header function Deflate(opts) { if (!(this instanceof Deflate)) return new Deflate(opts); ReflectApply(Zlib, this, [opts, DEFLATE]); } ObjectSetPrototypeOf(Deflate.prototype, Zlib.prototype); ObjectSetPrototypeOf(Deflate, Zlib); function Inflate(opts) { if (!(this instanceof Inflate)) return new Inflate(opts); ReflectApply(Zlib, this, [opts, INFLATE]); } ObjectSetPrototypeOf(Inflate.prototype, Zlib.prototype); ObjectSetPrototypeOf(Inflate, Zlib); function Gzip(opts) { if (!(this instanceof Gzip)) return new Gzip(opts); ReflectApply(Zlib, this, [opts, GZIP]); } ObjectSetPrototypeOf(Gzip.prototype, Zlib.prototype); ObjectSetPrototypeOf(Gzip, Zlib); function Gunzip(opts) { if (!(this instanceof Gunzip)) return new Gunzip(opts); ReflectApply(Zlib, this, [opts, GUNZIP]); } ObjectSetPrototypeOf(Gunzip.prototype, Zlib.prototype); ObjectSetPrototypeOf(Gunzip, Zlib); function DeflateRaw(opts) { if (opts && opts.windowBits === 8) opts.windowBits = 9; if (!(this instanceof DeflateRaw)) return new DeflateRaw(opts); ReflectApply(Zlib, this, [opts, DEFLATERAW]); } ObjectSetPrototypeOf(DeflateRaw.prototype, Zlib.prototype); ObjectSetPrototypeOf(DeflateRaw, Zlib); function InflateRaw(opts) { if (!(this instanceof InflateRaw)) return new InflateRaw(opts); ReflectApply(Zlib, this, [opts, INFLATERAW]); } ObjectSetPrototypeOf(InflateRaw.prototype, Zlib.prototype); ObjectSetPrototypeOf(InflateRaw, Zlib); function Unzip(opts) { if (!(this instanceof Unzip)) return new Unzip(opts); ReflectApply(Zlib, this, [opts, UNZIP]); } ObjectSetPrototypeOf(Unzip.prototype, Zlib.prototype); ObjectSetPrototypeOf(Unzip, Zlib); function createConvenienceMethod(ctor, sync) { if (sync) { return function syncBufferWrapper(buffer, opts) { return zlibBufferSync(new ctor(opts), buffer); }; } return function asyncBufferWrapper(buffer, opts, callback) { if (typeof opts === 'function') { callback = opts; opts = {}; } return zlibBuffer(new ctor(opts), buffer, callback); }; } const kMaxBrotliParam = MathMax( ...ObjectEntries(constants) .map(({ 0: key, 1: value }) => (key.startsWith('BROTLI_PARAM_') ? value : 0)), ); const brotliInitParamsArray = new Uint32Array(kMaxBrotliParam + 1); const brotliDefaultOpts = { flush: BROTLI_OPERATION_PROCESS, finishFlush: BROTLI_OPERATION_FINISH, fullFlush: BROTLI_OPERATION_FLUSH, }; function Brotli(opts, mode) { assert(mode === BROTLI_DECODE || mode === BROTLI_ENCODE); brotliInitParamsArray.fill(-1); if (opts?.params) { ObjectKeys(opts.params).forEach((origKey) => { const key = +origKey; if (NumberIsNaN(key) || key < 0 || key > kMaxBrotliParam || (brotliInitParamsArray[key] | 0) !== -1) { throw new ERR_BROTLI_INVALID_PARAM(origKey); } const value = opts.params[origKey]; if (typeof value !== 'number' && typeof value !== 'boolean') { throw new ERR_INVALID_ARG_TYPE('options.params[key]', 'number', opts.params[origKey]); } brotliInitParamsArray[key] = value; }); } const handle = mode === BROTLI_DECODE ? new binding.BrotliDecoder(mode) : new binding.BrotliEncoder(mode); this._writeState = new Uint32Array(2); handle.init(brotliInitParamsArray, this._writeState, processCallback); ReflectApply(ZlibBase, this, [opts, mode, handle, brotliDefaultOpts]); } ObjectSetPrototypeOf(Brotli.prototype, Zlib.prototype); ObjectSetPrototypeOf(Brotli, Zlib); function BrotliCompress(opts) { if (!(this instanceof BrotliCompress)) return new BrotliCompress(opts); ReflectApply(Brotli, this, [opts, BROTLI_ENCODE]); } ObjectSetPrototypeOf(BrotliCompress.prototype, Brotli.prototype); ObjectSetPrototypeOf(BrotliCompress, Brotli); function BrotliDecompress(opts) { if (!(this instanceof BrotliDecompress)) return new BrotliDecompress(opts); ReflectApply(Brotli, this, [opts, BROTLI_DECODE]); } ObjectSetPrototypeOf(BrotliDecompress.prototype, Brotli.prototype); ObjectSetPrototypeOf(BrotliDecompress, Brotli); function createProperty(ctor) { return { __proto__: null, configurable: true, enumerable: true, value: function(options) { return new ctor(options); }, }; } function crc32(data, value = 0) { if (typeof data !== 'string' && !isArrayBufferView(data)) { throw new ERR_INVALID_ARG_TYPE('data', ['Buffer', 'TypedArray', 'DataView', 'string'], data); } validateUint32(value, 'value'); return crc32Native(data, value); } // Legacy alias on the C++ wrapper object. This is not public API, so we may // want to runtime-deprecate it at some point. There's no hurry, though. ObjectDefineProperty(binding.Zlib.prototype, 'jsref', { __proto__: null, get() { return this[owner_symbol]; }, set(v) { return this[owner_symbol] = v; }, }); module.exports = { crc32, Deflate, Inflate, Gzip, Gunzip, DeflateRaw, InflateRaw, Unzip, BrotliCompress, BrotliDecompress, // Convenience methods. // compress/decompress a string or buffer in one step. deflate: createConvenienceMethod(Deflate, false), deflateSync: createConvenienceMethod(Deflate, true), gzip: createConvenienceMethod(Gzip, false), gzipSync: createConvenienceMethod(Gzip, true), deflateRaw: createConvenienceMethod(DeflateRaw, false), deflateRawSync: createConvenienceMethod(DeflateRaw, true), unzip: createConvenienceMethod(Unzip, false), unzipSync: createConvenienceMethod(Unzip, true), inflate: createConvenienceMethod(Inflate, false), inflateSync: createConvenienceMethod(Inflate, true), gunzip: createConvenienceMethod(Gunzip, false), gunzipSync: createConvenienceMethod(Gunzip, true), inflateRaw: createConvenienceMethod(InflateRaw, false), inflateRawSync: createConvenienceMethod(InflateRaw, true), brotliCompress: createConvenienceMethod(BrotliCompress, false), brotliCompressSync: createConvenienceMethod(BrotliCompress, true), brotliDecompress: createConvenienceMethod(BrotliDecompress, false), brotliDecompressSync: createConvenienceMethod(BrotliDecompress, true), }; ObjectDefineProperties(module.exports, { createDeflate: createProperty(Deflate), createInflate: createProperty(Inflate), createDeflateRaw: createProperty(DeflateRaw), createInflateRaw: createProperty(InflateRaw), createGzip: createProperty(Gzip), createGunzip: createProperty(Gunzip), createUnzip: createProperty(Unzip), createBrotliCompress: createProperty(BrotliCompress), createBrotliDecompress: createProperty(BrotliDecompress), constants: { __proto__: null, configurable: false, enumerable: true, value: constants, }, codes: { __proto__: null, enumerable: true, writable: false, value: ObjectFreeze(codes), }, }); // These should be considered deprecated // expose all the zlib constants for (const { 0: key, 1: value } of ObjectEntries(constants)) { if (key.startsWith('BROTLI')) continue; ObjectDefineProperty(module.exports, key, { __proto__: null, enumerable: false, value, writable: false, }); }