0
0
mirror of https://github.com/nodejs/node.git synced 2024-12-01 16:10:02 +01:00
nodejs/doc/api/process.markdown

655 lines
19 KiB
Markdown
Raw Normal View History

2012-02-27 20:09:34 +01:00
# process
<!-- type=global -->
2010-10-28 14:18:16 +02:00
The `process` object is a global object and can be accessed from anywhere.
It is an instance of [EventEmitter][].
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## Event: 'exit'
2010-10-28 14:18:16 +02:00
Emitted when the process is about to exit. There is no way to prevent the
exiting of the event loop at this point, and once all `exit` listeners have
finished running the process will exit. Therefore you **must** only perform
**synchronous** operations in this handler. This is a good hook to perform
checks on the module's state (like for unit tests). The callback takes one
argument, the code the process is exiting with.
2010-10-28 14:18:16 +02:00
Example of listening for `exit`:
process.on('exit', function(code) {
// do *NOT* do this
setTimeout(function() {
console.log('This will not run');
}, 0);
console.log('About to exit with code:', code);
2010-10-28 14:18:16 +02:00
});
2012-02-27 20:09:34 +01:00
## Event: 'uncaughtException'
2010-10-28 14:18:16 +02:00
Emitted when an exception bubbles all the way back to the event loop. If a
listener is added for this exception, the default action (which is to print
a stack trace and exit) will not occur.
Example of listening for `uncaughtException`:
process.on('uncaughtException', function(err) {
2010-10-28 14:18:16 +02:00
console.log('Caught exception: ' + err);
});
setTimeout(function() {
2010-10-28 14:18:16 +02:00
console.log('This will still run.');
}, 500);
// Intentionally cause an exception, but don't catch it.
nonexistentFunc();
console.log('This will not run.');
Note that `uncaughtException` is a very crude mechanism for exception
handling and may be removed in the future.
2010-10-28 14:18:16 +02:00
Don't use it, use [domains](domain.html) instead. If you do use it, restart
your application after every unhandled exception!
Do *not* use it as the node.js equivalent of `On Error Resume Next`. An
unhandled exception means your application - and by extension node.js itself -
is in an undefined state. Blindly resuming means *anything* could happen.
Think of resuming as pulling the power cord when you are upgrading your system.
Nine out of ten times nothing happens - but the 10th time, your system is bust.
You have been warned.
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## Signal Events
<!--type=event-->
<!--name=SIGINT, SIGHUP, etc.-->
2010-10-28 14:18:16 +02:00
Emitted when the processes receives a signal. See sigaction(2) for a list of
standard POSIX signal names such as SIGINT, SIGHUP, etc.
2010-10-28 14:18:16 +02:00
Example of listening for `SIGINT`:
2011-01-02 06:54:46 +01:00
// Start reading from stdin so we don't exit.
process.stdin.resume();
2010-10-28 14:18:16 +02:00
process.on('SIGINT', function() {
2010-10-28 14:18:16 +02:00
console.log('Got SIGINT. Press Control-D to exit.');
});
An easy way to send the `SIGINT` signal is with `Control-C` in most terminal
programs.
Note:
- `SIGUSR1` is reserved by node.js to start the debugger. It's possible to
install a listener but that won't stop the debugger from starting.
- `SIGTERM` and `SIGINT` have default handlers on non-Windows platforms that resets
the terminal mode before exiting with code `128 + signal number`. If one of
these signals has a listener installed, its default behaviour will be removed
(node will no longer exit).
- `SIGPIPE` is ignored by default, it can have a listener installed.
- `SIGHUP` is generated on Windows when the console window is closed, and on other
platforms under various similar conditions, see signal(7). It can have a
listener installed, however node will be unconditionally terminated by Windows
about 10 seconds later. On non-Windows platforms, the default behaviour of
`SIGHUP` is to terminate node, but once a listener has been installed its
default behaviour will be removed.
- `SIGTERM` is not supported on Windows, it can be listened on.
- `SIGINT` from the terminal is supported on all platforms, and can usually be
generated with `CTRL+C` (though this may be configurable). It is not generated
when terminal raw mode is enabled.
- `SIGBREAK` is delivered on Windows when `CTRL+BREAK` is pressed, on non-Windows
platforms it can be listened on, but there is no way to send or generate it.
- `SIGWINCH` is delivered when the console has been resized. On Windows, this will
only happen on write to the console when the cursor is being moved, or when a
readable tty is used in raw mode.
- `SIGKILL` cannot have a listener installed, it will unconditionally terminate
node on all platforms.
- `SIGSTOP` cannot have a listener installed.
2010-10-28 14:18:16 +02:00
Note that Windows does not support sending Signals, but node offers some
emulation with `process.kill()`, and `child_process.kill()`:
- Sending signal `0` can be used to search for the existence of a process
- Sending `SIGINT`, `SIGTERM`, and `SIGKILL` cause the unconditional exit of the
target process.
2012-02-27 20:09:34 +01:00
## process.stdout
2010-10-28 14:18:16 +02:00
A `Writable Stream` to `stdout`.
Example: the definition of `console.log`
console.log = function(d) {
2010-10-28 14:18:16 +02:00
process.stdout.write(d + '\n');
};
`process.stderr` and `process.stdout` are unlike other streams in Node in
that writes to them are usually blocking.
- They are blocking in the case that they refer to regular files or TTY file
descriptors.
- In the case they refer to pipes:
- They are blocking in Linux/Unix.
- They are non-blocking like other streams in Windows.
To check if Node is being run in a TTY context, read the `isTTY` property
on `process.stderr`, `process.stdout`, or `process.stdin`:
$ node -p "Boolean(process.stdin.isTTY)"
true
$ echo "foo" | node -p "Boolean(process.stdin.isTTY)"
false
$ node -p "Boolean(process.stdout.isTTY)"
true
$ node -p "Boolean(process.stdout.isTTY)" | cat
false
See [the tty docs](tty.html#tty_tty) for more information.
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## process.stderr
2011-02-03 23:03:44 +01:00
A writable stream to stderr.
`process.stderr` and `process.stdout` are unlike other streams in Node in
that writes to them are usually blocking.
- They are blocking in the case that they refer to regular files or TTY file
descriptors.
- In the case they refer to pipes:
- They are blocking in Linux/Unix.
- They are non-blocking like other streams in Windows.
2011-02-03 23:03:44 +01:00
2012-02-27 20:09:34 +01:00
## process.stdin
2010-10-28 14:18:16 +02:00
A `Readable Stream` for stdin.
2010-10-28 14:18:16 +02:00
Example of opening standard input and listening for both events:
2011-01-02 06:54:46 +01:00
process.stdin.setEncoding('utf8');
2010-10-28 14:18:16 +02:00
process.stdin.on('readable', function(chunk) {
var chunk = process.stdin.read();
if (chunk !== null) {
process.stdout.write('data: ' + chunk);
}
2010-10-28 14:18:16 +02:00
});
process.stdin.on('end', function() {
2010-10-28 14:18:16 +02:00
process.stdout.write('end');
});
As a Stream, `process.stdin` can also be used in "old" mode that is compatible
with scripts written for node prior v0.10.
For more information see
[Stream compatibility](stream.html#stream_compatibility_with_older_node_versions).
In "old" Streams mode the stdin stream is paused by default, so one
must call `process.stdin.resume()` to read from it. Note also that calling
`process.stdin.resume()` itself would switch stream to "old" mode.
If you are starting a new project you should prefer a more recent "new" Streams
mode over "old" one.
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## process.argv
2010-10-28 14:18:16 +02:00
An array containing the command line arguments. The first element will be
'node', the second element will be the name of the JavaScript file. The
next elements will be any additional command line arguments.
// print process.argv
process.argv.forEach(function(val, index, array) {
2010-10-28 14:18:16 +02:00
console.log(index + ': ' + val);
});
This will generate:
$ node process-2.js one two=three four
0: node
1: /Users/mjr/work/node/process-2.js
2: one
3: two=three
4: four
2012-02-27 20:09:34 +01:00
## process.execPath
2010-10-28 14:18:16 +02:00
This is the absolute pathname of the executable that started the process.
Example:
/usr/local/bin/node
## process.execArgv
This is the set of node-specific command line options from the
executable that started the process. These options do not show up in
`process.argv`, and do not include the node executable, the name of
the script, or any options following the script name. These options
are useful in order to spawn child processes with the same execution
environment as the parent.
Example:
$ node --harmony script.js --version
results in process.execArgv:
['--harmony']
and process.argv:
['/usr/local/bin/node', 'script.js', '--version']
2012-02-27 20:09:34 +01:00
## process.abort()
2011-12-15 02:02:15 +01:00
This causes node to emit an abort. This will cause node to exit and
generate a core file.
2012-02-27 20:09:34 +01:00
## process.chdir(directory)
2010-10-28 14:18:16 +02:00
Changes the current working directory of the process or throws an exception if that fails.
console.log('Starting directory: ' + process.cwd());
try {
process.chdir('/tmp');
console.log('New directory: ' + process.cwd());
}
catch (err) {
console.log('chdir: ' + err);
}
2012-02-27 20:09:34 +01:00
## process.cwd()
2010-10-28 14:18:16 +02:00
Returns the current working directory of the process.
console.log('Current directory: ' + process.cwd());
2012-02-27 20:09:34 +01:00
## process.env
2010-10-28 14:18:16 +02:00
An object containing the user environment. See environ(7).
2012-02-27 20:09:34 +01:00
## process.exit([code])
2010-10-28 14:18:16 +02:00
Ends the process with the specified `code`. If omitted, exit uses the
2010-10-28 14:18:16 +02:00
'success' code `0`.
To exit with a 'failure' code:
process.exit(1);
The shell that executed node should see the exit code as 1.
2012-02-27 20:09:34 +01:00
## process.getgid()
2010-10-28 14:18:16 +02:00
Note: this function is only available on POSIX platforms (i.e. not Windows)
Gets the group identity of the process. (See getgid(2).)
This is the numerical group id, not the group name.
2010-10-28 14:18:16 +02:00
if (process.getgid) {
console.log('Current gid: ' + process.getgid());
}
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## process.setgid(id)
2010-10-28 14:18:16 +02:00
Note: this function is only available on POSIX platforms (i.e. not Windows)
Sets the group identity of the process. (See setgid(2).) This accepts either
a numerical ID or a groupname string. If a groupname is specified, this method
blocks while resolving it to a numerical ID.
2010-10-28 14:18:16 +02:00
if (process.getgid && process.setgid) {
console.log('Current gid: ' + process.getgid());
try {
process.setgid(501);
console.log('New gid: ' + process.getgid());
}
catch (err) {
console.log('Failed to set gid: ' + err);
}
2010-10-28 14:18:16 +02:00
}
2012-02-27 20:09:34 +01:00
## process.getuid()
2010-10-28 14:18:16 +02:00
Note: this function is only available on POSIX platforms (i.e. not Windows)
Gets the user identity of the process. (See getuid(2).)
This is the numerical userid, not the username.
2010-10-28 14:18:16 +02:00
if (process.getuid) {
console.log('Current uid: ' + process.getuid());
}
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## process.setuid(id)
2010-10-28 14:18:16 +02:00
Note: this function is only available on POSIX platforms (i.e. not Windows)
Sets the user identity of the process. (See setuid(2).) This accepts either
a numerical ID or a username string. If a username is specified, this method
blocks while resolving it to a numerical ID.
2010-10-28 14:18:16 +02:00
if (process.getuid && process.setuid) {
console.log('Current uid: ' + process.getuid());
try {
process.setuid(501);
console.log('New uid: ' + process.getuid());
}
catch (err) {
console.log('Failed to set uid: ' + err);
}
2010-10-28 14:18:16 +02:00
}
## process.getgroups()
Note: this function is only available on POSIX platforms (i.e. not Windows)
Returns an array with the supplementary group IDs. POSIX leaves it unspecified
if the effective group ID is included but node.js ensures it always is.
## process.setgroups(groups)
Note: this function is only available on POSIX platforms (i.e. not Windows)
Sets the supplementary group IDs. This is a privileged operation, meaning you
need to be root or have the CAP_SETGID capability.
The list can contain group IDs, group names or both.
## process.initgroups(user, extra_group)
Note: this function is only available on POSIX platforms (i.e. not Windows)
Reads /etc/group and initializes the group access list, using all groups of
which the user is a member. This is a privileged operation, meaning you need
to be root or have the CAP_SETGID capability.
`user` is a user name or user ID. `extra_group` is a group name or group ID.
Some care needs to be taken when dropping privileges. Example:
console.log(process.getgroups()); // [ 0 ]
process.initgroups('bnoordhuis', 1000); // switch user
console.log(process.getgroups()); // [ 27, 30, 46, 1000, 0 ]
process.setgid(1000); // drop root gid
console.log(process.getgroups()); // [ 27, 30, 46, 1000 ]
2012-02-27 20:09:34 +01:00
## process.version
2010-10-28 14:18:16 +02:00
A compiled-in property that exposes `NODE_VERSION`.
console.log('Version: ' + process.version);
2012-02-27 20:09:34 +01:00
## process.versions
2011-10-13 16:10:24 +02:00
A property exposing version strings of node and its dependencies.
console.log(process.versions);
Will print something like:
{ http_parser: '1.0',
node: '0.10.4',
v8: '3.14.5.8',
ares: '1.9.0-DEV',
uv: '0.10.3',
zlib: '1.2.3',
modules: '11',
openssl: '1.0.1e' }
2011-10-13 16:10:24 +02:00
## process.config
An Object containing the JavaScript representation of the configure options
that were used to compile the current node executable. This is the same as
the "config.gypi" file that was produced when running the `./configure` script.
An example of the possible output looks like:
{ target_defaults:
{ cflags: [],
default_configuration: 'Release',
defines: [],
include_dirs: [],
libraries: [] },
variables:
{ host_arch: 'x64',
node_install_npm: 'true',
node_prefix: '',
node_shared_cares: 'false',
node_shared_http_parser: 'false',
node_shared_libuv: 'false',
node_shared_v8: 'false',
node_shared_zlib: 'false',
node_use_dtrace: 'false',
node_use_openssl: 'true',
node_shared_openssl: 'false',
strict_aliasing: 'true',
target_arch: 'x64',
v8_use_snapshot: 'true' } }
2011-10-13 16:10:24 +02:00
2012-02-27 20:09:34 +01:00
## process.kill(pid, [signal])
2010-10-28 14:18:16 +02:00
Send a signal to a process. `pid` is the process id and `signal` is the
string describing the signal to send. Signal names are strings like
'SIGINT' or 'SIGHUP'. If omitted, the signal will be 'SIGTERM'.
See [Signal Events](#process_signal_events) and kill(2) for more information.
2010-10-28 14:18:16 +02:00
Will throw an error if target does not exist, and as a special case, a signal of
`0` can be used to test for the existence of a process.
2010-10-28 14:18:16 +02:00
Note that just because the name of this function is `process.kill`, it is
really just a signal sender, like the `kill` system call. The signal sent
may do something other than kill the target process.
Example of sending a signal to yourself:
process.on('SIGHUP', function() {
2010-10-28 14:18:16 +02:00
console.log('Got SIGHUP signal.');
});
setTimeout(function() {
2010-10-28 14:18:16 +02:00
console.log('Exiting.');
process.exit(0);
}, 100);
process.kill(process.pid, 'SIGHUP');
Note: When SIGUSR1 is received by Node.js it starts the debugger, see
[Signal Events](#process_signal_events).
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## process.pid
2010-10-28 14:18:16 +02:00
The PID of the process.
console.log('This process is pid ' + process.pid);
2012-02-27 20:09:34 +01:00
## process.title
2010-10-28 14:18:16 +02:00
Getter/setter to set what is displayed in 'ps'.
When used as a setter, the maximum length is platform-specific and probably
short.
On Linux and OS X, it's limited to the size of the binary name plus the
length of the command line arguments because it overwrites the argv memory.
v0.8 allowed for longer process title strings by also overwriting the environ
memory but that was potentially insecure/confusing in some (rather obscure)
cases.
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## process.arch
2011-04-27 17:49:24 +02:00
What processor architecture you're running on: `'arm'`, `'ia32'`, or `'x64'`.
console.log('This processor architecture is ' + process.arch);
2012-02-27 20:09:34 +01:00
## process.platform
2010-10-28 14:18:16 +02:00
What platform you're running on:
`'darwin'`, `'freebsd'`, `'linux'`, `'sunos'` or `'win32'`
2010-10-28 14:18:16 +02:00
console.log('This platform is ' + process.platform);
2012-02-27 20:09:34 +01:00
## process.memoryUsage()
2010-10-28 14:18:16 +02:00
Returns an object describing the memory usage of the Node process
measured in bytes.
2010-10-28 14:18:16 +02:00
var util = require('util');
console.log(util.inspect(process.memoryUsage()));
This will generate:
2010-11-18 03:25:14 +01:00
{ rss: 4935680,
heapTotal: 1826816,
heapUsed: 650472 }
2010-10-28 14:18:16 +02:00
`heapTotal` and `heapUsed` refer to V8's memory usage.
2012-02-27 20:09:34 +01:00
## process.nextTick(callback)
2010-10-28 14:18:16 +02:00
On the next loop around the event loop call this callback.
This is *not* a simple alias to `setTimeout(fn, 0)`, it's much more
efficient. It typically runs before any other I/O events fire, but there
are some exceptions. See `process.maxTickDepth` below.
2010-10-28 14:18:16 +02:00
process.nextTick(function() {
2010-10-28 14:18:16 +02:00
console.log('nextTick callback');
});
This is important in developing APIs where you want to give the user the
chance to assign event handlers after an object has been constructed,
but before any I/O has occurred.
function MyThing(options) {
this.setupOptions(options);
process.nextTick(function() {
this.startDoingStuff();
}.bind(this));
}
var thing = new MyThing();
thing.getReadyForStuff();
// thing.startDoingStuff() gets called now, not before.
It is very important for APIs to be either 100% synchronous or 100%
asynchronous. Consider this example:
// WARNING! DO NOT USE! BAD UNSAFE HAZARD!
function maybeSync(arg, cb) {
if (arg) {
cb();
return;
}
fs.stat('file', cb);
}
This API is hazardous. If you do this:
maybeSync(true, function() {
foo();
});
bar();
then it's not clear whether `foo()` or `bar()` will be called first.
This approach is much better:
function definitelyAsync(arg, cb) {
if (arg) {
process.nextTick(cb);
return;
}
fs.stat('file', cb);
}
## process.maxTickDepth
* {Number} Default = 1000
Callbacks passed to `process.nextTick` will *usually* be called at the
end of the current flow of execution, and are thus approximately as fast
as calling a function synchronously. Left unchecked, this would starve
the event loop, preventing any I/O from occurring.
Consider this code:
process.nextTick(function foo() {
process.nextTick(foo);
});
In order to avoid the situation where Node is blocked by an infinite
loop of recursive series of nextTick calls, it defers to allow some I/O
to be done every so often.
The `process.maxTickDepth` value is the maximum depth of
nextTick-calling nextTick-callbacks that will be evaluated before
allowing other forms of I/O to occur.
2010-10-28 14:18:16 +02:00
2012-02-27 20:09:34 +01:00
## process.umask([mask])
2010-10-28 14:18:16 +02:00
Sets or reads the process's file mode creation mask. Child processes inherit
the mask from the parent process. Returns the old mask if `mask` argument is
given, otherwise returns the current mask.
var oldmask, newmask = 0644;
oldmask = process.umask(newmask);
console.log('Changed umask from: ' + oldmask.toString(8) +
' to ' + newmask.toString(8));
2011-03-05 00:57:54 +01:00
2012-02-27 20:09:34 +01:00
## process.uptime()
2011-03-05 00:57:54 +01:00
Number of seconds Node has been running.
## process.hrtime()
Returns the current high-resolution real time in a `[seconds, nanoseconds]`
tuple Array. It is relative to an arbitrary time in the past. It is not
related to the time of day and therefore not subject to clock drift. The
primary use is for measuring performance between intervals.
You may pass in the result of a previous call to `process.hrtime()` to get
a diff reading, useful for benchmarks and measuring intervals:
var time = process.hrtime();
// [ 1800216, 25 ]
setTimeout(function() {
var diff = process.hrtime(time);
// [ 1, 552 ]
console.log('benchmark took %d nanoseconds', diff[0] * 1e9 + diff[1]);
// benchmark took 1000000527 nanoseconds
}, 1000);
[EventEmitter]: events.html#events_class_events_eventemitter