0
0
mirror of https://github.com/django/django.git synced 2024-11-30 07:06:18 +01:00
django/docs/topics/db/transactions.txt
2013-03-11 14:48:53 +01:00

400 lines
15 KiB
Plaintext

==============================
Managing database transactions
==============================
.. module:: django.db.transaction
Django gives you a few ways to control how database transactions are managed,
if you're using a database that supports transactions.
Django's default transaction behavior
=====================================
Django's default behavior is to run with an open transaction which it
commits automatically when any built-in, data-altering model function is
called. For example, if you call ``model.save()`` or ``model.delete()``, the
change will be committed immediately.
This is much like the auto-commit setting for most databases. As soon as you
perform an action that needs to write to the database, Django produces the
``INSERT``/``UPDATE``/``DELETE`` statements and then does the ``COMMIT``.
There's no implicit ``ROLLBACK``.
Tying transactions to HTTP requests
===================================
The recommended way to handle transactions in Web requests is to tie them to
the request and response phases via Django's ``TransactionMiddleware``.
It works like this: When a request starts, Django starts a transaction. If the
response is produced without problems, Django commits any pending transactions.
If the view function produces an exception, Django rolls back any pending
transactions.
To activate this feature, just add the ``TransactionMiddleware`` middleware to
your :setting:`MIDDLEWARE_CLASSES` setting::
MIDDLEWARE_CLASSES = (
'django.middleware.cache.UpdateCacheMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.transaction.TransactionMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',
)
The order is quite important. The transaction middleware applies not only to
view functions, but also for all middleware modules that come after it. So if
you use the session middleware after the transaction middleware, session
creation will be part of the transaction.
The various cache middlewares are an exception:
``CacheMiddleware``, :class:`~django.middleware.cache.UpdateCacheMiddleware`,
and :class:`~django.middleware.cache.FetchFromCacheMiddleware` are never
affected. Even when using database caching, Django's cache backend uses its own
database cursor (which is mapped to its own database connection internally).
.. note::
The ``TransactionMiddleware`` only affects the database aliased
as "default" within your :setting:`DATABASES` setting. If you are using
multiple databases and want transaction control over databases other than
"default", you will need to write your own transaction middleware.
.. _transaction-management-functions:
Controlling transaction management in views
===========================================
For most people, implicit request-based transactions work wonderfully. However,
if you need more fine-grained control over how transactions are managed, you can
use a set of functions in ``django.db.transaction`` to control transactions on a
per-function or per-code-block basis.
These functions, described in detail below, can be used in two different ways:
* As a decorator_ on a particular function. For example::
from django.db import transaction
@transaction.commit_on_success
def viewfunc(request):
# ...
# this code executes inside a transaction
# ...
* As a `context manager`_ around a particular block of code::
from django.db import transaction
def viewfunc(request):
# ...
# this code executes using default transaction management
# ...
with transaction.commit_on_success():
# ...
# this code executes inside a transaction
# ...
Both techniques work with all supported version of Python.
.. _decorator: http://docs.python.org/glossary.html#term-decorator
.. _context manager: http://docs.python.org/glossary.html#term-context-manager
For maximum compatibility, all of the examples below show transactions using the
decorator syntax, but all of the follow functions may be used as context
managers, too.
.. note::
Although the examples below use view functions as examples, these
decorators and context managers can be used anywhere in your code
that you need to deal with transactions.
.. _topics-db-transactions-autocommit:
.. function:: autocommit
Use the ``autocommit`` decorator to switch a view function to Django's
default commit behavior, regardless of the global transaction setting.
Example::
from django.db import transaction
@transaction.autocommit
def viewfunc(request):
....
@transaction.autocommit(using="my_other_database")
def viewfunc2(request):
....
Within ``viewfunc()``, transactions will be committed as soon as you call
``model.save()``, ``model.delete()``, or any other function that writes to
the database. ``viewfunc2()`` will have this same behavior, but for the
``"my_other_database"`` connection.
.. function:: commit_on_success
Use the ``commit_on_success`` decorator to use a single transaction for all
the work done in a function::
from django.db import transaction
@transaction.commit_on_success
def viewfunc(request):
....
@transaction.commit_on_success(using="my_other_database")
def viewfunc2(request):
....
If the function returns successfully, then Django will commit all work done
within the function at that point. If the function raises an exception,
though, Django will roll back the transaction.
.. function:: commit_manually
Use the ``commit_manually`` decorator if you need full control over
transactions. It tells Django you'll be managing the transaction on your
own.
Whether you are writing or simply reading from the database, you must
``commit()`` or ``rollback()`` explicitly or Django will raise a
:exc:`TransactionManagementError` exception. This is required when reading
from the database because ``SELECT`` statements may call functions which
modify tables, and thus it is impossible to know if any data has been
modified.
Manual transaction management looks like this::
from django.db import transaction
@transaction.commit_manually
def viewfunc(request):
...
# You can commit/rollback however and whenever you want
transaction.commit()
...
# But you've got to remember to do it yourself!
try:
...
except:
transaction.rollback()
else:
transaction.commit()
@transaction.commit_manually(using="my_other_database")
def viewfunc2(request):
....
.. _topics-db-transactions-requirements:
Requirements for transaction handling
=====================================
Django requires that every transaction that is opened is closed before
the completion of a request. If you are using :func:`autocommit` (the
default commit mode) or :func:`commit_on_success`, this will be done
for you automatically (with the exception of :ref:`executing custom SQL
<executing-custom-sql>`). However, if you are manually managing
transactions (using the :func:`commit_manually` decorator), you must
ensure that the transaction is either committed or rolled back before
a request is completed.
This applies to all database operations, not just write operations. Even
if your transaction only reads from the database, the transaction must
be committed or rolled back before you complete a request.
.. _managing-autocommit:
Managing autocommit
===================
.. versionadded:: 1.6
Django provides a straightforward API to manage the autocommit state of each
database connection, if you need to.
.. function:: get_autocommit(using=None)
.. function:: set_autocommit(using=None, autocommit=True)
These functions take a ``using`` argument which should be the name of a
database. If it isn't provided, Django uses the ``"default"`` database.
.. _deactivate-transaction-management:
How to globally deactivate transaction management
=================================================
Control freaks can totally disable all transaction management by setting
:setting:`TRANSACTIONS_MANAGED` to ``True`` in the Django settings file.
If you do this, Django won't provide any automatic transaction management
whatsoever. Middleware will no longer implicitly commit transactions, and
you'll need to roll management yourself. This even requires you to commit
changes done by middleware somewhere else.
Thus, this is best used in situations where you want to run your own
transaction-controlling middleware or do something really strange. In almost
all situations, you'll be better off using the default behavior, or the
transaction middleware, and only modify selected functions as needed.
.. _topics-db-transactions-savepoints:
Savepoints
==========
A savepoint is a marker within a transaction that enables you to roll back part
of a transaction, rather than the full transaction. Savepoints are available
with the PostgreSQL 8, Oracle and MySQL (when using the InnoDB storage engine)
backends. Other backends provide the savepoint functions, but they're empty
operations -- they don't actually do anything.
Savepoints aren't especially useful if you are using the default
``autocommit`` behavior of Django. However, if you are using
``commit_on_success`` or ``commit_manually``, each open transaction will build
up a series of database operations, awaiting a commit or rollback. If you
issue a rollback, the entire transaction is rolled back. Savepoints provide
the ability to perform a fine-grained rollback, rather than the full rollback
that would be performed by ``transaction.rollback()``.
Each of these functions takes a ``using`` argument which should be the name of
a database for which the behavior applies. If no ``using`` argument is
provided then the ``"default"`` database is used.
Savepoints are controlled by three methods on the transaction object:
.. method:: transaction.savepoint(using=None)
Creates a new savepoint. This marks a point in the transaction that
is known to be in a "good" state.
Returns the savepoint ID (sid).
.. method:: transaction.savepoint_commit(sid, using=None)
Updates the savepoint to include any operations that have been performed
since the savepoint was created, or since the last commit.
.. method:: transaction.savepoint_rollback(sid, using=None)
Rolls the transaction back to the last point at which the savepoint was
committed.
The following example demonstrates the use of savepoints::
from django.db import transaction
@transaction.commit_manually
def viewfunc(request):
a.save()
# open transaction now contains a.save()
sid = transaction.savepoint()
b.save()
# open transaction now contains a.save() and b.save()
if want_to_keep_b:
transaction.savepoint_commit(sid)
# open transaction still contains a.save() and b.save()
else:
transaction.savepoint_rollback(sid)
# open transaction now contains only a.save()
transaction.commit()
Transactions in MySQL
=====================
If you're using MySQL, your tables may or may not support transactions; it
depends on your MySQL version and the table types you're using. (By
"table types," we mean something like "InnoDB" or "MyISAM".) MySQL transaction
peculiarities are outside the scope of this article, but the MySQL site has
`information on MySQL transactions`_.
If your MySQL setup does *not* support transactions, then Django will function
in auto-commit mode: Statements will be executed and committed as soon as
they're called. If your MySQL setup *does* support transactions, Django will
handle transactions as explained in this document.
.. _information on MySQL transactions: http://dev.mysql.com/doc/refman/5.0/en/sql-syntax-transactions.html
Handling exceptions within PostgreSQL transactions
==================================================
When a call to a PostgreSQL cursor raises an exception (typically
``IntegrityError``), all subsequent SQL in the same transaction will fail with
the error "current transaction is aborted, queries ignored until end of
transaction block". Whilst simple use of ``save()`` is unlikely to raise an
exception in PostgreSQL, there are more advanced usage patterns which
might, such as saving objects with unique fields, saving using the
force_insert/force_update flag, or invoking custom SQL.
There are several ways to recover from this sort of error.
Transaction rollback
--------------------
The first option is to roll back the entire transaction. For example::
a.save() # Succeeds, but may be undone by transaction rollback
try:
b.save() # Could throw exception
except IntegrityError:
transaction.rollback()
c.save() # Succeeds, but a.save() may have been undone
Calling ``transaction.rollback()`` rolls back the entire transaction. Any
uncommitted database operations will be lost. In this example, the changes
made by ``a.save()`` would be lost, even though that operation raised no error
itself.
Savepoint rollback
------------------
If you are using PostgreSQL 8 or later, you can use :ref:`savepoints
<topics-db-transactions-savepoints>` to control the extent of a rollback.
Before performing a database operation that could fail, you can set or update
the savepoint; that way, if the operation fails, you can roll back the single
offending operation, rather than the entire transaction. For example::
a.save() # Succeeds, and never undone by savepoint rollback
try:
sid = transaction.savepoint()
b.save() # Could throw exception
transaction.savepoint_commit(sid)
except IntegrityError:
transaction.savepoint_rollback(sid)
c.save() # Succeeds, and a.save() is never undone
In this example, ``a.save()`` will not be undone in the case where
``b.save()`` raises an exception.
Database-level autocommit
-------------------------
With PostgreSQL 8.2 or later, there is an advanced option to run PostgreSQL
with :doc:`database-level autocommit </ref/databases>`. If you use this option,
there is no constantly open transaction, so it is always possible to continue
after catching an exception. For example::
a.save() # succeeds
try:
b.save() # Could throw exception
except IntegrityError:
pass
c.save() # succeeds
.. note::
This is not the same as the :ref:`autocommit decorator
<topics-db-transactions-autocommit>`. When using database level autocommit
there is no database transaction at all. The ``autocommit`` decorator
still uses transactions, automatically committing each transaction when
a database modifying operation occurs.