mirror of
https://github.com/django/django.git
synced 2024-11-30 15:10:46 +01:00
213 lines
5.3 KiB
Plaintext
213 lines
5.3 KiB
Plaintext
|
=========================================
|
||
|
PostgreSQL specific aggregation functions
|
||
|
=========================================
|
||
|
|
||
|
.. module:: django.contrib.postgres.aggregates
|
||
|
:synopsis: PostgreSQL specific aggregation functions
|
||
|
|
||
|
.. versionadded:: 1.9
|
||
|
|
||
|
These functions are described in more detail in the `PostgreSQL docs
|
||
|
<http://www.postgresql.org/docs/current/static/functions-aggregate.html>`_.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
All functions come without default aliases, so you must explicitly provide
|
||
|
one. For example::
|
||
|
|
||
|
>>> SomeModel.objects.aggregate(arr=ArrayAgg('somefield'))
|
||
|
{'arr': [0, 1, 2]}
|
||
|
|
||
|
General-purpose aggregation functions
|
||
|
-------------------------------------
|
||
|
|
||
|
ArrayAgg
|
||
|
~~~~~~~~
|
||
|
|
||
|
.. class:: ArrayAgg(expression, **extra)
|
||
|
|
||
|
Returns a list of values, including nulls, concatenated into an array.
|
||
|
|
||
|
BitAnd
|
||
|
~~~~~~
|
||
|
|
||
|
.. class:: BitAnd(expression, **extra)
|
||
|
|
||
|
Returns an ``int`` of the bitwise ``AND`` of all non-null input values, or
|
||
|
``None`` if all values are null.
|
||
|
|
||
|
BitOr
|
||
|
~~~~~
|
||
|
|
||
|
.. class:: BitOr(expression, **extra)
|
||
|
|
||
|
Returns an ``int`` of the bitwise ``OR`` of all non-null input values, or
|
||
|
``None`` if all values are null.
|
||
|
|
||
|
BoolAnd
|
||
|
~~~~~~~~
|
||
|
|
||
|
.. class:: BoolAnd(expression, **extra)
|
||
|
|
||
|
Returns ``True``, if all input values are true, ``None`` if all values are
|
||
|
null or if there are no values, otherwise ``False`` .
|
||
|
|
||
|
BoolOr
|
||
|
~~~~~~
|
||
|
|
||
|
.. class:: BoolOr(expression, **extra)
|
||
|
|
||
|
Returns ``True`` if at least one input value is true, ``None`` if all
|
||
|
values are null or if there are no values, otherwise ``False``.
|
||
|
|
||
|
StringAgg
|
||
|
~~~~~~~~~
|
||
|
|
||
|
.. class:: StringAgg(expression, delimiter)
|
||
|
|
||
|
Returns the input values concatenated into a string, separated by
|
||
|
the ``delimiter`` string.
|
||
|
|
||
|
.. attribute:: delimiter
|
||
|
|
||
|
Required argument. Needs to be a string.
|
||
|
|
||
|
Aggregate functions for statistics
|
||
|
----------------------------------
|
||
|
|
||
|
``y`` and ``x``
|
||
|
~~~~~~~~~~~~~~~
|
||
|
|
||
|
The arguments ``y`` and ``x`` for all these functions can be the name of a
|
||
|
field or an expression returning a numeric data. Both are required.
|
||
|
|
||
|
Corr
|
||
|
~~~~
|
||
|
|
||
|
.. class:: Corr(y, x)
|
||
|
|
||
|
Returns the correlation coefficient as a ``float``, or ``None`` if there
|
||
|
aren't any matching rows.
|
||
|
|
||
|
CovarPop
|
||
|
~~~~~~~~
|
||
|
|
||
|
.. class:: CovarPop(y, x, sample=False)
|
||
|
|
||
|
Returns the population covariance as a ``float``, or ``None`` if there
|
||
|
aren't any matching rows.
|
||
|
|
||
|
Has one optional argument:
|
||
|
|
||
|
.. attribute:: sample
|
||
|
|
||
|
By default ``CovarPop`` returns the general population covariance.
|
||
|
However, if ``sample=True``, the return value will be the sample
|
||
|
population covariance.
|
||
|
|
||
|
RegrAvgX
|
||
|
~~~~~~~~
|
||
|
|
||
|
.. class:: RegrAvgX(y, x)
|
||
|
|
||
|
Returns the average of the independent variable (``sum(x)/N``) as a
|
||
|
``float``, or ``None`` if there aren't any matching rows.
|
||
|
|
||
|
RegrAvgY
|
||
|
~~~~~~~~
|
||
|
|
||
|
.. class:: RegrAvgY(y, x)
|
||
|
|
||
|
Returns the average of the independent variable (``sum(y)/N``) as a
|
||
|
``float``, or ``None`` if there aren't any matching rows.
|
||
|
|
||
|
RegrCount
|
||
|
~~~~~~~~~
|
||
|
|
||
|
.. class:: RegrCount(y, x)
|
||
|
|
||
|
Returns an ``int`` of the number of input rows in which both expressions
|
||
|
are not null.
|
||
|
|
||
|
RegrIntercept
|
||
|
~~~~~~~~~~~~~
|
||
|
|
||
|
.. class:: RegrIntercept(y, x)
|
||
|
|
||
|
Returns the y-intercept of the least-squares-fit linear equation determined
|
||
|
by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
|
||
|
matching rows.
|
||
|
|
||
|
RegrR2
|
||
|
~~~~~~
|
||
|
|
||
|
.. class:: RegrR2(y, x)
|
||
|
|
||
|
Returns the square of the correlation coefficient as a ``float``, or
|
||
|
``None`` if there aren't any matching rows.
|
||
|
|
||
|
RegrSlope
|
||
|
~~~~~~~~~
|
||
|
|
||
|
.. class:: RegrSlope(y, x)
|
||
|
|
||
|
Returns the slope of the least-squares-fit linear equation determined
|
||
|
by the ``(x, y)`` pairs as a ``float``, or ``None`` if there aren't any
|
||
|
matching rows.
|
||
|
|
||
|
RegrSXX
|
||
|
~~~~~~~
|
||
|
|
||
|
.. class:: RegrSXX(y, x)
|
||
|
|
||
|
Returns ``sum(x^2) - sum(x)^2/N`` ("sum of squares" of the independent
|
||
|
variable) as a ``float``, or ``None`` if there aren't any matching rows.
|
||
|
|
||
|
RegrSXY
|
||
|
~~~~~~~
|
||
|
|
||
|
.. class:: RegrSXY(y, x)
|
||
|
|
||
|
Returns ``sum(x*y) - sum(x) * sum(y)/N`` ("sum of products" of independent
|
||
|
times dependent variable) as a ``float``, or ``None`` if there aren't any
|
||
|
matching rows.
|
||
|
|
||
|
RegrSYY
|
||
|
~~~~~~~
|
||
|
|
||
|
.. class:: RegrSYY(y, x)
|
||
|
|
||
|
Returns ``sum(y^2) - sum(y)^2/N`` ("sum of squares" of the dependent
|
||
|
variable) as a ``float``, or ``None`` if there aren't any matching rows.
|
||
|
|
||
|
Usage examples
|
||
|
--------------
|
||
|
|
||
|
We will use this example table::
|
||
|
|
||
|
| FIELD1 | FIELD2 | FIELD3 |
|
||
|
|--------|--------|--------|
|
||
|
| foo | 1 | 13 |
|
||
|
| bar | 2 | (null) |
|
||
|
| test | 3 | 13 |
|
||
|
|
||
|
|
||
|
Here's some examples of some of the general-purpose aggregation functions::
|
||
|
|
||
|
>>> TestModel.objects.aggregate(result=StringAgg('field1', delimiter=';'))
|
||
|
{'result': 'foo;bar;test'}
|
||
|
>>> TestModel.objects.aggregate(result=ArrayAgg('field2'))
|
||
|
{'result': [1, 2, 3]}
|
||
|
>>> TestModel.objects.aggregate(result=ArrayAgg('field1'))
|
||
|
{'result': ['foo', 'bar', 'test']}
|
||
|
|
||
|
The next example shows the usage of statistical aggregate functions. The
|
||
|
underlying math will be not described (you can read about this, for example, at
|
||
|
`wikipedia <http://en.wikipedia.org/wiki/Regression_analysis>`_)::
|
||
|
|
||
|
>>> TestModel.objects.aggregate(count=RegrCount(y='field3', x='field2'))
|
||
|
{'count': 2}
|
||
|
>>> TestModel.objects.aggregate(avgx=RegrAvgX(y='field3', x='field2'),
|
||
|
... avgy=RegrAvgY(y='field3', x='field2'))
|
||
|
{'avgx': 2, 'avgy': 13}
|