mirror of
https://github.com/python/cpython.git
synced 2024-11-27 15:27:06 +01:00
c2627d6eea
This PR adds the ability to enable the GIL if it was disabled at interpreter startup, and modifies the multi-phase module initialization path to enable the GIL when loading a module, unless that module's spec includes a slot indicating it can run safely without the GIL. PEP 703 called the constant for the slot `Py_mod_gil_not_used`; I went with `Py_MOD_GIL_NOT_USED` for consistency with gh-104148. A warning will be issued up to once per interpreter for the first GIL-using module that is loaded. If `-v` is given, a shorter message will be printed to stderr every time a GIL-using module is loaded (including the first one that issues a warning).
1697 lines
51 KiB
C
1697 lines
51 KiB
C
/* ------------------------------------------------------------------------
|
|
|
|
unicodedata -- Provides access to the Unicode database.
|
|
|
|
The current version number is reported in the unidata_version constant.
|
|
|
|
Written by Marc-Andre Lemburg (mal@lemburg.com).
|
|
Modified for Python 2.0 by Fredrik Lundh (fredrik@pythonware.com)
|
|
Modified by Martin v. Löwis (martin@v.loewis.de)
|
|
|
|
Copyright (c) Corporation for National Research Initiatives.
|
|
|
|
------------------------------------------------------------------------ */
|
|
|
|
#ifndef Py_BUILD_CORE_BUILTIN
|
|
# define Py_BUILD_CORE_MODULE 1
|
|
#endif
|
|
|
|
#include "Python.h"
|
|
#include "pycore_ucnhash.h" // _PyUnicode_Name_CAPI
|
|
|
|
#include <stdbool.h>
|
|
#include <stddef.h> // offsetof()
|
|
|
|
/*[clinic input]
|
|
module unicodedata
|
|
class unicodedata.UCD 'PreviousDBVersion *' '<not used>'
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=e47113e05924be43]*/
|
|
|
|
/* character properties */
|
|
|
|
typedef struct {
|
|
const unsigned char category; /* index into
|
|
_PyUnicode_CategoryNames */
|
|
const unsigned char combining; /* combining class value 0 - 255 */
|
|
const unsigned char bidirectional; /* index into
|
|
_PyUnicode_BidirectionalNames */
|
|
const unsigned char mirrored; /* true if mirrored in bidir mode */
|
|
const unsigned char east_asian_width; /* index into
|
|
_PyUnicode_EastAsianWidth */
|
|
const unsigned char normalization_quick_check; /* see is_normalized() */
|
|
} _PyUnicode_DatabaseRecord;
|
|
|
|
typedef struct change_record {
|
|
/* sequence of fields should be the same as in merge_old_version */
|
|
const unsigned char bidir_changed;
|
|
const unsigned char category_changed;
|
|
const unsigned char decimal_changed;
|
|
const unsigned char mirrored_changed;
|
|
const unsigned char east_asian_width_changed;
|
|
const double numeric_changed;
|
|
} change_record;
|
|
|
|
/* data file generated by Tools/unicode/makeunicodedata.py */
|
|
#include "unicodedata_db.h"
|
|
|
|
static const _PyUnicode_DatabaseRecord*
|
|
_getrecord_ex(Py_UCS4 code)
|
|
{
|
|
int index;
|
|
if (code >= 0x110000)
|
|
index = 0;
|
|
else {
|
|
index = index1[(code>>SHIFT)];
|
|
index = index2[(index<<SHIFT)+(code&((1<<SHIFT)-1))];
|
|
}
|
|
|
|
return &_PyUnicode_Database_Records[index];
|
|
}
|
|
|
|
/* ------------- Previous-version API ------------------------------------- */
|
|
typedef struct previous_version {
|
|
PyObject_HEAD
|
|
const char *name;
|
|
const change_record* (*getrecord)(Py_UCS4);
|
|
Py_UCS4 (*normalization)(Py_UCS4);
|
|
} PreviousDBVersion;
|
|
|
|
#include "clinic/unicodedata.c.h"
|
|
|
|
#define get_old_record(self, v) ((((PreviousDBVersion*)self)->getrecord)(v))
|
|
|
|
static PyMemberDef DB_members[] = {
|
|
{"unidata_version", Py_T_STRING, offsetof(PreviousDBVersion, name), Py_READONLY},
|
|
{NULL}
|
|
};
|
|
|
|
// Check if self is an unicodedata.UCD instance.
|
|
// If self is NULL (when the PyCapsule C API is used), return 0.
|
|
// PyModule_Check() is used to avoid having to retrieve the ucd_type.
|
|
// See unicodedata_functions comment to the rationale of this macro.
|
|
#define UCD_Check(self) (self != NULL && !PyModule_Check(self))
|
|
|
|
static PyObject*
|
|
new_previous_version(PyTypeObject *ucd_type,
|
|
const char*name, const change_record* (*getrecord)(Py_UCS4),
|
|
Py_UCS4 (*normalization)(Py_UCS4))
|
|
{
|
|
PreviousDBVersion *self;
|
|
self = PyObject_GC_New(PreviousDBVersion, ucd_type);
|
|
if (self == NULL)
|
|
return NULL;
|
|
self->name = name;
|
|
self->getrecord = getrecord;
|
|
self->normalization = normalization;
|
|
PyObject_GC_Track(self);
|
|
return (PyObject*)self;
|
|
}
|
|
|
|
|
|
/* --- Module API --------------------------------------------------------- */
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.decimal
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
default: object=NULL
|
|
/
|
|
|
|
Converts a Unicode character into its equivalent decimal value.
|
|
|
|
Returns the decimal value assigned to the character chr as integer.
|
|
If no such value is defined, default is returned, or, if not given,
|
|
ValueError is raised.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_decimal_impl(PyObject *self, int chr,
|
|
PyObject *default_value)
|
|
/*[clinic end generated code: output=be23376e1a185231 input=933f8107993f23d0]*/
|
|
{
|
|
int have_old = 0;
|
|
long rc;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed == 0) {
|
|
/* unassigned */
|
|
have_old = 1;
|
|
rc = -1;
|
|
}
|
|
else if (old->decimal_changed != 0xFF) {
|
|
have_old = 1;
|
|
rc = old->decimal_changed;
|
|
}
|
|
}
|
|
|
|
if (!have_old)
|
|
rc = Py_UNICODE_TODECIMAL(c);
|
|
if (rc < 0) {
|
|
if (default_value == NULL) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"not a decimal");
|
|
return NULL;
|
|
}
|
|
else {
|
|
return Py_NewRef(default_value);
|
|
}
|
|
}
|
|
return PyLong_FromLong(rc);
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.digit
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
default: object=NULL
|
|
/
|
|
|
|
Converts a Unicode character into its equivalent digit value.
|
|
|
|
Returns the digit value assigned to the character chr as integer.
|
|
If no such value is defined, default is returned, or, if not given,
|
|
ValueError is raised.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_digit_impl(PyObject *self, int chr, PyObject *default_value)
|
|
/*[clinic end generated code: output=96e18c950171fd2f input=e27d6e4565cd29f2]*/
|
|
{
|
|
long rc;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
rc = Py_UNICODE_TODIGIT(c);
|
|
if (rc < 0) {
|
|
if (default_value == NULL) {
|
|
PyErr_SetString(PyExc_ValueError, "not a digit");
|
|
return NULL;
|
|
}
|
|
else {
|
|
return Py_NewRef(default_value);
|
|
}
|
|
}
|
|
return PyLong_FromLong(rc);
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.numeric
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
default: object=NULL
|
|
/
|
|
|
|
Converts a Unicode character into its equivalent numeric value.
|
|
|
|
Returns the numeric value assigned to the character chr as float.
|
|
If no such value is defined, default is returned, or, if not given,
|
|
ValueError is raised.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_numeric_impl(PyObject *self, int chr,
|
|
PyObject *default_value)
|
|
/*[clinic end generated code: output=53ce281fe85b10c4 input=fdf5871a5542893c]*/
|
|
{
|
|
int have_old = 0;
|
|
double rc;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed == 0) {
|
|
/* unassigned */
|
|
have_old = 1;
|
|
rc = -1.0;
|
|
}
|
|
else if (old->decimal_changed != 0xFF) {
|
|
have_old = 1;
|
|
rc = old->decimal_changed;
|
|
}
|
|
}
|
|
|
|
if (!have_old)
|
|
rc = Py_UNICODE_TONUMERIC(c);
|
|
if (rc == -1.0) {
|
|
if (default_value == NULL) {
|
|
PyErr_SetString(PyExc_ValueError, "not a numeric character");
|
|
return NULL;
|
|
}
|
|
else {
|
|
return Py_NewRef(default_value);
|
|
}
|
|
}
|
|
return PyFloat_FromDouble(rc);
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.category
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
/
|
|
|
|
Returns the general category assigned to the character chr as string.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_category_impl(PyObject *self, int chr)
|
|
/*[clinic end generated code: output=8571539ee2e6783a input=27d6f3d85050bc06]*/
|
|
{
|
|
int index;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
index = (int) _getrecord_ex(c)->category;
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed != 0xFF)
|
|
index = old->category_changed;
|
|
}
|
|
return PyUnicode_FromString(_PyUnicode_CategoryNames[index]);
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.bidirectional
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
/
|
|
|
|
Returns the bidirectional class assigned to the character chr as string.
|
|
|
|
If no such value is defined, an empty string is returned.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_bidirectional_impl(PyObject *self, int chr)
|
|
/*[clinic end generated code: output=d36310ce2039bb92 input=b3d8f42cebfcf475]*/
|
|
{
|
|
int index;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
index = (int) _getrecord_ex(c)->bidirectional;
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed == 0)
|
|
index = 0; /* unassigned */
|
|
else if (old->bidir_changed != 0xFF)
|
|
index = old->bidir_changed;
|
|
}
|
|
return PyUnicode_FromString(_PyUnicode_BidirectionalNames[index]);
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.combining -> int
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
/
|
|
|
|
Returns the canonical combining class assigned to the character chr as integer.
|
|
|
|
Returns 0 if no combining class is defined.
|
|
[clinic start generated code]*/
|
|
|
|
static int
|
|
unicodedata_UCD_combining_impl(PyObject *self, int chr)
|
|
/*[clinic end generated code: output=cad056d0cb6a5920 input=9f2d6b2a95d0a22a]*/
|
|
{
|
|
int index;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
index = (int) _getrecord_ex(c)->combining;
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed == 0)
|
|
index = 0; /* unassigned */
|
|
}
|
|
return index;
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.mirrored -> int
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
/
|
|
|
|
Returns the mirrored property assigned to the character chr as integer.
|
|
|
|
Returns 1 if the character has been identified as a "mirrored"
|
|
character in bidirectional text, 0 otherwise.
|
|
[clinic start generated code]*/
|
|
|
|
static int
|
|
unicodedata_UCD_mirrored_impl(PyObject *self, int chr)
|
|
/*[clinic end generated code: output=2532dbf8121b50e6 input=5dd400d351ae6f3b]*/
|
|
{
|
|
int index;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
index = (int) _getrecord_ex(c)->mirrored;
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed == 0)
|
|
index = 0; /* unassigned */
|
|
else if (old->mirrored_changed != 0xFF)
|
|
index = old->mirrored_changed;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.east_asian_width
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
/
|
|
|
|
Returns the east asian width assigned to the character chr as string.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_east_asian_width_impl(PyObject *self, int chr)
|
|
/*[clinic end generated code: output=484e8537d9ee8197 input=c4854798aab026e0]*/
|
|
{
|
|
int index;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
index = (int) _getrecord_ex(c)->east_asian_width;
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed == 0)
|
|
index = 0; /* unassigned */
|
|
else if (old->east_asian_width_changed != 0xFF)
|
|
index = old->east_asian_width_changed;
|
|
}
|
|
return PyUnicode_FromString(_PyUnicode_EastAsianWidthNames[index]);
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.decomposition
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
/
|
|
|
|
Returns the character decomposition mapping assigned to the character chr as string.
|
|
|
|
An empty string is returned in case no such mapping is defined.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_decomposition_impl(PyObject *self, int chr)
|
|
/*[clinic end generated code: output=7d699f3ec7565d27 input=e4c12459ad68507b]*/
|
|
{
|
|
char decomp[256];
|
|
int code, index, count;
|
|
size_t i;
|
|
unsigned int prefix_index;
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
|
|
code = (int)c;
|
|
|
|
if (UCD_Check(self)) {
|
|
const change_record *old = get_old_record(self, c);
|
|
if (old->category_changed == 0)
|
|
return PyUnicode_FromString(""); /* unassigned */
|
|
}
|
|
|
|
if (code < 0 || code >= 0x110000)
|
|
index = 0;
|
|
else {
|
|
index = decomp_index1[(code>>DECOMP_SHIFT)];
|
|
index = decomp_index2[(index<<DECOMP_SHIFT)+
|
|
(code&((1<<DECOMP_SHIFT)-1))];
|
|
}
|
|
|
|
/* high byte is number of hex bytes (usually one or two), low byte
|
|
is prefix code (from*/
|
|
count = decomp_data[index] >> 8;
|
|
|
|
/* XXX: could allocate the PyString up front instead
|
|
(strlen(prefix) + 5 * count + 1 bytes) */
|
|
|
|
/* Based on how index is calculated above and decomp_data is generated
|
|
from Tools/unicode/makeunicodedata.py, it should not be possible
|
|
to overflow decomp_prefix. */
|
|
prefix_index = decomp_data[index] & 255;
|
|
assert(prefix_index < Py_ARRAY_LENGTH(decomp_prefix));
|
|
|
|
/* copy prefix */
|
|
i = strlen(decomp_prefix[prefix_index]);
|
|
memcpy(decomp, decomp_prefix[prefix_index], i);
|
|
|
|
while (count-- > 0) {
|
|
if (i)
|
|
decomp[i++] = ' ';
|
|
assert(i < sizeof(decomp));
|
|
PyOS_snprintf(decomp + i, sizeof(decomp) - i, "%04X",
|
|
decomp_data[++index]);
|
|
i += strlen(decomp + i);
|
|
}
|
|
return PyUnicode_FromStringAndSize(decomp, i);
|
|
}
|
|
|
|
static void
|
|
get_decomp_record(PyObject *self, Py_UCS4 code,
|
|
int *index, int *prefix, int *count)
|
|
{
|
|
if (code >= 0x110000) {
|
|
*index = 0;
|
|
}
|
|
else if (UCD_Check(self)
|
|
&& get_old_record(self, code)->category_changed==0) {
|
|
/* unassigned in old version */
|
|
*index = 0;
|
|
}
|
|
else {
|
|
*index = decomp_index1[(code>>DECOMP_SHIFT)];
|
|
*index = decomp_index2[(*index<<DECOMP_SHIFT)+
|
|
(code&((1<<DECOMP_SHIFT)-1))];
|
|
}
|
|
|
|
/* high byte is number of hex bytes (usually one or two), low byte
|
|
is prefix code (from*/
|
|
*count = decomp_data[*index] >> 8;
|
|
*prefix = decomp_data[*index] & 255;
|
|
|
|
(*index)++;
|
|
}
|
|
|
|
#define SBase 0xAC00
|
|
#define LBase 0x1100
|
|
#define VBase 0x1161
|
|
#define TBase 0x11A7
|
|
#define LCount 19
|
|
#define VCount 21
|
|
#define TCount 28
|
|
#define NCount (VCount*TCount)
|
|
#define SCount (LCount*NCount)
|
|
|
|
static PyObject*
|
|
nfd_nfkd(PyObject *self, PyObject *input, int k)
|
|
{
|
|
PyObject *result;
|
|
Py_UCS4 *output;
|
|
Py_ssize_t i, o, osize;
|
|
int kind;
|
|
const void *data;
|
|
/* Longest decomposition in Unicode 3.2: U+FDFA */
|
|
Py_UCS4 stack[20];
|
|
Py_ssize_t space, isize;
|
|
int index, prefix, count, stackptr;
|
|
unsigned char prev, cur;
|
|
|
|
stackptr = 0;
|
|
isize = PyUnicode_GET_LENGTH(input);
|
|
space = isize;
|
|
/* Overallocate at most 10 characters. */
|
|
if (space > 10) {
|
|
if (space <= PY_SSIZE_T_MAX - 10)
|
|
space += 10;
|
|
}
|
|
else {
|
|
space *= 2;
|
|
}
|
|
osize = space;
|
|
output = PyMem_NEW(Py_UCS4, space);
|
|
if (!output) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
i = o = 0;
|
|
kind = PyUnicode_KIND(input);
|
|
data = PyUnicode_DATA(input);
|
|
|
|
while (i < isize) {
|
|
stack[stackptr++] = PyUnicode_READ(kind, data, i++);
|
|
while(stackptr) {
|
|
Py_UCS4 code = stack[--stackptr];
|
|
/* Hangul Decomposition adds three characters in
|
|
a single step, so we need at least that much room. */
|
|
if (space < 3) {
|
|
Py_UCS4 *new_output;
|
|
osize += 10;
|
|
space += 10;
|
|
new_output = PyMem_Realloc(output, osize*sizeof(Py_UCS4));
|
|
if (new_output == NULL) {
|
|
PyMem_Free(output);
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
output = new_output;
|
|
}
|
|
/* Hangul Decomposition. */
|
|
if (SBase <= code && code < (SBase+SCount)) {
|
|
int SIndex = code - SBase;
|
|
int L = LBase + SIndex / NCount;
|
|
int V = VBase + (SIndex % NCount) / TCount;
|
|
int T = TBase + SIndex % TCount;
|
|
output[o++] = L;
|
|
output[o++] = V;
|
|
space -= 2;
|
|
if (T != TBase) {
|
|
output[o++] = T;
|
|
space --;
|
|
}
|
|
continue;
|
|
}
|
|
/* normalization changes */
|
|
if (UCD_Check(self)) {
|
|
Py_UCS4 value = ((PreviousDBVersion*)self)->normalization(code);
|
|
if (value != 0) {
|
|
stack[stackptr++] = value;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Other decompositions. */
|
|
get_decomp_record(self, code, &index, &prefix, &count);
|
|
|
|
/* Copy character if it is not decomposable, or has a
|
|
compatibility decomposition, but we do NFD. */
|
|
if (!count || (prefix && !k)) {
|
|
output[o++] = code;
|
|
space--;
|
|
continue;
|
|
}
|
|
/* Copy decomposition onto the stack, in reverse
|
|
order. */
|
|
while(count) {
|
|
code = decomp_data[index + (--count)];
|
|
stack[stackptr++] = code;
|
|
}
|
|
}
|
|
}
|
|
|
|
result = PyUnicode_FromKindAndData(PyUnicode_4BYTE_KIND,
|
|
output, o);
|
|
PyMem_Free(output);
|
|
if (!result)
|
|
return NULL;
|
|
/* result is guaranteed to be ready, as it is compact. */
|
|
kind = PyUnicode_KIND(result);
|
|
data = PyUnicode_DATA(result);
|
|
|
|
/* Sort canonically. */
|
|
i = 0;
|
|
prev = _getrecord_ex(PyUnicode_READ(kind, data, i))->combining;
|
|
for (i++; i < PyUnicode_GET_LENGTH(result); i++) {
|
|
cur = _getrecord_ex(PyUnicode_READ(kind, data, i))->combining;
|
|
if (prev == 0 || cur == 0 || prev <= cur) {
|
|
prev = cur;
|
|
continue;
|
|
}
|
|
/* Non-canonical order. Need to switch *i with previous. */
|
|
o = i - 1;
|
|
while (1) {
|
|
Py_UCS4 tmp = PyUnicode_READ(kind, data, o+1);
|
|
PyUnicode_WRITE(kind, data, o+1,
|
|
PyUnicode_READ(kind, data, o));
|
|
PyUnicode_WRITE(kind, data, o, tmp);
|
|
o--;
|
|
if (o < 0)
|
|
break;
|
|
prev = _getrecord_ex(PyUnicode_READ(kind, data, o))->combining;
|
|
if (prev == 0 || prev <= cur)
|
|
break;
|
|
}
|
|
prev = _getrecord_ex(PyUnicode_READ(kind, data, i))->combining;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
find_nfc_index(const struct reindex* nfc, Py_UCS4 code)
|
|
{
|
|
unsigned int index;
|
|
for (index = 0; nfc[index].start; index++) {
|
|
unsigned int start = nfc[index].start;
|
|
if (code < start)
|
|
return -1;
|
|
if (code <= start + nfc[index].count) {
|
|
unsigned int delta = code - start;
|
|
return nfc[index].index + delta;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static PyObject*
|
|
nfc_nfkc(PyObject *self, PyObject *input, int k)
|
|
{
|
|
PyObject *result;
|
|
int kind;
|
|
const void *data;
|
|
Py_UCS4 *output;
|
|
Py_ssize_t i, i1, o, len;
|
|
int f,l,index,index1,comb;
|
|
Py_UCS4 code;
|
|
Py_ssize_t skipped[20];
|
|
int cskipped = 0;
|
|
|
|
result = nfd_nfkd(self, input, k);
|
|
if (!result)
|
|
return NULL;
|
|
/* result will be "ready". */
|
|
kind = PyUnicode_KIND(result);
|
|
data = PyUnicode_DATA(result);
|
|
len = PyUnicode_GET_LENGTH(result);
|
|
|
|
/* We allocate a buffer for the output.
|
|
If we find that we made no changes, we still return
|
|
the NFD result. */
|
|
output = PyMem_NEW(Py_UCS4, len);
|
|
if (!output) {
|
|
PyErr_NoMemory();
|
|
Py_DECREF(result);
|
|
return 0;
|
|
}
|
|
i = o = 0;
|
|
|
|
again:
|
|
while (i < len) {
|
|
for (index = 0; index < cskipped; index++) {
|
|
if (skipped[index] == i) {
|
|
/* *i character is skipped.
|
|
Remove from list. */
|
|
skipped[index] = skipped[cskipped-1];
|
|
cskipped--;
|
|
i++;
|
|
goto again; /* continue while */
|
|
}
|
|
}
|
|
/* Hangul Composition. We don't need to check for <LV,T>
|
|
pairs, since we always have decomposed data. */
|
|
code = PyUnicode_READ(kind, data, i);
|
|
if (LBase <= code && code < (LBase+LCount) &&
|
|
i + 1 < len &&
|
|
VBase <= PyUnicode_READ(kind, data, i+1) &&
|
|
PyUnicode_READ(kind, data, i+1) < (VBase+VCount)) {
|
|
/* check L character is a modern leading consonant (0x1100 ~ 0x1112)
|
|
and V character is a modern vowel (0x1161 ~ 0x1175). */
|
|
int LIndex, VIndex;
|
|
LIndex = code - LBase;
|
|
VIndex = PyUnicode_READ(kind, data, i+1) - VBase;
|
|
code = SBase + (LIndex*VCount+VIndex)*TCount;
|
|
i+=2;
|
|
if (i < len &&
|
|
TBase < PyUnicode_READ(kind, data, i) &&
|
|
PyUnicode_READ(kind, data, i) < (TBase+TCount)) {
|
|
/* check T character is a modern trailing consonant
|
|
(0x11A8 ~ 0x11C2). */
|
|
code += PyUnicode_READ(kind, data, i)-TBase;
|
|
i++;
|
|
}
|
|
output[o++] = code;
|
|
continue;
|
|
}
|
|
|
|
/* code is still input[i] here */
|
|
f = find_nfc_index(nfc_first, code);
|
|
if (f == -1) {
|
|
output[o++] = code;
|
|
i++;
|
|
continue;
|
|
}
|
|
/* Find next unblocked character. */
|
|
i1 = i+1;
|
|
comb = 0;
|
|
/* output base character for now; might be updated later. */
|
|
output[o] = PyUnicode_READ(kind, data, i);
|
|
while (i1 < len) {
|
|
Py_UCS4 code1 = PyUnicode_READ(kind, data, i1);
|
|
int comb1 = _getrecord_ex(code1)->combining;
|
|
if (comb) {
|
|
if (comb1 == 0)
|
|
break;
|
|
if (comb >= comb1) {
|
|
/* Character is blocked. */
|
|
i1++;
|
|
continue;
|
|
}
|
|
}
|
|
l = find_nfc_index(nfc_last, code1);
|
|
/* i1 cannot be combined with i. If i1
|
|
is a starter, we don't need to look further.
|
|
Otherwise, record the combining class. */
|
|
if (l == -1) {
|
|
not_combinable:
|
|
if (comb1 == 0)
|
|
break;
|
|
comb = comb1;
|
|
i1++;
|
|
continue;
|
|
}
|
|
index = f*TOTAL_LAST + l;
|
|
index1 = comp_index[index >> COMP_SHIFT];
|
|
code = comp_data[(index1<<COMP_SHIFT)+
|
|
(index&((1<<COMP_SHIFT)-1))];
|
|
if (code == 0)
|
|
goto not_combinable;
|
|
|
|
/* Replace the original character. */
|
|
output[o] = code;
|
|
/* Mark the second character unused. */
|
|
assert(cskipped < 20);
|
|
skipped[cskipped++] = i1;
|
|
i1++;
|
|
f = find_nfc_index(nfc_first, output[o]);
|
|
if (f == -1)
|
|
break;
|
|
}
|
|
/* Output character was already written.
|
|
Just advance the indices. */
|
|
o++; i++;
|
|
}
|
|
if (o == len) {
|
|
/* No changes. Return original string. */
|
|
PyMem_Free(output);
|
|
return result;
|
|
}
|
|
Py_DECREF(result);
|
|
result = PyUnicode_FromKindAndData(PyUnicode_4BYTE_KIND,
|
|
output, o);
|
|
PyMem_Free(output);
|
|
return result;
|
|
}
|
|
|
|
// This needs to match the logic in makeunicodedata.py
|
|
// which constructs the quickcheck data.
|
|
typedef enum {YES = 0, MAYBE = 1, NO = 2} QuickcheckResult;
|
|
|
|
/* Run the Unicode normalization "quickcheck" algorithm.
|
|
*
|
|
* Return YES or NO if quickcheck determines the input is certainly
|
|
* normalized or certainly not, and MAYBE if quickcheck is unable to
|
|
* tell.
|
|
*
|
|
* If `yes_only` is true, then return MAYBE as soon as we determine
|
|
* the answer is not YES.
|
|
*
|
|
* For background and details on the algorithm, see UAX #15:
|
|
* https://www.unicode.org/reports/tr15/#Detecting_Normalization_Forms
|
|
*/
|
|
static QuickcheckResult
|
|
is_normalized_quickcheck(PyObject *self, PyObject *input, bool nfc, bool k,
|
|
bool yes_only)
|
|
{
|
|
/* UCD 3.2.0 is requested, quickchecks must be disabled. */
|
|
if (UCD_Check(self)) {
|
|
return MAYBE;
|
|
}
|
|
|
|
if (PyUnicode_IS_ASCII(input)) {
|
|
return YES;
|
|
}
|
|
|
|
Py_ssize_t i, len;
|
|
int kind;
|
|
const void *data;
|
|
unsigned char prev_combining = 0;
|
|
|
|
/* The two quickcheck bits at this shift have type QuickcheckResult. */
|
|
int quickcheck_shift = (nfc ? 4 : 0) + (k ? 2 : 0);
|
|
|
|
QuickcheckResult result = YES; /* certainly normalized, unless we find something */
|
|
|
|
i = 0;
|
|
kind = PyUnicode_KIND(input);
|
|
data = PyUnicode_DATA(input);
|
|
len = PyUnicode_GET_LENGTH(input);
|
|
while (i < len) {
|
|
Py_UCS4 ch = PyUnicode_READ(kind, data, i++);
|
|
const _PyUnicode_DatabaseRecord *record = _getrecord_ex(ch);
|
|
|
|
unsigned char combining = record->combining;
|
|
if (combining && prev_combining > combining)
|
|
return NO; /* non-canonical sort order, not normalized */
|
|
prev_combining = combining;
|
|
|
|
unsigned char quickcheck_whole = record->normalization_quick_check;
|
|
if (yes_only) {
|
|
if (quickcheck_whole & (3 << quickcheck_shift))
|
|
return MAYBE;
|
|
} else {
|
|
switch ((quickcheck_whole >> quickcheck_shift) & 3) {
|
|
case NO:
|
|
return NO;
|
|
case MAYBE:
|
|
result = MAYBE; /* this string might need normalization */
|
|
}
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.is_normalized
|
|
|
|
self: self
|
|
form: unicode
|
|
unistr as input: unicode
|
|
/
|
|
|
|
Return whether the Unicode string unistr is in the normal form 'form'.
|
|
|
|
Valid values for form are 'NFC', 'NFKC', 'NFD', and 'NFKD'.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_is_normalized_impl(PyObject *self, PyObject *form,
|
|
PyObject *input)
|
|
/*[clinic end generated code: output=11e5a3694e723ca5 input=a544f14cea79e508]*/
|
|
{
|
|
if (PyUnicode_GET_LENGTH(input) == 0) {
|
|
/* special case empty input strings. */
|
|
Py_RETURN_TRUE;
|
|
}
|
|
|
|
PyObject *result;
|
|
bool nfc = false;
|
|
bool k = false;
|
|
QuickcheckResult m;
|
|
|
|
PyObject *cmp;
|
|
int match = 0;
|
|
|
|
if (PyUnicode_CompareWithASCIIString(form, "NFC") == 0) {
|
|
nfc = true;
|
|
}
|
|
else if (PyUnicode_CompareWithASCIIString(form, "NFKC") == 0) {
|
|
nfc = true;
|
|
k = true;
|
|
}
|
|
else if (PyUnicode_CompareWithASCIIString(form, "NFD") == 0) {
|
|
/* matches default values for `nfc` and `k` */
|
|
}
|
|
else if (PyUnicode_CompareWithASCIIString(form, "NFKD") == 0) {
|
|
k = true;
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_ValueError, "invalid normalization form");
|
|
return NULL;
|
|
}
|
|
|
|
m = is_normalized_quickcheck(self, input, nfc, k, false);
|
|
|
|
if (m == MAYBE) {
|
|
cmp = (nfc ? nfc_nfkc : nfd_nfkd)(self, input, k);
|
|
if (cmp == NULL) {
|
|
return NULL;
|
|
}
|
|
match = PyUnicode_Compare(input, cmp);
|
|
Py_DECREF(cmp);
|
|
result = (match == 0) ? Py_True : Py_False;
|
|
}
|
|
else {
|
|
result = (m == YES) ? Py_True : Py_False;
|
|
}
|
|
|
|
return Py_NewRef(result);
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.normalize
|
|
|
|
self: self
|
|
form: unicode
|
|
unistr as input: unicode
|
|
/
|
|
|
|
Return the normal form 'form' for the Unicode string unistr.
|
|
|
|
Valid values for form are 'NFC', 'NFKC', 'NFD', and 'NFKD'.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_normalize_impl(PyObject *self, PyObject *form,
|
|
PyObject *input)
|
|
/*[clinic end generated code: output=05ca4385a2ad6983 input=3a5206c0ad2833fb]*/
|
|
{
|
|
if (PyUnicode_GET_LENGTH(input) == 0) {
|
|
/* Special case empty input strings, since resizing
|
|
them later would cause internal errors. */
|
|
return Py_NewRef(input);
|
|
}
|
|
|
|
if (PyUnicode_CompareWithASCIIString(form, "NFC") == 0) {
|
|
if (is_normalized_quickcheck(self, input,
|
|
true, false, true) == YES) {
|
|
return Py_NewRef(input);
|
|
}
|
|
return nfc_nfkc(self, input, 0);
|
|
}
|
|
if (PyUnicode_CompareWithASCIIString(form, "NFKC") == 0) {
|
|
if (is_normalized_quickcheck(self, input,
|
|
true, true, true) == YES) {
|
|
return Py_NewRef(input);
|
|
}
|
|
return nfc_nfkc(self, input, 1);
|
|
}
|
|
if (PyUnicode_CompareWithASCIIString(form, "NFD") == 0) {
|
|
if (is_normalized_quickcheck(self, input,
|
|
false, false, true) == YES) {
|
|
return Py_NewRef(input);
|
|
}
|
|
return nfd_nfkd(self, input, 0);
|
|
}
|
|
if (PyUnicode_CompareWithASCIIString(form, "NFKD") == 0) {
|
|
if (is_normalized_quickcheck(self, input,
|
|
false, true, true) == YES) {
|
|
return Py_NewRef(input);
|
|
}
|
|
return nfd_nfkd(self, input, 1);
|
|
}
|
|
PyErr_SetString(PyExc_ValueError, "invalid normalization form");
|
|
return NULL;
|
|
}
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* unicode character name tables */
|
|
|
|
/* data file generated by Tools/unicode/makeunicodedata.py */
|
|
#include "unicodename_db.h"
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* database code (cut and pasted from the unidb package) */
|
|
|
|
static const char * const hangul_syllables[][3] = {
|
|
{ "G", "A", "" },
|
|
{ "GG", "AE", "G" },
|
|
{ "N", "YA", "GG" },
|
|
{ "D", "YAE", "GS" },
|
|
{ "DD", "EO", "N", },
|
|
{ "R", "E", "NJ" },
|
|
{ "M", "YEO", "NH" },
|
|
{ "B", "YE", "D" },
|
|
{ "BB", "O", "L" },
|
|
{ "S", "WA", "LG" },
|
|
{ "SS", "WAE", "LM" },
|
|
{ "", "OE", "LB" },
|
|
{ "J", "YO", "LS" },
|
|
{ "JJ", "U", "LT" },
|
|
{ "C", "WEO", "LP" },
|
|
{ "K", "WE", "LH" },
|
|
{ "T", "WI", "M" },
|
|
{ "P", "YU", "B" },
|
|
{ "H", "EU", "BS" },
|
|
{ 0, "YI", "S" },
|
|
{ 0, "I", "SS" },
|
|
{ 0, 0, "NG" },
|
|
{ 0, 0, "J" },
|
|
{ 0, 0, "C" },
|
|
{ 0, 0, "K" },
|
|
{ 0, 0, "T" },
|
|
{ 0, 0, "P" },
|
|
{ 0, 0, "H" }
|
|
};
|
|
|
|
/* These ranges need to match makeunicodedata.py:cjk_ranges. */
|
|
static int
|
|
is_unified_ideograph(Py_UCS4 code)
|
|
{
|
|
return
|
|
(0x3400 <= code && code <= 0x4DBF) || /* CJK Ideograph Extension A */
|
|
(0x4E00 <= code && code <= 0x9FFF) || /* CJK Ideograph */
|
|
(0x20000 <= code && code <= 0x2A6DF) || /* CJK Ideograph Extension B */
|
|
(0x2A700 <= code && code <= 0x2B739) || /* CJK Ideograph Extension C */
|
|
(0x2B740 <= code && code <= 0x2B81D) || /* CJK Ideograph Extension D */
|
|
(0x2B820 <= code && code <= 0x2CEA1) || /* CJK Ideograph Extension E */
|
|
(0x2CEB0 <= code && code <= 0x2EBE0) || /* CJK Ideograph Extension F */
|
|
(0x2EBF0 <= code && code <= 0x2EE5D) || /* CJK Ideograph Extension I */
|
|
(0x30000 <= code && code <= 0x3134A) || /* CJK Ideograph Extension G */
|
|
(0x31350 <= code && code <= 0x323AF); /* CJK Ideograph Extension H */
|
|
}
|
|
|
|
/* macros used to determine if the given code point is in the PUA range that
|
|
* we are using to store aliases and named sequences */
|
|
#define IS_ALIAS(cp) ((cp >= aliases_start) && (cp < aliases_end))
|
|
#define IS_NAMED_SEQ(cp) ((cp >= named_sequences_start) && \
|
|
(cp < named_sequences_end))
|
|
|
|
|
|
// DAWG decoding functions
|
|
|
|
static unsigned int
|
|
_dawg_decode_varint_unsigned(unsigned int index, unsigned int* result)
|
|
{
|
|
unsigned int res = 0;
|
|
unsigned int shift = 0;
|
|
for (;;) {
|
|
unsigned char byte = packed_name_dawg[index];
|
|
res |= (byte & 0x7f) << shift;
|
|
index++;
|
|
shift += 7;
|
|
if (!(byte & 0x80)) {
|
|
*result = res;
|
|
return index;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
_dawg_match_edge(const char* name, unsigned int namelen, unsigned int size,
|
|
unsigned int label_offset, unsigned int namepos)
|
|
{
|
|
// This returns 1 if the edge matched, 0 if it didn't (but further edges
|
|
// could match) and -1 if the name cannot match at all.
|
|
if (size > 1 && namepos + size > namelen) {
|
|
return 0;
|
|
}
|
|
for (unsigned int i = 0; i < size; i++) {
|
|
if (packed_name_dawg[label_offset + i] != Py_TOUPPER(name[namepos + i])) {
|
|
if (i > 0) {
|
|
return -1; // cannot match at all
|
|
}
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// reading DAWG node information:
|
|
// a node is encoded by a varint. The lowest bit of that int is set if the node
|
|
// is a final, accepting state. The higher bits of that int represent the
|
|
// number of names that are encoded by the sub-DAWG started by this node. It's
|
|
// used to compute the position of a name.
|
|
//
|
|
// the starting node of the DAWG is at position 0.
|
|
//
|
|
// the varint representing a node is followed by the node's edges, the encoding
|
|
// is described below
|
|
|
|
|
|
static unsigned int
|
|
_dawg_decode_node(unsigned int node_offset, bool* final)
|
|
{
|
|
unsigned int num;
|
|
node_offset = _dawg_decode_varint_unsigned(node_offset, &num);
|
|
*final = num & 1;
|
|
return node_offset;
|
|
}
|
|
|
|
static bool
|
|
_dawg_node_is_final(unsigned int node_offset)
|
|
{
|
|
unsigned int num;
|
|
_dawg_decode_varint_unsigned(node_offset, &num);
|
|
return num & 1;
|
|
}
|
|
|
|
static unsigned int
|
|
_dawg_node_descendant_count(unsigned int node_offset)
|
|
{
|
|
unsigned int num;
|
|
_dawg_decode_varint_unsigned(node_offset, &num);
|
|
return num >> 1;
|
|
}
|
|
|
|
|
|
// reading DAWG edge information:
|
|
// a DAWG edge is comprised of the following information:
|
|
// (1) the size of the label of the string attached to the edge
|
|
// (2) the characters of that edge
|
|
// (3) the target node
|
|
// (4) whether the edge is the last edge in the list of edges following a node
|
|
//
|
|
// this information is encoded in a compact form as follows:
|
|
//
|
|
// +---------+-----------------+--------------+--------------------
|
|
// | varint | size (if != 1) | label chars | ... next edge ...
|
|
// +---------+-----------------+--------------+--------------------
|
|
//
|
|
// - first comes a varint
|
|
// - the lowest bit of that varint is whether the edge is final (4)
|
|
// - the second lowest bit of that varint is true if the size of
|
|
// the length of the label is 1 (1)
|
|
// - the rest of the varint is an offset that can be used to compute
|
|
// the offset of the target node of that edge (3)
|
|
// - if the size is not 1, the first varint is followed by a
|
|
// character encoding the number of characters of the label (1)
|
|
// (unicode character names aren't larger than 256 bytes, therefore each
|
|
// edge label can be at most 256 chars, but is usually smaller)
|
|
// - the next size bytes are the characters of the label (2)
|
|
//
|
|
// the offset of the target node is computed as follows: the number in the
|
|
// upper bits of the varint needs to be added to the offset of the target node
|
|
// of the previous edge. For the first edge, where there is no previous target
|
|
// node, the offset of the first edge is used.
|
|
// The intuition here is that edges going out from a node often lead to nodes
|
|
// that are close by, leading to small offsets from the current node and thus
|
|
// fewer bytes.
|
|
//
|
|
// There is a special case: if a final node has no outgoing edges, it has to be
|
|
// followed by a 0 byte to indicate that there are no edges (because the end of
|
|
// the edge list is normally indicated in a bit in the edge encoding). This is
|
|
// indicated by _dawg_decode_edge returning -1
|
|
|
|
|
|
static int
|
|
_dawg_decode_edge(bool is_first_edge, unsigned int prev_target_node_offset,
|
|
unsigned int edge_offset, unsigned int* size,
|
|
unsigned int* label_offset, unsigned int* target_node_offset)
|
|
{
|
|
unsigned int num;
|
|
edge_offset = _dawg_decode_varint_unsigned(edge_offset, &num);
|
|
if (num == 0 && is_first_edge) {
|
|
return -1; // trying to decode past a final node without outgoing edges
|
|
}
|
|
bool last_edge = num & 1;
|
|
num >>= 1;
|
|
bool len_is_one = num & 1;
|
|
num >>= 1;
|
|
*target_node_offset = prev_target_node_offset + num;
|
|
if (len_is_one) {
|
|
*size = 1;
|
|
} else {
|
|
*size = packed_name_dawg[edge_offset++];
|
|
}
|
|
*label_offset = edge_offset;
|
|
return last_edge;
|
|
}
|
|
|
|
static int
|
|
_lookup_dawg_packed(const char* name, unsigned int namelen)
|
|
{
|
|
unsigned int stringpos = 0;
|
|
unsigned int node_offset = 0;
|
|
unsigned int result = 0; // this is the number of final nodes that we skipped to match name
|
|
while (stringpos < namelen) {
|
|
bool final;
|
|
unsigned int edge_offset = _dawg_decode_node(node_offset, &final);
|
|
unsigned int prev_target_node_offset = edge_offset;
|
|
bool is_first_edge = true;
|
|
for (;;) {
|
|
unsigned int size;
|
|
unsigned int label_offset, target_node_offset;
|
|
int last_edge = _dawg_decode_edge(
|
|
is_first_edge, prev_target_node_offset, edge_offset,
|
|
&size, &label_offset, &target_node_offset);
|
|
if (last_edge == -1) {
|
|
return -1;
|
|
}
|
|
is_first_edge = false;
|
|
prev_target_node_offset = target_node_offset;
|
|
int matched = _dawg_match_edge(name, namelen, size, label_offset, stringpos);
|
|
if (matched == -1) {
|
|
return -1;
|
|
}
|
|
if (matched) {
|
|
if (final)
|
|
result += 1;
|
|
stringpos += size;
|
|
node_offset = target_node_offset;
|
|
break;
|
|
}
|
|
if (last_edge) {
|
|
return -1;
|
|
}
|
|
result += _dawg_node_descendant_count(target_node_offset);
|
|
edge_offset = label_offset + size;
|
|
}
|
|
}
|
|
if (_dawg_node_is_final(node_offset)) {
|
|
return result;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int
|
|
_inverse_dawg_lookup(char* buffer, unsigned int buflen, unsigned int pos)
|
|
{
|
|
unsigned int node_offset = 0;
|
|
unsigned int bufpos = 0;
|
|
for (;;) {
|
|
bool final;
|
|
unsigned int edge_offset = _dawg_decode_node(node_offset, &final);
|
|
|
|
if (final) {
|
|
if (pos == 0) {
|
|
if (bufpos + 1 == buflen) {
|
|
return 0;
|
|
}
|
|
buffer[bufpos] = '\0';
|
|
return 1;
|
|
}
|
|
pos--;
|
|
}
|
|
unsigned int prev_target_node_offset = edge_offset;
|
|
bool is_first_edge = true;
|
|
for (;;) {
|
|
unsigned int size;
|
|
unsigned int label_offset, target_node_offset;
|
|
int last_edge = _dawg_decode_edge(
|
|
is_first_edge, prev_target_node_offset, edge_offset,
|
|
&size, &label_offset, &target_node_offset);
|
|
if (last_edge == -1) {
|
|
return 0;
|
|
}
|
|
is_first_edge = false;
|
|
prev_target_node_offset = target_node_offset;
|
|
|
|
unsigned int descendant_count = _dawg_node_descendant_count(target_node_offset);
|
|
if (pos < descendant_count) {
|
|
if (bufpos + size >= buflen) {
|
|
return 0; // buffer overflow
|
|
}
|
|
for (unsigned int i = 0; i < size; i++) {
|
|
buffer[bufpos++] = packed_name_dawg[label_offset++];
|
|
}
|
|
node_offset = target_node_offset;
|
|
break;
|
|
} else if (!last_edge) {
|
|
pos -= descendant_count;
|
|
edge_offset = label_offset + size;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static int
|
|
_getucname(PyObject *self,
|
|
Py_UCS4 code, char* buffer, int buflen, int with_alias_and_seq)
|
|
{
|
|
/* Find the name associated with the given code point.
|
|
* If with_alias_and_seq is 1, check for names in the Private Use Area 15
|
|
* that we are using for aliases and named sequences. */
|
|
int offset;
|
|
|
|
if (code >= 0x110000)
|
|
return 0;
|
|
|
|
/* XXX should we just skip all the code points in the PUAs here? */
|
|
if (!with_alias_and_seq && (IS_ALIAS(code) || IS_NAMED_SEQ(code)))
|
|
return 0;
|
|
|
|
if (UCD_Check(self)) {
|
|
/* in 3.2.0 there are no aliases and named sequences */
|
|
const change_record *old;
|
|
if (IS_ALIAS(code) || IS_NAMED_SEQ(code))
|
|
return 0;
|
|
old = get_old_record(self, code);
|
|
if (old->category_changed == 0) {
|
|
/* unassigned */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (SBase <= code && code < SBase+SCount) {
|
|
/* Hangul syllable. */
|
|
int SIndex = code - SBase;
|
|
int L = SIndex / NCount;
|
|
int V = (SIndex % NCount) / TCount;
|
|
int T = SIndex % TCount;
|
|
|
|
if (buflen < 27)
|
|
/* Worst case: HANGUL SYLLABLE <10chars>. */
|
|
return 0;
|
|
strcpy(buffer, "HANGUL SYLLABLE ");
|
|
buffer += 16;
|
|
strcpy(buffer, hangul_syllables[L][0]);
|
|
buffer += strlen(hangul_syllables[L][0]);
|
|
strcpy(buffer, hangul_syllables[V][1]);
|
|
buffer += strlen(hangul_syllables[V][1]);
|
|
strcpy(buffer, hangul_syllables[T][2]);
|
|
buffer += strlen(hangul_syllables[T][2]);
|
|
*buffer = '\0';
|
|
return 1;
|
|
}
|
|
|
|
if (is_unified_ideograph(code)) {
|
|
if (buflen < 28)
|
|
/* Worst case: CJK UNIFIED IDEOGRAPH-20000 */
|
|
return 0;
|
|
sprintf(buffer, "CJK UNIFIED IDEOGRAPH-%X", code);
|
|
return 1;
|
|
}
|
|
|
|
/* get position of codepoint in order of names in the dawg */
|
|
offset = dawg_codepoint_to_pos_index1[(code>>DAWG_CODEPOINT_TO_POS_SHIFT)];
|
|
offset = dawg_codepoint_to_pos_index2[(offset<<DAWG_CODEPOINT_TO_POS_SHIFT) +
|
|
(code&((1<<DAWG_CODEPOINT_TO_POS_SHIFT)-1))];
|
|
if (offset == DAWG_CODEPOINT_TO_POS_NOTFOUND)
|
|
return 0;
|
|
|
|
assert(buflen >= 0);
|
|
return _inverse_dawg_lookup(buffer, Py_SAFE_DOWNCAST(buflen, int, unsigned int), offset);
|
|
}
|
|
|
|
static int
|
|
capi_getucname(Py_UCS4 code,
|
|
char* buffer, int buflen,
|
|
int with_alias_and_seq)
|
|
{
|
|
return _getucname(NULL, code, buffer, buflen, with_alias_and_seq);
|
|
|
|
}
|
|
|
|
static void
|
|
find_syllable(const char *str, int *len, int *pos, int count, int column)
|
|
{
|
|
int i, len1;
|
|
*len = -1;
|
|
for (i = 0; i < count; i++) {
|
|
const char *s = hangul_syllables[i][column];
|
|
len1 = Py_SAFE_DOWNCAST(strlen(s), size_t, int);
|
|
if (len1 <= *len)
|
|
continue;
|
|
if (strncmp(str, s, len1) == 0) {
|
|
*len = len1;
|
|
*pos = i;
|
|
}
|
|
}
|
|
if (*len == -1) {
|
|
*len = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
_check_alias_and_seq(Py_UCS4* code, int with_named_seq)
|
|
{
|
|
/* check if named sequences are allowed */
|
|
if (!with_named_seq && IS_NAMED_SEQ(*code))
|
|
return 0;
|
|
/* if the code point is in the PUA range that we use for aliases,
|
|
* convert it to obtain the right code point */
|
|
if (IS_ALIAS(*code))
|
|
*code = name_aliases[*code-aliases_start];
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
_getcode(const char* name, int namelen, Py_UCS4* code)
|
|
{
|
|
/* Return the code point associated with the given name.
|
|
* Named aliases are not resolved, they are returned as a code point in the
|
|
* PUA */
|
|
|
|
/* Check for hangul syllables. */
|
|
if (strncmp(name, "HANGUL SYLLABLE ", 16) == 0) {
|
|
int len, L = -1, V = -1, T = -1;
|
|
const char *pos = name + 16;
|
|
find_syllable(pos, &len, &L, LCount, 0);
|
|
pos += len;
|
|
find_syllable(pos, &len, &V, VCount, 1);
|
|
pos += len;
|
|
find_syllable(pos, &len, &T, TCount, 2);
|
|
pos += len;
|
|
if (L != -1 && V != -1 && T != -1 && pos-name == namelen) {
|
|
*code = SBase + (L*VCount+V)*TCount + T;
|
|
return 1;
|
|
}
|
|
/* Otherwise, it's an illegal syllable name. */
|
|
return 0;
|
|
}
|
|
|
|
/* Check for unified ideographs. */
|
|
if (strncmp(name, "CJK UNIFIED IDEOGRAPH-", 22) == 0) {
|
|
/* Four or five hexdigits must follow. */
|
|
unsigned int v;
|
|
v = 0;
|
|
name += 22;
|
|
namelen -= 22;
|
|
if (namelen != 4 && namelen != 5)
|
|
return 0;
|
|
while (namelen--) {
|
|
v *= 16;
|
|
if (*name >= '0' && *name <= '9')
|
|
v += *name - '0';
|
|
else if (*name >= 'A' && *name <= 'F')
|
|
v += *name - 'A' + 10;
|
|
else
|
|
return 0;
|
|
name++;
|
|
}
|
|
if (!is_unified_ideograph(v))
|
|
return 0;
|
|
*code = v;
|
|
return 1;
|
|
}
|
|
|
|
assert(namelen >= 0);
|
|
int position = _lookup_dawg_packed(name, Py_SAFE_DOWNCAST(namelen, int, unsigned int));
|
|
if (position < 0) {
|
|
return 0;
|
|
}
|
|
*code = dawg_pos_to_codepoint[position];
|
|
return 1;
|
|
}
|
|
|
|
|
|
static int
|
|
capi_getcode(const char* name, int namelen, Py_UCS4* code,
|
|
int with_named_seq)
|
|
{
|
|
if (!_getcode(name, namelen, code)) {
|
|
return 0;
|
|
}
|
|
return _check_alias_and_seq(code, with_named_seq);
|
|
}
|
|
|
|
static void
|
|
unicodedata_destroy_capi(PyObject *capsule)
|
|
{
|
|
void *capi = PyCapsule_GetPointer(capsule, PyUnicodeData_CAPSULE_NAME);
|
|
PyMem_Free(capi);
|
|
}
|
|
|
|
static PyObject *
|
|
unicodedata_create_capi(void)
|
|
{
|
|
_PyUnicode_Name_CAPI *capi = PyMem_Malloc(sizeof(_PyUnicode_Name_CAPI));
|
|
if (capi == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
capi->getname = capi_getucname;
|
|
capi->getcode = capi_getcode;
|
|
|
|
PyObject *capsule = PyCapsule_New(capi,
|
|
PyUnicodeData_CAPSULE_NAME,
|
|
unicodedata_destroy_capi);
|
|
if (capsule == NULL) {
|
|
PyMem_Free(capi);
|
|
}
|
|
return capsule;
|
|
};
|
|
|
|
|
|
/* -------------------------------------------------------------------- */
|
|
/* Python bindings */
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.name
|
|
|
|
self: self
|
|
chr: int(accept={str})
|
|
default: object=NULL
|
|
/
|
|
|
|
Returns the name assigned to the character chr as a string.
|
|
|
|
If no name is defined, default is returned, or, if not given,
|
|
ValueError is raised.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_name_impl(PyObject *self, int chr, PyObject *default_value)
|
|
/*[clinic end generated code: output=6bbb37a326407707 input=3e0367f534de56d9]*/
|
|
{
|
|
char name[NAME_MAXLEN+1];
|
|
Py_UCS4 c = (Py_UCS4)chr;
|
|
|
|
if (!_getucname(self, c, name, NAME_MAXLEN, 0)) {
|
|
if (default_value == NULL) {
|
|
PyErr_SetString(PyExc_ValueError, "no such name");
|
|
return NULL;
|
|
}
|
|
else {
|
|
return Py_NewRef(default_value);
|
|
}
|
|
}
|
|
|
|
return PyUnicode_FromString(name);
|
|
}
|
|
|
|
/*[clinic input]
|
|
unicodedata.UCD.lookup
|
|
|
|
self: self
|
|
name: str(accept={str, robuffer}, zeroes=True)
|
|
/
|
|
|
|
Look up character by name.
|
|
|
|
If a character with the given name is found, return the
|
|
corresponding character. If not found, KeyError is raised.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
unicodedata_UCD_lookup_impl(PyObject *self, const char *name,
|
|
Py_ssize_t name_length)
|
|
/*[clinic end generated code: output=7f03fc4959b242f6 input=a557be0f8607a0d6]*/
|
|
{
|
|
Py_UCS4 code;
|
|
unsigned int index;
|
|
if (name_length > NAME_MAXLEN) {
|
|
PyErr_SetString(PyExc_KeyError, "name too long");
|
|
return NULL;
|
|
}
|
|
|
|
if (!_getcode(name, (int)name_length, &code)) {
|
|
PyErr_Format(PyExc_KeyError, "undefined character name '%s'", name);
|
|
return NULL;
|
|
}
|
|
if (UCD_Check(self)) {
|
|
/* in 3.2.0 there are no aliases and named sequences */
|
|
if (IS_ALIAS(code) || IS_NAMED_SEQ(code)) {
|
|
PyErr_Format(PyExc_KeyError, "undefined character name '%s'", name);
|
|
return 0;
|
|
}
|
|
}
|
|
/* check if code is in the PUA range that we use for named sequences
|
|
and convert it */
|
|
if (IS_NAMED_SEQ(code)) {
|
|
index = code-named_sequences_start;
|
|
return PyUnicode_FromKindAndData(PyUnicode_2BYTE_KIND,
|
|
named_sequences[index].seq,
|
|
named_sequences[index].seqlen);
|
|
}
|
|
if (IS_ALIAS(code)) {
|
|
code = name_aliases[code-aliases_start];
|
|
}
|
|
return PyUnicode_FromOrdinal(code);
|
|
}
|
|
|
|
// List of functions used to define module functions *AND* unicodedata.UCD
|
|
// methods. For module functions, self is the module. For UCD methods, self
|
|
// is an UCD instance. The UCD_Check() macro is used to check if self is
|
|
// an UCD instance.
|
|
static PyMethodDef unicodedata_functions[] = {
|
|
UNICODEDATA_UCD_DECIMAL_METHODDEF
|
|
UNICODEDATA_UCD_DIGIT_METHODDEF
|
|
UNICODEDATA_UCD_NUMERIC_METHODDEF
|
|
UNICODEDATA_UCD_CATEGORY_METHODDEF
|
|
UNICODEDATA_UCD_BIDIRECTIONAL_METHODDEF
|
|
UNICODEDATA_UCD_COMBINING_METHODDEF
|
|
UNICODEDATA_UCD_MIRRORED_METHODDEF
|
|
UNICODEDATA_UCD_EAST_ASIAN_WIDTH_METHODDEF
|
|
UNICODEDATA_UCD_DECOMPOSITION_METHODDEF
|
|
UNICODEDATA_UCD_NAME_METHODDEF
|
|
UNICODEDATA_UCD_LOOKUP_METHODDEF
|
|
UNICODEDATA_UCD_IS_NORMALIZED_METHODDEF
|
|
UNICODEDATA_UCD_NORMALIZE_METHODDEF
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static int
|
|
ucd_traverse(PreviousDBVersion *self, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(Py_TYPE(self));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ucd_dealloc(PreviousDBVersion *self)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(self);
|
|
PyObject_GC_UnTrack(self);
|
|
PyObject_GC_Del(self);
|
|
Py_DECREF(tp);
|
|
}
|
|
|
|
static PyType_Slot ucd_type_slots[] = {
|
|
{Py_tp_dealloc, ucd_dealloc},
|
|
{Py_tp_traverse, ucd_traverse},
|
|
{Py_tp_getattro, PyObject_GenericGetAttr},
|
|
{Py_tp_methods, unicodedata_functions},
|
|
{Py_tp_members, DB_members},
|
|
{0, 0}
|
|
};
|
|
|
|
static PyType_Spec ucd_type_spec = {
|
|
.name = "unicodedata.UCD",
|
|
.basicsize = sizeof(PreviousDBVersion),
|
|
.flags = (Py_TPFLAGS_DEFAULT | Py_TPFLAGS_DISALLOW_INSTANTIATION |
|
|
Py_TPFLAGS_HAVE_GC | Py_TPFLAGS_IMMUTABLETYPE),
|
|
.slots = ucd_type_slots
|
|
};
|
|
|
|
PyDoc_STRVAR(unicodedata_docstring,
|
|
"This module provides access to the Unicode Character Database which\n\
|
|
defines character properties for all Unicode characters. The data in\n\
|
|
this database is based on the UnicodeData.txt file version\n\
|
|
" UNIDATA_VERSION " which is publicly available from ftp://ftp.unicode.org/.\n\
|
|
\n\
|
|
The module uses the same names and symbols as defined by the\n\
|
|
UnicodeData File Format " UNIDATA_VERSION ".");
|
|
|
|
static int
|
|
unicodedata_exec(PyObject *module)
|
|
{
|
|
if (PyModule_AddStringConstant(module, "unidata_version", UNIDATA_VERSION) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
PyTypeObject *ucd_type = (PyTypeObject *)PyType_FromSpec(&ucd_type_spec);
|
|
if (ucd_type == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
if (PyModule_AddType(module, ucd_type) < 0) {
|
|
Py_DECREF(ucd_type);
|
|
return -1;
|
|
}
|
|
|
|
// Unicode database version 3.2.0 used by the IDNA encoding
|
|
PyObject *v;
|
|
v = new_previous_version(ucd_type, "3.2.0",
|
|
get_change_3_2_0, normalization_3_2_0);
|
|
Py_DECREF(ucd_type);
|
|
if (PyModule_Add(module, "ucd_3_2_0", v) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
/* Export C API */
|
|
if (PyModule_Add(module, "_ucnhash_CAPI", unicodedata_create_capi()) < 0) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static PyModuleDef_Slot unicodedata_slots[] = {
|
|
{Py_mod_exec, unicodedata_exec},
|
|
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
|
|
{Py_mod_gil, Py_MOD_GIL_NOT_USED},
|
|
{0, NULL}
|
|
};
|
|
|
|
static struct PyModuleDef unicodedata_module = {
|
|
PyModuleDef_HEAD_INIT,
|
|
.m_name = "unicodedata",
|
|
.m_doc = unicodedata_docstring,
|
|
.m_size = 0,
|
|
.m_methods = unicodedata_functions,
|
|
.m_slots = unicodedata_slots,
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit_unicodedata(void)
|
|
{
|
|
return PyModuleDef_Init(&unicodedata_module);
|
|
}
|
|
|
|
|
|
/*
|
|
Local variables:
|
|
c-basic-offset: 4
|
|
indent-tabs-mode: nil
|
|
End:
|
|
*/
|