0
0
mirror of https://github.com/python/cpython.git synced 2024-11-24 17:47:13 +01:00
cpython/Modules/_hacl/Hacl_Hash_SHA1.c
Jonathan Protzenko 872e212378
gh-99108: Refresh HACL*; update modules accordingly; fix namespacing (GH-117237)
Pulls in a new update from https://github.com/hacl-star/hacl-star and fixes our C "namespacing" done by `Modules/_hacl/refresh.sh`.
2024-03-26 00:35:26 +00:00

464 lines
13 KiB
C

/* MIT License
*
* Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
* Copyright (c) 2022-2023 HACL* Contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "internal/Hacl_Hash_SHA1.h"
static uint32_t _h0[5U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U };
void Hacl_Hash_SHA1_init(uint32_t *s)
{
KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i] = _h0[i];);
}
static void update(uint32_t *h, uint8_t *l)
{
uint32_t ha = h[0U];
uint32_t hb = h[1U];
uint32_t hc = h[2U];
uint32_t hd = h[3U];
uint32_t he = h[4U];
uint32_t _w[80U] = { 0U };
for (uint32_t i = 0U; i < 80U; i++)
{
uint32_t v;
if (i < 16U)
{
uint8_t *b = l + i * 4U;
uint32_t u = load32_be(b);
v = u;
}
else
{
uint32_t wmit3 = _w[i - 3U];
uint32_t wmit8 = _w[i - 8U];
uint32_t wmit14 = _w[i - 14U];
uint32_t wmit16 = _w[i - 16U];
v = (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16))) << 1U | (wmit3 ^ (wmit8 ^ (wmit14 ^ wmit16))) >> 31U;
}
_w[i] = v;
}
for (uint32_t i = 0U; i < 80U; i++)
{
uint32_t _a = h[0U];
uint32_t _b = h[1U];
uint32_t _c = h[2U];
uint32_t _d = h[3U];
uint32_t _e = h[4U];
uint32_t wmit = _w[i];
uint32_t ite0;
if (i < 20U)
{
ite0 = (_b & _c) ^ (~_b & _d);
}
else if (39U < i && i < 60U)
{
ite0 = (_b & _c) ^ ((_b & _d) ^ (_c & _d));
}
else
{
ite0 = _b ^ (_c ^ _d);
}
uint32_t ite;
if (i < 20U)
{
ite = 0x5a827999U;
}
else if (i < 40U)
{
ite = 0x6ed9eba1U;
}
else if (i < 60U)
{
ite = 0x8f1bbcdcU;
}
else
{
ite = 0xca62c1d6U;
}
uint32_t _T = (_a << 5U | _a >> 27U) + ite0 + _e + ite + wmit;
h[0U] = _T;
h[1U] = _a;
h[2U] = _b << 30U | _b >> 2U;
h[3U] = _c;
h[4U] = _d;
}
for (uint32_t i = 0U; i < 80U; i++)
{
_w[i] = 0U;
}
uint32_t sta = h[0U];
uint32_t stb = h[1U];
uint32_t stc = h[2U];
uint32_t std = h[3U];
uint32_t ste = h[4U];
h[0U] = sta + ha;
h[1U] = stb + hb;
h[2U] = stc + hc;
h[3U] = std + hd;
h[4U] = ste + he;
}
static void pad(uint64_t len, uint8_t *dst)
{
uint8_t *dst1 = dst;
dst1[0U] = 0x80U;
uint8_t *dst2 = dst + 1U;
for (uint32_t i = 0U; i < (128U - (9U + (uint32_t)(len % (uint64_t)64U))) % 64U; i++)
{
dst2[i] = 0U;
}
uint8_t *dst3 = dst + 1U + (128U - (9U + (uint32_t)(len % (uint64_t)64U))) % 64U;
store64_be(dst3, len << 3U);
}
void Hacl_Hash_SHA1_finish(uint32_t *s, uint8_t *dst)
{
KRML_MAYBE_FOR5(i, 0U, 5U, 1U, store32_be(dst + i * 4U, s[i]););
}
void Hacl_Hash_SHA1_update_multi(uint32_t *s, uint8_t *blocks, uint32_t n_blocks)
{
for (uint32_t i = 0U; i < n_blocks; i++)
{
uint32_t sz = 64U;
uint8_t *block = blocks + sz * i;
update(s, block);
}
}
void
Hacl_Hash_SHA1_update_last(uint32_t *s, uint64_t prev_len, uint8_t *input, uint32_t input_len)
{
uint32_t blocks_n = input_len / 64U;
uint32_t blocks_len = blocks_n * 64U;
uint8_t *blocks = input;
uint32_t rest_len = input_len - blocks_len;
uint8_t *rest = input + blocks_len;
Hacl_Hash_SHA1_update_multi(s, blocks, blocks_n);
uint64_t total_input_len = prev_len + (uint64_t)input_len;
uint32_t pad_len = 1U + (128U - (9U + (uint32_t)(total_input_len % (uint64_t)64U))) % 64U + 8U;
uint32_t tmp_len = rest_len + pad_len;
uint8_t tmp_twoblocks[128U] = { 0U };
uint8_t *tmp = tmp_twoblocks;
uint8_t *tmp_rest = tmp;
uint8_t *tmp_pad = tmp + rest_len;
memcpy(tmp_rest, rest, rest_len * sizeof (uint8_t));
pad(total_input_len, tmp_pad);
Hacl_Hash_SHA1_update_multi(s, tmp, tmp_len / 64U);
}
void Hacl_Hash_SHA1_hash_oneshot(uint8_t *output, uint8_t *input, uint32_t input_len)
{
uint32_t s[5U] = { 0x67452301U, 0xefcdab89U, 0x98badcfeU, 0x10325476U, 0xc3d2e1f0U };
uint32_t blocks_n0 = input_len / 64U;
uint32_t blocks_n1;
if (input_len % 64U == 0U && blocks_n0 > 0U)
{
blocks_n1 = blocks_n0 - 1U;
}
else
{
blocks_n1 = blocks_n0;
}
uint32_t blocks_len0 = blocks_n1 * 64U;
uint8_t *blocks0 = input;
uint32_t rest_len0 = input_len - blocks_len0;
uint8_t *rest0 = input + blocks_len0;
uint32_t blocks_n = blocks_n1;
uint32_t blocks_len = blocks_len0;
uint8_t *blocks = blocks0;
uint32_t rest_len = rest_len0;
uint8_t *rest = rest0;
Hacl_Hash_SHA1_update_multi(s, blocks, blocks_n);
Hacl_Hash_SHA1_update_last(s, (uint64_t)blocks_len, rest, rest_len);
Hacl_Hash_SHA1_finish(s, output);
}
Hacl_Streaming_MD_state_32 *Hacl_Hash_SHA1_malloc(void)
{
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t));
uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC(5U, sizeof (uint32_t));
Hacl_Streaming_MD_state_32
s = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U };
Hacl_Streaming_MD_state_32
*p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32));
p[0U] = s;
Hacl_Hash_SHA1_init(block_state);
return p;
}
void Hacl_Hash_SHA1_reset(Hacl_Streaming_MD_state_32 *state)
{
Hacl_Streaming_MD_state_32 scrut = *state;
uint8_t *buf = scrut.buf;
uint32_t *block_state = scrut.block_state;
Hacl_Hash_SHA1_init(block_state);
Hacl_Streaming_MD_state_32
tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U };
state[0U] = tmp;
}
/**
0 = success, 1 = max length exceeded
*/
Hacl_Streaming_Types_error_code
Hacl_Hash_SHA1_update(Hacl_Streaming_MD_state_32 *state, uint8_t *chunk, uint32_t chunk_len)
{
Hacl_Streaming_MD_state_32 s = *state;
uint64_t total_len = s.total_len;
if ((uint64_t)chunk_len > 2305843009213693951ULL - total_len)
{
return Hacl_Streaming_Types_MaximumLengthExceeded;
}
uint32_t sz;
if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL)
{
sz = 64U;
}
else
{
sz = (uint32_t)(total_len % (uint64_t)64U);
}
if (chunk_len <= 64U - sz)
{
Hacl_Streaming_MD_state_32 s1 = *state;
uint32_t *block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL)
{
sz1 = 64U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)64U);
}
uint8_t *buf2 = buf + sz1;
memcpy(buf2, chunk, chunk_len * sizeof (uint8_t));
uint64_t total_len2 = total_len1 + (uint64_t)chunk_len;
*state
=
(
(Hacl_Streaming_MD_state_32){
.block_state = block_state1,
.buf = buf,
.total_len = total_len2
}
);
}
else if (sz == 0U)
{
Hacl_Streaming_MD_state_32 s1 = *state;
uint32_t *block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL)
{
sz1 = 64U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)64U);
}
if (!(sz1 == 0U))
{
Hacl_Hash_SHA1_update_multi(block_state1, buf, 1U);
}
uint32_t ite;
if ((uint64_t)chunk_len % (uint64_t)64U == 0ULL && (uint64_t)chunk_len > 0ULL)
{
ite = 64U;
}
else
{
ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)64U);
}
uint32_t n_blocks = (chunk_len - ite) / 64U;
uint32_t data1_len = n_blocks * 64U;
uint32_t data2_len = chunk_len - data1_len;
uint8_t *data1 = chunk;
uint8_t *data2 = chunk + data1_len;
Hacl_Hash_SHA1_update_multi(block_state1, data1, data1_len / 64U);
uint8_t *dst = buf;
memcpy(dst, data2, data2_len * sizeof (uint8_t));
*state
=
(
(Hacl_Streaming_MD_state_32){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)chunk_len
}
);
}
else
{
uint32_t diff = 64U - sz;
uint8_t *chunk1 = chunk;
uint8_t *chunk2 = chunk + diff;
Hacl_Streaming_MD_state_32 s1 = *state;
uint32_t *block_state10 = s1.block_state;
uint8_t *buf0 = s1.buf;
uint64_t total_len10 = s1.total_len;
uint32_t sz10;
if (total_len10 % (uint64_t)64U == 0ULL && total_len10 > 0ULL)
{
sz10 = 64U;
}
else
{
sz10 = (uint32_t)(total_len10 % (uint64_t)64U);
}
uint8_t *buf2 = buf0 + sz10;
memcpy(buf2, chunk1, diff * sizeof (uint8_t));
uint64_t total_len2 = total_len10 + (uint64_t)diff;
*state
=
(
(Hacl_Streaming_MD_state_32){
.block_state = block_state10,
.buf = buf0,
.total_len = total_len2
}
);
Hacl_Streaming_MD_state_32 s10 = *state;
uint32_t *block_state1 = s10.block_state;
uint8_t *buf = s10.buf;
uint64_t total_len1 = s10.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)64U == 0ULL && total_len1 > 0ULL)
{
sz1 = 64U;
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)64U);
}
if (!(sz1 == 0U))
{
Hacl_Hash_SHA1_update_multi(block_state1, buf, 1U);
}
uint32_t ite;
if
((uint64_t)(chunk_len - diff) % (uint64_t)64U == 0ULL && (uint64_t)(chunk_len - diff) > 0ULL)
{
ite = 64U;
}
else
{
ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)64U);
}
uint32_t n_blocks = (chunk_len - diff - ite) / 64U;
uint32_t data1_len = n_blocks * 64U;
uint32_t data2_len = chunk_len - diff - data1_len;
uint8_t *data1 = chunk2;
uint8_t *data2 = chunk2 + data1_len;
Hacl_Hash_SHA1_update_multi(block_state1, data1, data1_len / 64U);
uint8_t *dst = buf;
memcpy(dst, data2, data2_len * sizeof (uint8_t));
*state
=
(
(Hacl_Streaming_MD_state_32){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)(chunk_len - diff)
}
);
}
return Hacl_Streaming_Types_Success;
}
void Hacl_Hash_SHA1_digest(Hacl_Streaming_MD_state_32 *state, uint8_t *output)
{
Hacl_Streaming_MD_state_32 scrut = *state;
uint32_t *block_state = scrut.block_state;
uint8_t *buf_ = scrut.buf;
uint64_t total_len = scrut.total_len;
uint32_t r;
if (total_len % (uint64_t)64U == 0ULL && total_len > 0ULL)
{
r = 64U;
}
else
{
r = (uint32_t)(total_len % (uint64_t)64U);
}
uint8_t *buf_1 = buf_;
uint32_t tmp_block_state[5U] = { 0U };
memcpy(tmp_block_state, block_state, 5U * sizeof (uint32_t));
uint32_t ite;
if (r % 64U == 0U && r > 0U)
{
ite = 64U;
}
else
{
ite = r % 64U;
}
uint8_t *buf_last = buf_1 + r - ite;
uint8_t *buf_multi = buf_1;
Hacl_Hash_SHA1_update_multi(tmp_block_state, buf_multi, 0U);
uint64_t prev_len_last = total_len - (uint64_t)r;
Hacl_Hash_SHA1_update_last(tmp_block_state, prev_len_last, buf_last, r);
Hacl_Hash_SHA1_finish(tmp_block_state, output);
}
void Hacl_Hash_SHA1_free(Hacl_Streaming_MD_state_32 *state)
{
Hacl_Streaming_MD_state_32 scrut = *state;
uint8_t *buf = scrut.buf;
uint32_t *block_state = scrut.block_state;
KRML_HOST_FREE(block_state);
KRML_HOST_FREE(buf);
KRML_HOST_FREE(state);
}
Hacl_Streaming_MD_state_32 *Hacl_Hash_SHA1_copy(Hacl_Streaming_MD_state_32 *state)
{
Hacl_Streaming_MD_state_32 scrut = *state;
uint32_t *block_state0 = scrut.block_state;
uint8_t *buf0 = scrut.buf;
uint64_t total_len0 = scrut.total_len;
uint8_t *buf = (uint8_t *)KRML_HOST_CALLOC(64U, sizeof (uint8_t));
memcpy(buf, buf0, 64U * sizeof (uint8_t));
uint32_t *block_state = (uint32_t *)KRML_HOST_CALLOC(5U, sizeof (uint32_t));
memcpy(block_state, block_state0, 5U * sizeof (uint32_t));
Hacl_Streaming_MD_state_32
s = { .block_state = block_state, .buf = buf, .total_len = total_len0 };
Hacl_Streaming_MD_state_32
*p = (Hacl_Streaming_MD_state_32 *)KRML_HOST_MALLOC(sizeof (Hacl_Streaming_MD_state_32));
p[0U] = s;
return p;
}
void Hacl_Hash_SHA1_hash(uint8_t *output, uint8_t *input, uint32_t input_len)
{
Hacl_Hash_SHA1_hash_oneshot(output, input, input_len);
}