mirror of
https://github.com/python/cpython.git
synced 2024-11-30 18:51:15 +01:00
329e4a1a3f
Use PyModule_Add() or PyModule_AddObjectRef() instead of soft deprecated PyModule_AddObject().
1323 lines
44 KiB
C
1323 lines
44 KiB
C
/*
|
|
** Routines to represent binary data in ASCII and vice-versa
|
|
**
|
|
** This module currently supports the following encodings:
|
|
** uuencode:
|
|
** each line encodes 45 bytes (except possibly the last)
|
|
** First char encodes (binary) length, rest data
|
|
** each char encodes 6 bits, as follows:
|
|
** binary: 01234567 abcdefgh ijklmnop
|
|
** ascii: 012345 67abcd efghij klmnop
|
|
** ASCII encoding method is "excess-space": 000000 is encoded as ' ', etc.
|
|
** short binary data is zero-extended (so the bits are always in the
|
|
** right place), this does *not* reflect in the length.
|
|
** base64:
|
|
** Line breaks are insignificant, but lines are at most 76 chars
|
|
** each char encodes 6 bits, in similar order as uucode/hqx. Encoding
|
|
** is done via a table.
|
|
** Short binary data is filled (in ASCII) with '='.
|
|
** hqx:
|
|
** File starts with introductory text, real data starts and ends
|
|
** with colons.
|
|
** Data consists of three similar parts: info, datafork, resourcefork.
|
|
** Each part is protected (at the end) with a 16-bit crc
|
|
** The binary data is run-length encoded, and then ascii-fied:
|
|
** binary: 01234567 abcdefgh ijklmnop
|
|
** ascii: 012345 67abcd efghij klmnop
|
|
** ASCII encoding is table-driven, see the code.
|
|
** Short binary data results in the runt ascii-byte being output with
|
|
** the bits in the right place.
|
|
**
|
|
** While I was reading dozens of programs that encode or decode the formats
|
|
** here (documentation? hihi:-) I have formulated Jansen's Observation:
|
|
**
|
|
** Programs that encode binary data in ASCII are written in
|
|
** such a style that they are as unreadable as possible. Devices used
|
|
** include unnecessary global variables, burying important tables
|
|
** in unrelated sourcefiles, putting functions in include files,
|
|
** using seemingly-descriptive variable names for different purposes,
|
|
** calls to empty subroutines and a host of others.
|
|
**
|
|
** I have attempted to break with this tradition, but I guess that that
|
|
** does make the performance sub-optimal. Oh well, too bad...
|
|
**
|
|
** Jack Jansen, CWI, July 1995.
|
|
**
|
|
** Added support for quoted-printable encoding, based on rfc 1521 et al
|
|
** quoted-printable encoding specifies that non printable characters (anything
|
|
** below 32 and above 126) be encoded as =XX where XX is the hexadecimal value
|
|
** of the character. It also specifies some other behavior to enable 8bit data
|
|
** in a mail message with little difficulty (maximum line sizes, protecting
|
|
** some cases of whitespace, etc).
|
|
**
|
|
** Brandon Long, September 2001.
|
|
*/
|
|
|
|
#ifndef Py_BUILD_CORE_BUILTIN
|
|
# define Py_BUILD_CORE_MODULE 1
|
|
#endif
|
|
|
|
#include "Python.h"
|
|
#include "pycore_long.h" // _PyLong_DigitValue
|
|
#include "pycore_strhex.h" // _Py_strhex_bytes_with_sep()
|
|
#ifdef USE_ZLIB_CRC32
|
|
# include "zlib.h"
|
|
#endif
|
|
|
|
typedef struct binascii_state {
|
|
PyObject *Error;
|
|
PyObject *Incomplete;
|
|
} binascii_state;
|
|
|
|
static inline binascii_state *
|
|
get_binascii_state(PyObject *module)
|
|
{
|
|
return (binascii_state *)PyModule_GetState(module);
|
|
}
|
|
|
|
|
|
static const unsigned char table_a2b_base64[] = {
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,62, -1,-1,-1,63,
|
|
52,53,54,55, 56,57,58,59, 60,61,-1,-1, -1, 0,-1,-1, /* Note PAD->0 */
|
|
-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11,12,13,14,
|
|
15,16,17,18, 19,20,21,22, 23,24,25,-1, -1,-1,-1,-1,
|
|
-1,26,27,28, 29,30,31,32, 33,34,35,36, 37,38,39,40,
|
|
41,42,43,44, 45,46,47,48, 49,50,51,-1, -1,-1,-1,-1,
|
|
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
-1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1, -1,-1,-1,-1,
|
|
};
|
|
|
|
#define BASE64_PAD '='
|
|
|
|
/* Max binary chunk size; limited only by available memory */
|
|
#define BASE64_MAXBIN ((PY_SSIZE_T_MAX - 3) / 2)
|
|
|
|
static const unsigned char table_b2a_base64[] =
|
|
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
|
|
|
|
|
|
static const unsigned short crctab_hqx[256] = {
|
|
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
|
|
0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
|
|
0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
|
|
0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
|
|
0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
|
|
0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
|
|
0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
|
|
0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
|
|
0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
|
|
0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
|
|
0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
|
|
0xdbfd, 0xcbdc, 0xfbbf, 0xeb9e, 0x9b79, 0x8b58, 0xbb3b, 0xab1a,
|
|
0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
|
|
0xedae, 0xfd8f, 0xcdec, 0xddcd, 0xad2a, 0xbd0b, 0x8d68, 0x9d49,
|
|
0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
|
|
0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
|
|
0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
|
|
0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
|
|
0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
|
|
0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
|
|
0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
|
|
0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
|
|
0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
|
|
0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
|
|
0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
|
|
0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
|
|
0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
|
|
0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
|
|
0xfd2e, 0xed0f, 0xdd6c, 0xcd4d, 0xbdaa, 0xad8b, 0x9de8, 0x8dc9,
|
|
0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
|
|
0xef1f, 0xff3e, 0xcf5d, 0xdf7c, 0xaf9b, 0xbfba, 0x8fd9, 0x9ff8,
|
|
0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0,
|
|
};
|
|
|
|
/*[clinic input]
|
|
module binascii
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=de89fb46bcaf3fec]*/
|
|
|
|
/*[python input]
|
|
|
|
class ascii_buffer_converter(CConverter):
|
|
type = 'Py_buffer'
|
|
converter = 'ascii_buffer_converter'
|
|
impl_by_reference = True
|
|
c_default = "{NULL, NULL}"
|
|
|
|
def cleanup(self):
|
|
name = self.name
|
|
return "".join(["if (", name, ".obj)\n PyBuffer_Release(&", name, ");\n"])
|
|
|
|
[python start generated code]*/
|
|
/*[python end generated code: output=da39a3ee5e6b4b0d input=3eb7b63610da92cd]*/
|
|
|
|
static int
|
|
ascii_buffer_converter(PyObject *arg, Py_buffer *buf)
|
|
{
|
|
if (arg == NULL) {
|
|
PyBuffer_Release(buf);
|
|
return 1;
|
|
}
|
|
if (PyUnicode_Check(arg)) {
|
|
if (!PyUnicode_IS_ASCII(arg)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"string argument should contain only ASCII characters");
|
|
return 0;
|
|
}
|
|
assert(PyUnicode_KIND(arg) == PyUnicode_1BYTE_KIND);
|
|
buf->buf = (void *) PyUnicode_1BYTE_DATA(arg);
|
|
buf->len = PyUnicode_GET_LENGTH(arg);
|
|
buf->obj = NULL;
|
|
return 1;
|
|
}
|
|
if (PyObject_GetBuffer(arg, buf, PyBUF_SIMPLE) != 0) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"argument should be bytes, buffer or ASCII string, "
|
|
"not '%.100s'", Py_TYPE(arg)->tp_name);
|
|
return 0;
|
|
}
|
|
if (!PyBuffer_IsContiguous(buf, 'C')) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"argument should be a contiguous buffer, "
|
|
"not '%.100s'", Py_TYPE(arg)->tp_name);
|
|
PyBuffer_Release(buf);
|
|
return 0;
|
|
}
|
|
return Py_CLEANUP_SUPPORTED;
|
|
}
|
|
|
|
#include "clinic/binascii.c.h"
|
|
|
|
/*[clinic input]
|
|
binascii.a2b_uu
|
|
|
|
data: ascii_buffer
|
|
/
|
|
|
|
Decode a line of uuencoded data.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_a2b_uu_impl(PyObject *module, Py_buffer *data)
|
|
/*[clinic end generated code: output=e027f8e0b0598742 input=7cafeaf73df63d1c]*/
|
|
{
|
|
const unsigned char *ascii_data;
|
|
unsigned char *bin_data;
|
|
int leftbits = 0;
|
|
unsigned char this_ch;
|
|
unsigned int leftchar = 0;
|
|
PyObject *rv;
|
|
Py_ssize_t ascii_len, bin_len;
|
|
binascii_state *state;
|
|
|
|
ascii_data = data->buf;
|
|
ascii_len = data->len;
|
|
|
|
assert(ascii_len >= 0);
|
|
|
|
/* First byte: binary data length (in bytes) */
|
|
bin_len = (*ascii_data++ - ' ') & 077;
|
|
ascii_len--;
|
|
|
|
/* Allocate the buffer */
|
|
if ( (rv=PyBytes_FromStringAndSize(NULL, bin_len)) == NULL )
|
|
return NULL;
|
|
bin_data = (unsigned char *)PyBytes_AS_STRING(rv);
|
|
|
|
for( ; bin_len > 0 ; ascii_len--, ascii_data++ ) {
|
|
/* XXX is it really best to add NULs if there's no more data */
|
|
this_ch = (ascii_len > 0) ? *ascii_data : 0;
|
|
if ( this_ch == '\n' || this_ch == '\r' || ascii_len <= 0) {
|
|
/*
|
|
** Whitespace. Assume some spaces got eaten at
|
|
** end-of-line. (We check this later)
|
|
*/
|
|
this_ch = 0;
|
|
} else {
|
|
/* Check the character for legality
|
|
** The 64 in stead of the expected 63 is because
|
|
** there are a few uuencodes out there that use
|
|
** '`' as zero instead of space.
|
|
*/
|
|
if ( this_ch < ' ' || this_ch > (' ' + 64)) {
|
|
state = get_binascii_state(module);
|
|
if (state == NULL) {
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(state->Error, "Illegal char");
|
|
Py_DECREF(rv);
|
|
return NULL;
|
|
}
|
|
this_ch = (this_ch - ' ') & 077;
|
|
}
|
|
/*
|
|
** Shift it in on the low end, and see if there's
|
|
** a byte ready for output.
|
|
*/
|
|
leftchar = (leftchar << 6) | (this_ch);
|
|
leftbits += 6;
|
|
if ( leftbits >= 8 ) {
|
|
leftbits -= 8;
|
|
*bin_data++ = (leftchar >> leftbits) & 0xff;
|
|
leftchar &= ((1 << leftbits) - 1);
|
|
bin_len--;
|
|
}
|
|
}
|
|
/*
|
|
** Finally, check that if there's anything left on the line
|
|
** that it's whitespace only.
|
|
*/
|
|
while( ascii_len-- > 0 ) {
|
|
this_ch = *ascii_data++;
|
|
/* Extra '`' may be written as padding in some cases */
|
|
if ( this_ch != ' ' && this_ch != ' '+64 &&
|
|
this_ch != '\n' && this_ch != '\r' ) {
|
|
state = get_binascii_state(module);
|
|
if (state == NULL) {
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(state->Error, "Trailing garbage");
|
|
Py_DECREF(rv);
|
|
return NULL;
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
/*[clinic input]
|
|
binascii.b2a_uu
|
|
|
|
data: Py_buffer
|
|
/
|
|
*
|
|
backtick: bool = False
|
|
|
|
Uuencode line of data.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_b2a_uu_impl(PyObject *module, Py_buffer *data, int backtick)
|
|
/*[clinic end generated code: output=b1b99de62d9bbeb8 input=beb27822241095cd]*/
|
|
{
|
|
unsigned char *ascii_data;
|
|
const unsigned char *bin_data;
|
|
int leftbits = 0;
|
|
unsigned char this_ch;
|
|
unsigned int leftchar = 0;
|
|
binascii_state *state;
|
|
Py_ssize_t bin_len, out_len;
|
|
_PyBytesWriter writer;
|
|
|
|
_PyBytesWriter_Init(&writer);
|
|
bin_data = data->buf;
|
|
bin_len = data->len;
|
|
if ( bin_len > 45 ) {
|
|
/* The 45 is a limit that appears in all uuencode's */
|
|
state = get_binascii_state(module);
|
|
if (state == NULL) {
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(state->Error, "At most 45 bytes at once");
|
|
return NULL;
|
|
}
|
|
|
|
/* We're lazy and allocate to much (fixed up later) */
|
|
out_len = 2 + (bin_len + 2) / 3 * 4;
|
|
ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
|
|
if (ascii_data == NULL)
|
|
return NULL;
|
|
|
|
/* Store the length */
|
|
if (backtick && !bin_len)
|
|
*ascii_data++ = '`';
|
|
else
|
|
*ascii_data++ = ' ' + (unsigned char)bin_len;
|
|
|
|
for( ; bin_len > 0 || leftbits != 0 ; bin_len--, bin_data++ ) {
|
|
/* Shift the data (or padding) into our buffer */
|
|
if ( bin_len > 0 ) /* Data */
|
|
leftchar = (leftchar << 8) | *bin_data;
|
|
else /* Padding */
|
|
leftchar <<= 8;
|
|
leftbits += 8;
|
|
|
|
/* See if there are 6-bit groups ready */
|
|
while ( leftbits >= 6 ) {
|
|
this_ch = (leftchar >> (leftbits-6)) & 0x3f;
|
|
leftbits -= 6;
|
|
if (backtick && !this_ch)
|
|
*ascii_data++ = '`';
|
|
else
|
|
*ascii_data++ = this_ch + ' ';
|
|
}
|
|
}
|
|
*ascii_data++ = '\n'; /* Append a courtesy newline */
|
|
|
|
return _PyBytesWriter_Finish(&writer, ascii_data);
|
|
}
|
|
|
|
/*[clinic input]
|
|
binascii.a2b_base64
|
|
|
|
data: ascii_buffer
|
|
/
|
|
*
|
|
strict_mode: bool = False
|
|
|
|
Decode a line of base64 data.
|
|
|
|
strict_mode
|
|
When set to True, bytes that are not part of the base64 standard are not allowed.
|
|
The same applies to excess data after padding (= / ==).
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_a2b_base64_impl(PyObject *module, Py_buffer *data, int strict_mode)
|
|
/*[clinic end generated code: output=5409557788d4f975 input=c0c15fd0f8f9a62d]*/
|
|
{
|
|
assert(data->len >= 0);
|
|
|
|
const unsigned char *ascii_data = data->buf;
|
|
size_t ascii_len = data->len;
|
|
binascii_state *state = NULL;
|
|
char padding_started = 0;
|
|
|
|
/* Allocate the buffer */
|
|
Py_ssize_t bin_len = ((ascii_len+3)/4)*3; /* Upper bound, corrected later */
|
|
_PyBytesWriter writer;
|
|
_PyBytesWriter_Init(&writer);
|
|
unsigned char *bin_data = _PyBytesWriter_Alloc(&writer, bin_len);
|
|
if (bin_data == NULL)
|
|
return NULL;
|
|
unsigned char *bin_data_start = bin_data;
|
|
|
|
if (strict_mode && ascii_len > 0 && ascii_data[0] == '=') {
|
|
state = get_binascii_state(module);
|
|
if (state) {
|
|
PyErr_SetString(state->Error, "Leading padding not allowed");
|
|
}
|
|
goto error_end;
|
|
}
|
|
|
|
int quad_pos = 0;
|
|
unsigned char leftchar = 0;
|
|
int pads = 0;
|
|
for (size_t i = 0; i < ascii_len; i++) {
|
|
unsigned char this_ch = ascii_data[i];
|
|
|
|
/* Check for pad sequences and ignore
|
|
** the invalid ones.
|
|
*/
|
|
if (this_ch == BASE64_PAD) {
|
|
padding_started = 1;
|
|
|
|
if (quad_pos >= 2 && quad_pos + ++pads >= 4) {
|
|
/* A pad sequence means we should not parse more input.
|
|
** We've already interpreted the data from the quad at this point.
|
|
** in strict mode, an error should raise if there's excess data after the padding.
|
|
*/
|
|
if (strict_mode && i + 1 < ascii_len) {
|
|
state = get_binascii_state(module);
|
|
if (state) {
|
|
PyErr_SetString(state->Error, "Excess data after padding");
|
|
}
|
|
goto error_end;
|
|
}
|
|
|
|
goto done;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
this_ch = table_a2b_base64[this_ch];
|
|
if (this_ch >= 64) {
|
|
if (strict_mode) {
|
|
state = get_binascii_state(module);
|
|
if (state) {
|
|
PyErr_SetString(state->Error, "Only base64 data is allowed");
|
|
}
|
|
goto error_end;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Characters that are not '=', in the middle of the padding, are not allowed
|
|
if (strict_mode && padding_started) {
|
|
state = get_binascii_state(module);
|
|
if (state) {
|
|
PyErr_SetString(state->Error, "Discontinuous padding not allowed");
|
|
}
|
|
goto error_end;
|
|
}
|
|
pads = 0;
|
|
|
|
switch (quad_pos) {
|
|
case 0:
|
|
quad_pos = 1;
|
|
leftchar = this_ch;
|
|
break;
|
|
case 1:
|
|
quad_pos = 2;
|
|
*bin_data++ = (leftchar << 2) | (this_ch >> 4);
|
|
leftchar = this_ch & 0x0f;
|
|
break;
|
|
case 2:
|
|
quad_pos = 3;
|
|
*bin_data++ = (leftchar << 4) | (this_ch >> 2);
|
|
leftchar = this_ch & 0x03;
|
|
break;
|
|
case 3:
|
|
quad_pos = 0;
|
|
*bin_data++ = (leftchar << 6) | (this_ch);
|
|
leftchar = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (quad_pos != 0) {
|
|
state = get_binascii_state(module);
|
|
if (state == NULL) {
|
|
/* error already set, from get_binascii_state */
|
|
} else if (quad_pos == 1) {
|
|
/*
|
|
** There is exactly one extra valid, non-padding, base64 character.
|
|
** This is an invalid length, as there is no possible input that
|
|
** could encoded into such a base64 string.
|
|
*/
|
|
PyErr_Format(state->Error,
|
|
"Invalid base64-encoded string: "
|
|
"number of data characters (%zd) cannot be 1 more "
|
|
"than a multiple of 4",
|
|
(bin_data - bin_data_start) / 3 * 4 + 1);
|
|
} else {
|
|
PyErr_SetString(state->Error, "Incorrect padding");
|
|
}
|
|
error_end:
|
|
_PyBytesWriter_Dealloc(&writer);
|
|
return NULL;
|
|
}
|
|
|
|
done:
|
|
return _PyBytesWriter_Finish(&writer, bin_data);
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
binascii.b2a_base64
|
|
|
|
data: Py_buffer
|
|
/
|
|
*
|
|
newline: bool = True
|
|
|
|
Base64-code line of data.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_b2a_base64_impl(PyObject *module, Py_buffer *data, int newline)
|
|
/*[clinic end generated code: output=4ad62c8e8485d3b3 input=0e20ff59c5f2e3e1]*/
|
|
{
|
|
unsigned char *ascii_data;
|
|
const unsigned char *bin_data;
|
|
int leftbits = 0;
|
|
unsigned char this_ch;
|
|
unsigned int leftchar = 0;
|
|
Py_ssize_t bin_len, out_len;
|
|
_PyBytesWriter writer;
|
|
binascii_state *state;
|
|
|
|
bin_data = data->buf;
|
|
bin_len = data->len;
|
|
_PyBytesWriter_Init(&writer);
|
|
|
|
assert(bin_len >= 0);
|
|
|
|
if ( bin_len > BASE64_MAXBIN ) {
|
|
state = get_binascii_state(module);
|
|
if (state == NULL) {
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(state->Error, "Too much data for base64 line");
|
|
return NULL;
|
|
}
|
|
|
|
/* We're lazy and allocate too much (fixed up later).
|
|
"+2" leaves room for up to two pad characters.
|
|
Note that 'b' gets encoded as 'Yg==\n' (1 in, 5 out). */
|
|
out_len = bin_len*2 + 2;
|
|
if (newline)
|
|
out_len++;
|
|
ascii_data = _PyBytesWriter_Alloc(&writer, out_len);
|
|
if (ascii_data == NULL)
|
|
return NULL;
|
|
|
|
for( ; bin_len > 0 ; bin_len--, bin_data++ ) {
|
|
/* Shift the data into our buffer */
|
|
leftchar = (leftchar << 8) | *bin_data;
|
|
leftbits += 8;
|
|
|
|
/* See if there are 6-bit groups ready */
|
|
while ( leftbits >= 6 ) {
|
|
this_ch = (leftchar >> (leftbits-6)) & 0x3f;
|
|
leftbits -= 6;
|
|
*ascii_data++ = table_b2a_base64[this_ch];
|
|
}
|
|
}
|
|
if ( leftbits == 2 ) {
|
|
*ascii_data++ = table_b2a_base64[(leftchar&3) << 4];
|
|
*ascii_data++ = BASE64_PAD;
|
|
*ascii_data++ = BASE64_PAD;
|
|
} else if ( leftbits == 4 ) {
|
|
*ascii_data++ = table_b2a_base64[(leftchar&0xf) << 2];
|
|
*ascii_data++ = BASE64_PAD;
|
|
}
|
|
if (newline)
|
|
*ascii_data++ = '\n'; /* Append a courtesy newline */
|
|
|
|
return _PyBytesWriter_Finish(&writer, ascii_data);
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
binascii.crc_hqx
|
|
|
|
data: Py_buffer
|
|
crc: unsigned_int(bitwise=True)
|
|
/
|
|
|
|
Compute CRC-CCITT incrementally.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_crc_hqx_impl(PyObject *module, Py_buffer *data, unsigned int crc)
|
|
/*[clinic end generated code: output=2fde213d0f547a98 input=56237755370a951c]*/
|
|
{
|
|
const unsigned char *bin_data;
|
|
Py_ssize_t len;
|
|
|
|
crc &= 0xffff;
|
|
bin_data = data->buf;
|
|
len = data->len;
|
|
|
|
while(len-- > 0) {
|
|
crc = ((crc<<8)&0xff00) ^ crctab_hqx[(crc>>8)^*bin_data++];
|
|
}
|
|
|
|
return PyLong_FromUnsignedLong(crc);
|
|
}
|
|
|
|
#ifndef USE_ZLIB_CRC32
|
|
/* Crc - 32 BIT ANSI X3.66 CRC checksum files
|
|
Also known as: ISO 3307
|
|
**********************************************************************|
|
|
* *|
|
|
* Demonstration program to compute the 32-bit CRC used as the frame *|
|
|
* check sequence in ADCCP (ANSI X3.66, also known as FIPS PUB 71 *|
|
|
* and FED-STD-1003, the U.S. versions of CCITT's X.25 link-level *|
|
|
* protocol). The 32-bit FCS was added via the Federal Register, *|
|
|
* 1 June 1982, p.23798. I presume but don't know for certain that *|
|
|
* this polynomial is or will be included in CCITT V.41, which *|
|
|
* defines the 16-bit CRC (often called CRC-CCITT) polynomial. FIPS *|
|
|
* PUB 78 says that the 32-bit FCS reduces otherwise undetected *|
|
|
* errors by a factor of 10^-5 over 16-bit FCS. *|
|
|
* *|
|
|
**********************************************************************|
|
|
|
|
Copyright (C) 1986 Gary S. Brown. You may use this program, or
|
|
code or tables extracted from it, as desired without restriction.
|
|
|
|
First, the polynomial itself and its table of feedback terms. The
|
|
polynomial is
|
|
X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+X^0
|
|
Note that we take it "backwards" and put the highest-order term in
|
|
the lowest-order bit. The X^32 term is "implied"; the LSB is the
|
|
X^31 term, etc. The X^0 term (usually shown as "+1") results in
|
|
the MSB being 1.
|
|
|
|
Note that the usual hardware shift register implementation, which
|
|
is what we're using (we're merely optimizing it by doing eight-bit
|
|
chunks at a time) shifts bits into the lowest-order term. In our
|
|
implementation, that means shifting towards the right. Why do we
|
|
do it this way? Because the calculated CRC must be transmitted in
|
|
order from highest-order term to lowest-order term. UARTs transmit
|
|
characters in order from LSB to MSB. By storing the CRC this way,
|
|
we hand it to the UART in the order low-byte to high-byte; the UART
|
|
sends each low-bit to hight-bit; and the result is transmission bit
|
|
by bit from highest- to lowest-order term without requiring any bit
|
|
shuffling on our part. Reception works similarly.
|
|
|
|
The feedback terms table consists of 256, 32-bit entries. Notes:
|
|
|
|
1. The table can be generated at runtime if desired; code to do so
|
|
is shown later. It might not be obvious, but the feedback
|
|
terms simply represent the results of eight shift/xor opera-
|
|
tions for all combinations of data and CRC register values.
|
|
|
|
2. The CRC accumulation logic is the same for all CRC polynomials,
|
|
be they sixteen or thirty-two bits wide. You simply choose the
|
|
appropriate table. Alternatively, because the table can be
|
|
generated at runtime, you can start by generating the table for
|
|
the polynomial in question and use exactly the same "updcrc",
|
|
if your application needn't simultaneously handle two CRC
|
|
polynomials. (Note, however, that XMODEM is strange.)
|
|
|
|
3. For 16-bit CRCs, the table entries need be only 16 bits wide;
|
|
of course, 32-bit entries work OK if the high 16 bits are zero.
|
|
|
|
4. The values must be right-shifted by eight bits by the "updcrc"
|
|
logic; the shift must be unsigned (bring in zeroes). On some
|
|
hardware you could probably optimize the shift in assembler by
|
|
using byte-swap instructions.
|
|
********************************************************************/
|
|
|
|
static const unsigned int crc_32_tab[256] = {
|
|
0x00000000U, 0x77073096U, 0xee0e612cU, 0x990951baU, 0x076dc419U,
|
|
0x706af48fU, 0xe963a535U, 0x9e6495a3U, 0x0edb8832U, 0x79dcb8a4U,
|
|
0xe0d5e91eU, 0x97d2d988U, 0x09b64c2bU, 0x7eb17cbdU, 0xe7b82d07U,
|
|
0x90bf1d91U, 0x1db71064U, 0x6ab020f2U, 0xf3b97148U, 0x84be41deU,
|
|
0x1adad47dU, 0x6ddde4ebU, 0xf4d4b551U, 0x83d385c7U, 0x136c9856U,
|
|
0x646ba8c0U, 0xfd62f97aU, 0x8a65c9ecU, 0x14015c4fU, 0x63066cd9U,
|
|
0xfa0f3d63U, 0x8d080df5U, 0x3b6e20c8U, 0x4c69105eU, 0xd56041e4U,
|
|
0xa2677172U, 0x3c03e4d1U, 0x4b04d447U, 0xd20d85fdU, 0xa50ab56bU,
|
|
0x35b5a8faU, 0x42b2986cU, 0xdbbbc9d6U, 0xacbcf940U, 0x32d86ce3U,
|
|
0x45df5c75U, 0xdcd60dcfU, 0xabd13d59U, 0x26d930acU, 0x51de003aU,
|
|
0xc8d75180U, 0xbfd06116U, 0x21b4f4b5U, 0x56b3c423U, 0xcfba9599U,
|
|
0xb8bda50fU, 0x2802b89eU, 0x5f058808U, 0xc60cd9b2U, 0xb10be924U,
|
|
0x2f6f7c87U, 0x58684c11U, 0xc1611dabU, 0xb6662d3dU, 0x76dc4190U,
|
|
0x01db7106U, 0x98d220bcU, 0xefd5102aU, 0x71b18589U, 0x06b6b51fU,
|
|
0x9fbfe4a5U, 0xe8b8d433U, 0x7807c9a2U, 0x0f00f934U, 0x9609a88eU,
|
|
0xe10e9818U, 0x7f6a0dbbU, 0x086d3d2dU, 0x91646c97U, 0xe6635c01U,
|
|
0x6b6b51f4U, 0x1c6c6162U, 0x856530d8U, 0xf262004eU, 0x6c0695edU,
|
|
0x1b01a57bU, 0x8208f4c1U, 0xf50fc457U, 0x65b0d9c6U, 0x12b7e950U,
|
|
0x8bbeb8eaU, 0xfcb9887cU, 0x62dd1ddfU, 0x15da2d49U, 0x8cd37cf3U,
|
|
0xfbd44c65U, 0x4db26158U, 0x3ab551ceU, 0xa3bc0074U, 0xd4bb30e2U,
|
|
0x4adfa541U, 0x3dd895d7U, 0xa4d1c46dU, 0xd3d6f4fbU, 0x4369e96aU,
|
|
0x346ed9fcU, 0xad678846U, 0xda60b8d0U, 0x44042d73U, 0x33031de5U,
|
|
0xaa0a4c5fU, 0xdd0d7cc9U, 0x5005713cU, 0x270241aaU, 0xbe0b1010U,
|
|
0xc90c2086U, 0x5768b525U, 0x206f85b3U, 0xb966d409U, 0xce61e49fU,
|
|
0x5edef90eU, 0x29d9c998U, 0xb0d09822U, 0xc7d7a8b4U, 0x59b33d17U,
|
|
0x2eb40d81U, 0xb7bd5c3bU, 0xc0ba6cadU, 0xedb88320U, 0x9abfb3b6U,
|
|
0x03b6e20cU, 0x74b1d29aU, 0xead54739U, 0x9dd277afU, 0x04db2615U,
|
|
0x73dc1683U, 0xe3630b12U, 0x94643b84U, 0x0d6d6a3eU, 0x7a6a5aa8U,
|
|
0xe40ecf0bU, 0x9309ff9dU, 0x0a00ae27U, 0x7d079eb1U, 0xf00f9344U,
|
|
0x8708a3d2U, 0x1e01f268U, 0x6906c2feU, 0xf762575dU, 0x806567cbU,
|
|
0x196c3671U, 0x6e6b06e7U, 0xfed41b76U, 0x89d32be0U, 0x10da7a5aU,
|
|
0x67dd4accU, 0xf9b9df6fU, 0x8ebeeff9U, 0x17b7be43U, 0x60b08ed5U,
|
|
0xd6d6a3e8U, 0xa1d1937eU, 0x38d8c2c4U, 0x4fdff252U, 0xd1bb67f1U,
|
|
0xa6bc5767U, 0x3fb506ddU, 0x48b2364bU, 0xd80d2bdaU, 0xaf0a1b4cU,
|
|
0x36034af6U, 0x41047a60U, 0xdf60efc3U, 0xa867df55U, 0x316e8eefU,
|
|
0x4669be79U, 0xcb61b38cU, 0xbc66831aU, 0x256fd2a0U, 0x5268e236U,
|
|
0xcc0c7795U, 0xbb0b4703U, 0x220216b9U, 0x5505262fU, 0xc5ba3bbeU,
|
|
0xb2bd0b28U, 0x2bb45a92U, 0x5cb36a04U, 0xc2d7ffa7U, 0xb5d0cf31U,
|
|
0x2cd99e8bU, 0x5bdeae1dU, 0x9b64c2b0U, 0xec63f226U, 0x756aa39cU,
|
|
0x026d930aU, 0x9c0906a9U, 0xeb0e363fU, 0x72076785U, 0x05005713U,
|
|
0x95bf4a82U, 0xe2b87a14U, 0x7bb12baeU, 0x0cb61b38U, 0x92d28e9bU,
|
|
0xe5d5be0dU, 0x7cdcefb7U, 0x0bdbdf21U, 0x86d3d2d4U, 0xf1d4e242U,
|
|
0x68ddb3f8U, 0x1fda836eU, 0x81be16cdU, 0xf6b9265bU, 0x6fb077e1U,
|
|
0x18b74777U, 0x88085ae6U, 0xff0f6a70U, 0x66063bcaU, 0x11010b5cU,
|
|
0x8f659effU, 0xf862ae69U, 0x616bffd3U, 0x166ccf45U, 0xa00ae278U,
|
|
0xd70dd2eeU, 0x4e048354U, 0x3903b3c2U, 0xa7672661U, 0xd06016f7U,
|
|
0x4969474dU, 0x3e6e77dbU, 0xaed16a4aU, 0xd9d65adcU, 0x40df0b66U,
|
|
0x37d83bf0U, 0xa9bcae53U, 0xdebb9ec5U, 0x47b2cf7fU, 0x30b5ffe9U,
|
|
0xbdbdf21cU, 0xcabac28aU, 0x53b39330U, 0x24b4a3a6U, 0xbad03605U,
|
|
0xcdd70693U, 0x54de5729U, 0x23d967bfU, 0xb3667a2eU, 0xc4614ab8U,
|
|
0x5d681b02U, 0x2a6f2b94U, 0xb40bbe37U, 0xc30c8ea1U, 0x5a05df1bU,
|
|
0x2d02ef8dU
|
|
};
|
|
|
|
static unsigned int
|
|
internal_crc32(const unsigned char *bin_data, Py_ssize_t len, unsigned int crc)
|
|
{ /* By Jim Ahlstrom; All rights transferred to CNRI */
|
|
unsigned int result;
|
|
|
|
crc = ~ crc;
|
|
while (len-- > 0) {
|
|
crc = crc_32_tab[(crc ^ *bin_data++) & 0xff] ^ (crc >> 8);
|
|
/* Note: (crc >> 8) MUST zero fill on left */
|
|
}
|
|
|
|
result = (crc ^ 0xFFFFFFFF);
|
|
return result & 0xffffffff;
|
|
}
|
|
#endif /* USE_ZLIB_CRC32 */
|
|
|
|
/*[clinic input]
|
|
binascii.crc32 -> unsigned_int
|
|
|
|
data: Py_buffer
|
|
crc: unsigned_int(bitwise=True) = 0
|
|
/
|
|
|
|
Compute CRC-32 incrementally.
|
|
[clinic start generated code]*/
|
|
|
|
static unsigned int
|
|
binascii_crc32_impl(PyObject *module, Py_buffer *data, unsigned int crc)
|
|
/*[clinic end generated code: output=52cf59056a78593b input=bbe340bc99d25aa8]*/
|
|
|
|
#ifdef USE_ZLIB_CRC32
|
|
/* This is the same as zlibmodule.c zlib_crc32_impl. It exists in two
|
|
* modules for historical reasons. */
|
|
{
|
|
/* Releasing the GIL for very small buffers is inefficient
|
|
and may lower performance */
|
|
if (data->len > 1024*5) {
|
|
unsigned char *buf = data->buf;
|
|
Py_ssize_t len = data->len;
|
|
|
|
Py_BEGIN_ALLOW_THREADS
|
|
/* Avoid truncation of length for very large buffers. crc32() takes
|
|
length as an unsigned int, which may be narrower than Py_ssize_t. */
|
|
while ((size_t)len > UINT_MAX) {
|
|
crc = crc32(crc, buf, UINT_MAX);
|
|
buf += (size_t) UINT_MAX;
|
|
len -= (size_t) UINT_MAX;
|
|
}
|
|
crc = crc32(crc, buf, (unsigned int)len);
|
|
Py_END_ALLOW_THREADS
|
|
} else {
|
|
crc = crc32(crc, data->buf, (unsigned int)data->len);
|
|
}
|
|
return crc & 0xffffffff;
|
|
}
|
|
#else /* USE_ZLIB_CRC32 */
|
|
{
|
|
const unsigned char *bin_data = data->buf;
|
|
Py_ssize_t len = data->len;
|
|
|
|
/* Releasing the GIL for very small buffers is inefficient
|
|
and may lower performance */
|
|
if (len > 1024*5) {
|
|
unsigned int result;
|
|
Py_BEGIN_ALLOW_THREADS
|
|
result = internal_crc32(bin_data, len, crc);
|
|
Py_END_ALLOW_THREADS
|
|
return result;
|
|
} else {
|
|
return internal_crc32(bin_data, len, crc);
|
|
}
|
|
}
|
|
#endif /* USE_ZLIB_CRC32 */
|
|
|
|
/*[clinic input]
|
|
binascii.b2a_hex
|
|
|
|
data: Py_buffer
|
|
sep: object = NULL
|
|
An optional single character or byte to separate hex bytes.
|
|
bytes_per_sep: int = 1
|
|
How many bytes between separators. Positive values count from the
|
|
right, negative values count from the left.
|
|
|
|
Hexadecimal representation of binary data.
|
|
|
|
The return value is a bytes object. This function is also
|
|
available as "hexlify()".
|
|
|
|
Example:
|
|
>>> binascii.b2a_hex(b'\xb9\x01\xef')
|
|
b'b901ef'
|
|
>>> binascii.hexlify(b'\xb9\x01\xef', ':')
|
|
b'b9:01:ef'
|
|
>>> binascii.b2a_hex(b'\xb9\x01\xef', b'_', 2)
|
|
b'b9_01ef'
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_b2a_hex_impl(PyObject *module, Py_buffer *data, PyObject *sep,
|
|
int bytes_per_sep)
|
|
/*[clinic end generated code: output=a26937946a81d2c7 input=ec0ade6ba2e43543]*/
|
|
{
|
|
return _Py_strhex_bytes_with_sep((const char *)data->buf, data->len,
|
|
sep, bytes_per_sep);
|
|
}
|
|
|
|
/*[clinic input]
|
|
binascii.hexlify = binascii.b2a_hex
|
|
|
|
Hexadecimal representation of binary data.
|
|
|
|
The return value is a bytes object. This function is also
|
|
available as "b2a_hex()".
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_hexlify_impl(PyObject *module, Py_buffer *data, PyObject *sep,
|
|
int bytes_per_sep)
|
|
/*[clinic end generated code: output=d12aa1b001b15199 input=bc317bd4e241f76b]*/
|
|
{
|
|
return _Py_strhex_bytes_with_sep((const char *)data->buf, data->len,
|
|
sep, bytes_per_sep);
|
|
}
|
|
|
|
/*[clinic input]
|
|
binascii.a2b_hex
|
|
|
|
hexstr: ascii_buffer
|
|
/
|
|
|
|
Binary data of hexadecimal representation.
|
|
|
|
hexstr must contain an even number of hex digits (upper or lower case).
|
|
This function is also available as "unhexlify()".
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_a2b_hex_impl(PyObject *module, Py_buffer *hexstr)
|
|
/*[clinic end generated code: output=0cc1a139af0eeecb input=9e1e7f2f94db24fd]*/
|
|
{
|
|
const char* argbuf;
|
|
Py_ssize_t arglen;
|
|
PyObject *retval;
|
|
char* retbuf;
|
|
Py_ssize_t i, j;
|
|
binascii_state *state;
|
|
|
|
argbuf = hexstr->buf;
|
|
arglen = hexstr->len;
|
|
|
|
assert(arglen >= 0);
|
|
|
|
/* XXX What should we do about strings with an odd length? Should
|
|
* we add an implicit leading zero, or a trailing zero? For now,
|
|
* raise an exception.
|
|
*/
|
|
if (arglen % 2) {
|
|
state = get_binascii_state(module);
|
|
if (state == NULL) {
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(state->Error, "Odd-length string");
|
|
return NULL;
|
|
}
|
|
|
|
retval = PyBytes_FromStringAndSize(NULL, (arglen/2));
|
|
if (!retval)
|
|
return NULL;
|
|
retbuf = PyBytes_AS_STRING(retval);
|
|
|
|
for (i=j=0; i < arglen; i += 2) {
|
|
unsigned int top = _PyLong_DigitValue[Py_CHARMASK(argbuf[i])];
|
|
unsigned int bot = _PyLong_DigitValue[Py_CHARMASK(argbuf[i+1])];
|
|
if (top >= 16 || bot >= 16) {
|
|
state = get_binascii_state(module);
|
|
if (state == NULL) {
|
|
return NULL;
|
|
}
|
|
PyErr_SetString(state->Error,
|
|
"Non-hexadecimal digit found");
|
|
goto finally;
|
|
}
|
|
retbuf[j++] = (top << 4) + bot;
|
|
}
|
|
return retval;
|
|
|
|
finally:
|
|
Py_DECREF(retval);
|
|
return NULL;
|
|
}
|
|
|
|
/*[clinic input]
|
|
binascii.unhexlify = binascii.a2b_hex
|
|
|
|
Binary data of hexadecimal representation.
|
|
|
|
hexstr must contain an even number of hex digits (upper or lower case).
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_unhexlify_impl(PyObject *module, Py_buffer *hexstr)
|
|
/*[clinic end generated code: output=51a64c06c79629e3 input=dd8c012725f462da]*/
|
|
{
|
|
return binascii_a2b_hex_impl(module, hexstr);
|
|
}
|
|
|
|
#define MAXLINESIZE 76
|
|
|
|
|
|
/*[clinic input]
|
|
binascii.a2b_qp
|
|
|
|
data: ascii_buffer
|
|
header: bool = False
|
|
|
|
Decode a string of qp-encoded data.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_a2b_qp_impl(PyObject *module, Py_buffer *data, int header)
|
|
/*[clinic end generated code: output=e99f7846cfb9bc53 input=bdfb31598d4e47b9]*/
|
|
{
|
|
Py_ssize_t in, out;
|
|
char ch;
|
|
const unsigned char *ascii_data;
|
|
unsigned char *odata;
|
|
Py_ssize_t datalen = 0;
|
|
PyObject *rv;
|
|
|
|
ascii_data = data->buf;
|
|
datalen = data->len;
|
|
|
|
/* We allocate the output same size as input, this is overkill.
|
|
*/
|
|
odata = (unsigned char *) PyMem_Calloc(1, datalen);
|
|
if (odata == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
|
|
in = out = 0;
|
|
while (in < datalen) {
|
|
if (ascii_data[in] == '=') {
|
|
in++;
|
|
if (in >= datalen) break;
|
|
/* Soft line breaks */
|
|
if ((ascii_data[in] == '\n') || (ascii_data[in] == '\r')) {
|
|
if (ascii_data[in] != '\n') {
|
|
while (in < datalen && ascii_data[in] != '\n') in++;
|
|
}
|
|
if (in < datalen) in++;
|
|
}
|
|
else if (ascii_data[in] == '=') {
|
|
/* broken case from broken python qp */
|
|
odata[out++] = '=';
|
|
in++;
|
|
}
|
|
else if ((in + 1 < datalen) &&
|
|
((ascii_data[in] >= 'A' && ascii_data[in] <= 'F') ||
|
|
(ascii_data[in] >= 'a' && ascii_data[in] <= 'f') ||
|
|
(ascii_data[in] >= '0' && ascii_data[in] <= '9')) &&
|
|
((ascii_data[in+1] >= 'A' && ascii_data[in+1] <= 'F') ||
|
|
(ascii_data[in+1] >= 'a' && ascii_data[in+1] <= 'f') ||
|
|
(ascii_data[in+1] >= '0' && ascii_data[in+1] <= '9'))) {
|
|
/* hexval */
|
|
ch = _PyLong_DigitValue[ascii_data[in]] << 4;
|
|
in++;
|
|
ch |= _PyLong_DigitValue[ascii_data[in]];
|
|
in++;
|
|
odata[out++] = ch;
|
|
}
|
|
else {
|
|
odata[out++] = '=';
|
|
}
|
|
}
|
|
else if (header && ascii_data[in] == '_') {
|
|
odata[out++] = ' ';
|
|
in++;
|
|
}
|
|
else {
|
|
odata[out] = ascii_data[in];
|
|
in++;
|
|
out++;
|
|
}
|
|
}
|
|
rv = PyBytes_FromStringAndSize((char *)odata, out);
|
|
PyMem_Free(odata);
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
to_hex (unsigned char ch, unsigned char *s)
|
|
{
|
|
unsigned int uvalue = ch;
|
|
|
|
s[1] = "0123456789ABCDEF"[uvalue % 16];
|
|
uvalue = (uvalue / 16);
|
|
s[0] = "0123456789ABCDEF"[uvalue % 16];
|
|
return 0;
|
|
}
|
|
|
|
/* XXX: This is ridiculously complicated to be backward compatible
|
|
* (mostly) with the quopri module. It doesn't re-create the quopri
|
|
* module bug where text ending in CRLF has the CR encoded */
|
|
|
|
/*[clinic input]
|
|
binascii.b2a_qp
|
|
|
|
data: Py_buffer
|
|
quotetabs: bool = False
|
|
istext: bool = True
|
|
header: bool = False
|
|
|
|
Encode a string using quoted-printable encoding.
|
|
|
|
On encoding, when istext is set, newlines are not encoded, and white
|
|
space at end of lines is. When istext is not set, \r and \n (CR/LF)
|
|
are both encoded. When quotetabs is set, space and tabs are encoded.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
binascii_b2a_qp_impl(PyObject *module, Py_buffer *data, int quotetabs,
|
|
int istext, int header)
|
|
/*[clinic end generated code: output=e9884472ebb1a94c input=e9102879afb0defd]*/
|
|
{
|
|
Py_ssize_t in, out;
|
|
const unsigned char *databuf;
|
|
unsigned char *odata;
|
|
Py_ssize_t datalen = 0, odatalen = 0;
|
|
PyObject *rv;
|
|
unsigned int linelen = 0;
|
|
unsigned char ch;
|
|
int crlf = 0;
|
|
const unsigned char *p;
|
|
|
|
databuf = data->buf;
|
|
datalen = data->len;
|
|
|
|
/* See if this string is using CRLF line ends */
|
|
/* XXX: this function has the side effect of converting all of
|
|
* the end of lines to be the same depending on this detection
|
|
* here */
|
|
p = (const unsigned char *) memchr(databuf, '\n', datalen);
|
|
if ((p != NULL) && (p > databuf) && (*(p-1) == '\r'))
|
|
crlf = 1;
|
|
|
|
/* First, scan to see how many characters need to be encoded */
|
|
in = 0;
|
|
while (in < datalen) {
|
|
Py_ssize_t delta = 0;
|
|
if ((databuf[in] > 126) ||
|
|
(databuf[in] == '=') ||
|
|
(header && databuf[in] == '_') ||
|
|
((databuf[in] == '.') && (linelen == 0) &&
|
|
(in + 1 == datalen || databuf[in+1] == '\n' ||
|
|
databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
|
|
(!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
|
|
((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
|
|
((databuf[in] < 33) &&
|
|
(databuf[in] != '\r') && (databuf[in] != '\n') &&
|
|
(quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' ')))))
|
|
{
|
|
if ((linelen + 3) >= MAXLINESIZE) {
|
|
linelen = 0;
|
|
if (crlf)
|
|
delta += 3;
|
|
else
|
|
delta += 2;
|
|
}
|
|
linelen += 3;
|
|
delta += 3;
|
|
in++;
|
|
}
|
|
else {
|
|
if (istext &&
|
|
((databuf[in] == '\n') ||
|
|
((in+1 < datalen) && (databuf[in] == '\r') &&
|
|
(databuf[in+1] == '\n'))))
|
|
{
|
|
linelen = 0;
|
|
/* Protect against whitespace on end of line */
|
|
if (in && ((databuf[in-1] == ' ') || (databuf[in-1] == '\t')))
|
|
delta += 2;
|
|
if (crlf)
|
|
delta += 2;
|
|
else
|
|
delta += 1;
|
|
if (databuf[in] == '\r')
|
|
in += 2;
|
|
else
|
|
in++;
|
|
}
|
|
else {
|
|
if ((in + 1 != datalen) &&
|
|
(databuf[in+1] != '\n') &&
|
|
(linelen + 1) >= MAXLINESIZE) {
|
|
linelen = 0;
|
|
if (crlf)
|
|
delta += 3;
|
|
else
|
|
delta += 2;
|
|
}
|
|
linelen++;
|
|
delta++;
|
|
in++;
|
|
}
|
|
}
|
|
if (PY_SSIZE_T_MAX - delta < odatalen) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
odatalen += delta;
|
|
}
|
|
|
|
/* We allocate the output same size as input, this is overkill.
|
|
*/
|
|
odata = (unsigned char *) PyMem_Calloc(1, odatalen);
|
|
if (odata == NULL) {
|
|
PyErr_NoMemory();
|
|
return NULL;
|
|
}
|
|
|
|
in = out = linelen = 0;
|
|
while (in < datalen) {
|
|
if ((databuf[in] > 126) ||
|
|
(databuf[in] == '=') ||
|
|
(header && databuf[in] == '_') ||
|
|
((databuf[in] == '.') && (linelen == 0) &&
|
|
(in + 1 == datalen || databuf[in+1] == '\n' ||
|
|
databuf[in+1] == '\r' || databuf[in+1] == 0)) ||
|
|
(!istext && ((databuf[in] == '\r') || (databuf[in] == '\n'))) ||
|
|
((databuf[in] == '\t' || databuf[in] == ' ') && (in + 1 == datalen)) ||
|
|
((databuf[in] < 33) &&
|
|
(databuf[in] != '\r') && (databuf[in] != '\n') &&
|
|
(quotetabs || ((databuf[in] != '\t') && (databuf[in] != ' ')))))
|
|
{
|
|
if ((linelen + 3 )>= MAXLINESIZE) {
|
|
odata[out++] = '=';
|
|
if (crlf) odata[out++] = '\r';
|
|
odata[out++] = '\n';
|
|
linelen = 0;
|
|
}
|
|
odata[out++] = '=';
|
|
to_hex(databuf[in], &odata[out]);
|
|
out += 2;
|
|
in++;
|
|
linelen += 3;
|
|
}
|
|
else {
|
|
if (istext &&
|
|
((databuf[in] == '\n') ||
|
|
((in+1 < datalen) && (databuf[in] == '\r') &&
|
|
(databuf[in+1] == '\n'))))
|
|
{
|
|
linelen = 0;
|
|
/* Protect against whitespace on end of line */
|
|
if (out && ((odata[out-1] == ' ') || (odata[out-1] == '\t'))) {
|
|
ch = odata[out-1];
|
|
odata[out-1] = '=';
|
|
to_hex(ch, &odata[out]);
|
|
out += 2;
|
|
}
|
|
|
|
if (crlf) odata[out++] = '\r';
|
|
odata[out++] = '\n';
|
|
if (databuf[in] == '\r')
|
|
in += 2;
|
|
else
|
|
in++;
|
|
}
|
|
else {
|
|
if ((in + 1 != datalen) &&
|
|
(databuf[in+1] != '\n') &&
|
|
(linelen + 1) >= MAXLINESIZE) {
|
|
odata[out++] = '=';
|
|
if (crlf) odata[out++] = '\r';
|
|
odata[out++] = '\n';
|
|
linelen = 0;
|
|
}
|
|
linelen++;
|
|
if (header && databuf[in] == ' ') {
|
|
odata[out++] = '_';
|
|
in++;
|
|
}
|
|
else {
|
|
odata[out++] = databuf[in++];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
rv = PyBytes_FromStringAndSize((char *)odata, out);
|
|
PyMem_Free(odata);
|
|
return rv;
|
|
}
|
|
|
|
/* List of functions defined in the module */
|
|
|
|
static struct PyMethodDef binascii_module_methods[] = {
|
|
BINASCII_A2B_UU_METHODDEF
|
|
BINASCII_B2A_UU_METHODDEF
|
|
BINASCII_A2B_BASE64_METHODDEF
|
|
BINASCII_B2A_BASE64_METHODDEF
|
|
BINASCII_A2B_HEX_METHODDEF
|
|
BINASCII_B2A_HEX_METHODDEF
|
|
BINASCII_HEXLIFY_METHODDEF
|
|
BINASCII_UNHEXLIFY_METHODDEF
|
|
BINASCII_CRC_HQX_METHODDEF
|
|
BINASCII_CRC32_METHODDEF
|
|
BINASCII_A2B_QP_METHODDEF
|
|
BINASCII_B2A_QP_METHODDEF
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
|
|
/* Initialization function for the module (*must* be called PyInit_binascii) */
|
|
PyDoc_STRVAR(doc_binascii, "Conversion between binary data and ASCII");
|
|
|
|
static int
|
|
binascii_exec(PyObject *module)
|
|
{
|
|
binascii_state *state = PyModule_GetState(module);
|
|
if (state == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
state->Error = PyErr_NewException("binascii.Error", PyExc_ValueError, NULL);
|
|
if (PyModule_AddObjectRef(module, "Error", state->Error) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
state->Incomplete = PyErr_NewException("binascii.Incomplete", NULL, NULL);
|
|
if (PyModule_AddObjectRef(module, "Incomplete", state->Incomplete) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static PyModuleDef_Slot binascii_slots[] = {
|
|
{Py_mod_exec, binascii_exec},
|
|
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
|
|
{0, NULL}
|
|
};
|
|
|
|
static int
|
|
binascii_traverse(PyObject *module, visitproc visit, void *arg)
|
|
{
|
|
binascii_state *state = get_binascii_state(module);
|
|
Py_VISIT(state->Error);
|
|
Py_VISIT(state->Incomplete);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
binascii_clear(PyObject *module)
|
|
{
|
|
binascii_state *state = get_binascii_state(module);
|
|
Py_CLEAR(state->Error);
|
|
Py_CLEAR(state->Incomplete);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
binascii_free(void *module)
|
|
{
|
|
binascii_clear((PyObject *)module);
|
|
}
|
|
|
|
static struct PyModuleDef binasciimodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
"binascii",
|
|
doc_binascii,
|
|
sizeof(binascii_state),
|
|
binascii_module_methods,
|
|
binascii_slots,
|
|
binascii_traverse,
|
|
binascii_clear,
|
|
binascii_free
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit_binascii(void)
|
|
{
|
|
return PyModuleDef_Init(&binasciimodule);
|
|
}
|