mirror of
https://github.com/python/cpython.git
synced 2024-11-24 17:47:13 +01:00
1870 lines
60 KiB
Python
1870 lines
60 KiB
Python
"""
|
||
Basic statistics module.
|
||
|
||
This module provides functions for calculating statistics of data, including
|
||
averages, variance, and standard deviation.
|
||
|
||
Calculating averages
|
||
--------------------
|
||
|
||
================== ==================================================
|
||
Function Description
|
||
================== ==================================================
|
||
mean Arithmetic mean (average) of data.
|
||
fmean Fast, floating-point arithmetic mean.
|
||
geometric_mean Geometric mean of data.
|
||
harmonic_mean Harmonic mean of data.
|
||
median Median (middle value) of data.
|
||
median_low Low median of data.
|
||
median_high High median of data.
|
||
median_grouped Median, or 50th percentile, of grouped data.
|
||
mode Mode (most common value) of data.
|
||
multimode List of modes (most common values of data).
|
||
quantiles Divide data into intervals with equal probability.
|
||
================== ==================================================
|
||
|
||
Calculate the arithmetic mean ("the average") of data:
|
||
|
||
>>> mean([-1.0, 2.5, 3.25, 5.75])
|
||
2.625
|
||
|
||
|
||
Calculate the standard median of discrete data:
|
||
|
||
>>> median([2, 3, 4, 5])
|
||
3.5
|
||
|
||
|
||
Calculate the median, or 50th percentile, of data grouped into class intervals
|
||
centred on the data values provided. E.g. if your data points are rounded to
|
||
the nearest whole number:
|
||
|
||
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
|
||
2.8333333333...
|
||
|
||
This should be interpreted in this way: you have two data points in the class
|
||
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
|
||
the class interval 3.5-4.5. The median of these data points is 2.8333...
|
||
|
||
|
||
Calculating variability or spread
|
||
---------------------------------
|
||
|
||
================== =============================================
|
||
Function Description
|
||
================== =============================================
|
||
pvariance Population variance of data.
|
||
variance Sample variance of data.
|
||
pstdev Population standard deviation of data.
|
||
stdev Sample standard deviation of data.
|
||
================== =============================================
|
||
|
||
Calculate the standard deviation of sample data:
|
||
|
||
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
|
||
4.38961843444...
|
||
|
||
If you have previously calculated the mean, you can pass it as the optional
|
||
second argument to the four "spread" functions to avoid recalculating it:
|
||
|
||
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
|
||
>>> mu = mean(data)
|
||
>>> pvariance(data, mu)
|
||
2.5
|
||
|
||
|
||
Statistics for relations between two inputs
|
||
-------------------------------------------
|
||
|
||
================== ====================================================
|
||
Function Description
|
||
================== ====================================================
|
||
covariance Sample covariance for two variables.
|
||
correlation Pearson's correlation coefficient for two variables.
|
||
linear_regression Intercept and slope for simple linear regression.
|
||
================== ====================================================
|
||
|
||
Calculate covariance, Pearson's correlation, and simple linear regression
|
||
for two inputs:
|
||
|
||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
|
||
>>> covariance(x, y)
|
||
0.75
|
||
>>> correlation(x, y) #doctest: +ELLIPSIS
|
||
0.31622776601...
|
||
>>> linear_regression(x, y) #doctest:
|
||
LinearRegression(slope=0.1, intercept=1.5)
|
||
|
||
|
||
Exceptions
|
||
----------
|
||
|
||
A single exception is defined: StatisticsError is a subclass of ValueError.
|
||
|
||
"""
|
||
|
||
__all__ = [
|
||
'NormalDist',
|
||
'StatisticsError',
|
||
'correlation',
|
||
'covariance',
|
||
'fmean',
|
||
'geometric_mean',
|
||
'harmonic_mean',
|
||
'kde',
|
||
'kde_random',
|
||
'linear_regression',
|
||
'mean',
|
||
'median',
|
||
'median_grouped',
|
||
'median_high',
|
||
'median_low',
|
||
'mode',
|
||
'multimode',
|
||
'pstdev',
|
||
'pvariance',
|
||
'quantiles',
|
||
'stdev',
|
||
'variance',
|
||
]
|
||
|
||
import math
|
||
import numbers
|
||
import random
|
||
import sys
|
||
|
||
from fractions import Fraction
|
||
from decimal import Decimal
|
||
from itertools import count, groupby, repeat
|
||
from bisect import bisect_left, bisect_right
|
||
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod
|
||
from math import isfinite, isinf, pi, cos, sin, tan, cosh, asin, atan, acos
|
||
from functools import reduce
|
||
from operator import itemgetter
|
||
from collections import Counter, namedtuple, defaultdict
|
||
|
||
_SQRT2 = sqrt(2.0)
|
||
_random = random
|
||
|
||
## Exceptions ##############################################################
|
||
|
||
class StatisticsError(ValueError):
|
||
pass
|
||
|
||
|
||
## Measures of central tendency (averages) #################################
|
||
|
||
def mean(data):
|
||
"""Return the sample arithmetic mean of data.
|
||
|
||
>>> mean([1, 2, 3, 4, 4])
|
||
2.8
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
|
||
Fraction(13, 21)
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
|
||
Decimal('0.5625')
|
||
|
||
If ``data`` is empty, StatisticsError will be raised.
|
||
|
||
"""
|
||
T, total, n = _sum(data)
|
||
if n < 1:
|
||
raise StatisticsError('mean requires at least one data point')
|
||
return _convert(total / n, T)
|
||
|
||
|
||
def fmean(data, weights=None):
|
||
"""Convert data to floats and compute the arithmetic mean.
|
||
|
||
This runs faster than the mean() function and it always returns a float.
|
||
If the input dataset is empty, it raises a StatisticsError.
|
||
|
||
>>> fmean([3.5, 4.0, 5.25])
|
||
4.25
|
||
|
||
"""
|
||
if weights is None:
|
||
|
||
try:
|
||
n = len(data)
|
||
except TypeError:
|
||
# Handle iterators that do not define __len__().
|
||
counter = count()
|
||
total = fsum(map(itemgetter(0), zip(data, counter)))
|
||
n = next(counter)
|
||
else:
|
||
total = fsum(data)
|
||
|
||
if not n:
|
||
raise StatisticsError('fmean requires at least one data point')
|
||
|
||
return total / n
|
||
|
||
if not isinstance(weights, (list, tuple)):
|
||
weights = list(weights)
|
||
|
||
try:
|
||
num = sumprod(data, weights)
|
||
except ValueError:
|
||
raise StatisticsError('data and weights must be the same length')
|
||
|
||
den = fsum(weights)
|
||
|
||
if not den:
|
||
raise StatisticsError('sum of weights must be non-zero')
|
||
|
||
return num / den
|
||
|
||
|
||
def geometric_mean(data):
|
||
"""Convert data to floats and compute the geometric mean.
|
||
|
||
Raises a StatisticsError if the input dataset is empty
|
||
or if it contains a negative value.
|
||
|
||
Returns zero if the product of inputs is zero.
|
||
|
||
No special efforts are made to achieve exact results.
|
||
(However, this may change in the future.)
|
||
|
||
>>> round(geometric_mean([54, 24, 36]), 9)
|
||
36.0
|
||
|
||
"""
|
||
n = 0
|
||
found_zero = False
|
||
|
||
def count_positive(iterable):
|
||
nonlocal n, found_zero
|
||
for n, x in enumerate(iterable, start=1):
|
||
if x > 0.0 or math.isnan(x):
|
||
yield x
|
||
elif x == 0.0:
|
||
found_zero = True
|
||
else:
|
||
raise StatisticsError('No negative inputs allowed', x)
|
||
|
||
total = fsum(map(log, count_positive(data)))
|
||
|
||
if not n:
|
||
raise StatisticsError('Must have a non-empty dataset')
|
||
if math.isnan(total):
|
||
return math.nan
|
||
if found_zero:
|
||
return math.nan if total == math.inf else 0.0
|
||
|
||
return exp(total / n)
|
||
|
||
|
||
def harmonic_mean(data, weights=None):
|
||
"""Return the harmonic mean of data.
|
||
|
||
The harmonic mean is the reciprocal of the arithmetic mean of the
|
||
reciprocals of the data. It can be used for averaging ratios or
|
||
rates, for example speeds.
|
||
|
||
Suppose a car travels 40 km/hr for 5 km and then speeds-up to
|
||
60 km/hr for another 5 km. What is the average speed?
|
||
|
||
>>> harmonic_mean([40, 60])
|
||
48.0
|
||
|
||
Suppose a car travels 40 km/hr for 5 km, and when traffic clears,
|
||
speeds-up to 60 km/hr for the remaining 30 km of the journey. What
|
||
is the average speed?
|
||
|
||
>>> harmonic_mean([40, 60], weights=[5, 30])
|
||
56.0
|
||
|
||
If ``data`` is empty, or any element is less than zero,
|
||
``harmonic_mean`` will raise ``StatisticsError``.
|
||
|
||
"""
|
||
if iter(data) is data:
|
||
data = list(data)
|
||
|
||
errmsg = 'harmonic mean does not support negative values'
|
||
|
||
n = len(data)
|
||
if n < 1:
|
||
raise StatisticsError('harmonic_mean requires at least one data point')
|
||
elif n == 1 and weights is None:
|
||
x = data[0]
|
||
if isinstance(x, (numbers.Real, Decimal)):
|
||
if x < 0:
|
||
raise StatisticsError(errmsg)
|
||
return x
|
||
else:
|
||
raise TypeError('unsupported type')
|
||
|
||
if weights is None:
|
||
weights = repeat(1, n)
|
||
sum_weights = n
|
||
else:
|
||
if iter(weights) is weights:
|
||
weights = list(weights)
|
||
if len(weights) != n:
|
||
raise StatisticsError('Number of weights does not match data size')
|
||
_, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg))
|
||
|
||
try:
|
||
data = _fail_neg(data, errmsg)
|
||
T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data))
|
||
except ZeroDivisionError:
|
||
return 0
|
||
|
||
if total <= 0:
|
||
raise StatisticsError('Weighted sum must be positive')
|
||
|
||
return _convert(sum_weights / total, T)
|
||
|
||
|
||
def median(data):
|
||
"""Return the median (middle value) of numeric data.
|
||
|
||
When the number of data points is odd, return the middle data point.
|
||
When the number of data points is even, the median is interpolated by
|
||
taking the average of the two middle values:
|
||
|
||
>>> median([1, 3, 5])
|
||
3
|
||
>>> median([1, 3, 5, 7])
|
||
4.0
|
||
|
||
"""
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if n == 0:
|
||
raise StatisticsError("no median for empty data")
|
||
if n % 2 == 1:
|
||
return data[n // 2]
|
||
else:
|
||
i = n // 2
|
||
return (data[i - 1] + data[i]) / 2
|
||
|
||
|
||
def median_low(data):
|
||
"""Return the low median of numeric data.
|
||
|
||
When the number of data points is odd, the middle value is returned.
|
||
When it is even, the smaller of the two middle values is returned.
|
||
|
||
>>> median_low([1, 3, 5])
|
||
3
|
||
>>> median_low([1, 3, 5, 7])
|
||
3
|
||
|
||
"""
|
||
# Potentially the sorting step could be replaced with a quickselect.
|
||
# However, it would require an excellent implementation to beat our
|
||
# highly optimized builtin sort.
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if n == 0:
|
||
raise StatisticsError("no median for empty data")
|
||
if n % 2 == 1:
|
||
return data[n // 2]
|
||
else:
|
||
return data[n // 2 - 1]
|
||
|
||
|
||
def median_high(data):
|
||
"""Return the high median of data.
|
||
|
||
When the number of data points is odd, the middle value is returned.
|
||
When it is even, the larger of the two middle values is returned.
|
||
|
||
>>> median_high([1, 3, 5])
|
||
3
|
||
>>> median_high([1, 3, 5, 7])
|
||
5
|
||
|
||
"""
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if n == 0:
|
||
raise StatisticsError("no median for empty data")
|
||
return data[n // 2]
|
||
|
||
|
||
def median_grouped(data, interval=1.0):
|
||
"""Estimates the median for numeric data binned around the midpoints
|
||
of consecutive, fixed-width intervals.
|
||
|
||
The *data* can be any iterable of numeric data with each value being
|
||
exactly the midpoint of a bin. At least one value must be present.
|
||
|
||
The *interval* is width of each bin.
|
||
|
||
For example, demographic information may have been summarized into
|
||
consecutive ten-year age groups with each group being represented
|
||
by the 5-year midpoints of the intervals:
|
||
|
||
>>> demographics = Counter({
|
||
... 25: 172, # 20 to 30 years old
|
||
... 35: 484, # 30 to 40 years old
|
||
... 45: 387, # 40 to 50 years old
|
||
... 55: 22, # 50 to 60 years old
|
||
... 65: 6, # 60 to 70 years old
|
||
... })
|
||
|
||
The 50th percentile (median) is the 536th person out of the 1071
|
||
member cohort. That person is in the 30 to 40 year old age group.
|
||
|
||
The regular median() function would assume that everyone in the
|
||
tricenarian age group was exactly 35 years old. A more tenable
|
||
assumption is that the 484 members of that age group are evenly
|
||
distributed between 30 and 40. For that, we use median_grouped().
|
||
|
||
>>> data = list(demographics.elements())
|
||
>>> median(data)
|
||
35
|
||
>>> round(median_grouped(data, interval=10), 1)
|
||
37.5
|
||
|
||
The caller is responsible for making sure the data points are separated
|
||
by exact multiples of *interval*. This is essential for getting a
|
||
correct result. The function does not check this precondition.
|
||
|
||
Inputs may be any numeric type that can be coerced to a float during
|
||
the interpolation step.
|
||
|
||
"""
|
||
data = sorted(data)
|
||
n = len(data)
|
||
if not n:
|
||
raise StatisticsError("no median for empty data")
|
||
|
||
# Find the value at the midpoint. Remember this corresponds to the
|
||
# midpoint of the class interval.
|
||
x = data[n // 2]
|
||
|
||
# Using O(log n) bisection, find where all the x values occur in the data.
|
||
# All x will lie within data[i:j].
|
||
i = bisect_left(data, x)
|
||
j = bisect_right(data, x, lo=i)
|
||
|
||
# Coerce to floats, raising a TypeError if not possible
|
||
try:
|
||
interval = float(interval)
|
||
x = float(x)
|
||
except ValueError:
|
||
raise TypeError(f'Value cannot be converted to a float')
|
||
|
||
# Interpolate the median using the formula found at:
|
||
# https://www.cuemath.com/data/median-of-grouped-data/
|
||
L = x - interval / 2.0 # Lower limit of the median interval
|
||
cf = i # Cumulative frequency of the preceding interval
|
||
f = j - i # Number of elements in the median internal
|
||
return L + interval * (n / 2 - cf) / f
|
||
|
||
|
||
def mode(data):
|
||
"""Return the most common data point from discrete or nominal data.
|
||
|
||
``mode`` assumes discrete data, and returns a single value. This is the
|
||
standard treatment of the mode as commonly taught in schools:
|
||
|
||
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
|
||
3
|
||
|
||
This also works with nominal (non-numeric) data:
|
||
|
||
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
|
||
'red'
|
||
|
||
If there are multiple modes with same frequency, return the first one
|
||
encountered:
|
||
|
||
>>> mode(['red', 'red', 'green', 'blue', 'blue'])
|
||
'red'
|
||
|
||
If *data* is empty, ``mode``, raises StatisticsError.
|
||
|
||
"""
|
||
pairs = Counter(iter(data)).most_common(1)
|
||
try:
|
||
return pairs[0][0]
|
||
except IndexError:
|
||
raise StatisticsError('no mode for empty data') from None
|
||
|
||
|
||
def multimode(data):
|
||
"""Return a list of the most frequently occurring values.
|
||
|
||
Will return more than one result if there are multiple modes
|
||
or an empty list if *data* is empty.
|
||
|
||
>>> multimode('aabbbbbbbbcc')
|
||
['b']
|
||
>>> multimode('aabbbbccddddeeffffgg')
|
||
['b', 'd', 'f']
|
||
>>> multimode('')
|
||
[]
|
||
|
||
"""
|
||
counts = Counter(iter(data))
|
||
if not counts:
|
||
return []
|
||
maxcount = max(counts.values())
|
||
return [value for value, count in counts.items() if count == maxcount]
|
||
|
||
|
||
## Measures of spread ######################################################
|
||
|
||
def variance(data, xbar=None):
|
||
"""Return the sample variance of data.
|
||
|
||
data should be an iterable of Real-valued numbers, with at least two
|
||
values. The optional argument xbar, if given, should be the mean of
|
||
the data. If it is missing or None, the mean is automatically calculated.
|
||
|
||
Use this function when your data is a sample from a population. To
|
||
calculate the variance from the entire population, see ``pvariance``.
|
||
|
||
Examples:
|
||
|
||
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
|
||
>>> variance(data)
|
||
1.3720238095238095
|
||
|
||
If you have already calculated the mean of your data, you can pass it as
|
||
the optional second argument ``xbar`` to avoid recalculating it:
|
||
|
||
>>> m = mean(data)
|
||
>>> variance(data, m)
|
||
1.3720238095238095
|
||
|
||
This function does not check that ``xbar`` is actually the mean of
|
||
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
|
||
impossible results.
|
||
|
||
Decimals and Fractions are supported:
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||
Decimal('31.01875')
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
|
||
Fraction(67, 108)
|
||
|
||
"""
|
||
# http://mathworld.wolfram.com/SampleVariance.html
|
||
|
||
T, ss, c, n = _ss(data, xbar)
|
||
if n < 2:
|
||
raise StatisticsError('variance requires at least two data points')
|
||
return _convert(ss / (n - 1), T)
|
||
|
||
|
||
def pvariance(data, mu=None):
|
||
"""Return the population variance of ``data``.
|
||
|
||
data should be a sequence or iterable of Real-valued numbers, with at least one
|
||
value. The optional argument mu, if given, should be the mean of
|
||
the data. If it is missing or None, the mean is automatically calculated.
|
||
|
||
Use this function to calculate the variance from the entire population.
|
||
To estimate the variance from a sample, the ``variance`` function is
|
||
usually a better choice.
|
||
|
||
Examples:
|
||
|
||
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
|
||
>>> pvariance(data)
|
||
1.25
|
||
|
||
If you have already calculated the mean of the data, you can pass it as
|
||
the optional second argument to avoid recalculating it:
|
||
|
||
>>> mu = mean(data)
|
||
>>> pvariance(data, mu)
|
||
1.25
|
||
|
||
Decimals and Fractions are supported:
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||
Decimal('24.815')
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
|
||
Fraction(13, 72)
|
||
|
||
"""
|
||
# http://mathworld.wolfram.com/Variance.html
|
||
|
||
T, ss, c, n = _ss(data, mu)
|
||
if n < 1:
|
||
raise StatisticsError('pvariance requires at least one data point')
|
||
return _convert(ss / n, T)
|
||
|
||
|
||
def stdev(data, xbar=None):
|
||
"""Return the square root of the sample variance.
|
||
|
||
See ``variance`` for arguments and other details.
|
||
|
||
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||
1.0810874155219827
|
||
|
||
"""
|
||
T, ss, c, n = _ss(data, xbar)
|
||
if n < 2:
|
||
raise StatisticsError('stdev requires at least two data points')
|
||
mss = ss / (n - 1)
|
||
if issubclass(T, Decimal):
|
||
return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
|
||
return _float_sqrt_of_frac(mss.numerator, mss.denominator)
|
||
|
||
|
||
def pstdev(data, mu=None):
|
||
"""Return the square root of the population variance.
|
||
|
||
See ``pvariance`` for arguments and other details.
|
||
|
||
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||
0.986893273527251
|
||
|
||
"""
|
||
T, ss, c, n = _ss(data, mu)
|
||
if n < 1:
|
||
raise StatisticsError('pstdev requires at least one data point')
|
||
mss = ss / n
|
||
if issubclass(T, Decimal):
|
||
return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
|
||
return _float_sqrt_of_frac(mss.numerator, mss.denominator)
|
||
|
||
|
||
## Statistics for relations between two inputs #############################
|
||
|
||
def covariance(x, y, /):
|
||
"""Covariance
|
||
|
||
Return the sample covariance of two inputs *x* and *y*. Covariance
|
||
is a measure of the joint variability of two inputs.
|
||
|
||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||
>>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3]
|
||
>>> covariance(x, y)
|
||
0.75
|
||
>>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1]
|
||
>>> covariance(x, z)
|
||
-7.5
|
||
>>> covariance(z, x)
|
||
-7.5
|
||
|
||
"""
|
||
# https://en.wikipedia.org/wiki/Covariance
|
||
n = len(x)
|
||
if len(y) != n:
|
||
raise StatisticsError('covariance requires that both inputs have same number of data points')
|
||
if n < 2:
|
||
raise StatisticsError('covariance requires at least two data points')
|
||
xbar = fsum(x) / n
|
||
ybar = fsum(y) / n
|
||
sxy = sumprod((xi - xbar for xi in x), (yi - ybar for yi in y))
|
||
return sxy / (n - 1)
|
||
|
||
|
||
def correlation(x, y, /, *, method='linear'):
|
||
"""Pearson's correlation coefficient
|
||
|
||
Return the Pearson's correlation coefficient for two inputs. Pearson's
|
||
correlation coefficient *r* takes values between -1 and +1. It measures
|
||
the strength and direction of a linear relationship.
|
||
|
||
>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||
>>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1]
|
||
>>> correlation(x, x)
|
||
1.0
|
||
>>> correlation(x, y)
|
||
-1.0
|
||
|
||
If *method* is "ranked", computes Spearman's rank correlation coefficient
|
||
for two inputs. The data is replaced by ranks. Ties are averaged
|
||
so that equal values receive the same rank. The resulting coefficient
|
||
measures the strength of a monotonic relationship.
|
||
|
||
Spearman's rank correlation coefficient is appropriate for ordinal
|
||
data or for continuous data that doesn't meet the linear proportion
|
||
requirement for Pearson's correlation coefficient.
|
||
|
||
"""
|
||
# https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
|
||
# https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
|
||
n = len(x)
|
||
if len(y) != n:
|
||
raise StatisticsError('correlation requires that both inputs have same number of data points')
|
||
if n < 2:
|
||
raise StatisticsError('correlation requires at least two data points')
|
||
if method not in {'linear', 'ranked'}:
|
||
raise ValueError(f'Unknown method: {method!r}')
|
||
|
||
if method == 'ranked':
|
||
start = (n - 1) / -2 # Center rankings around zero
|
||
x = _rank(x, start=start)
|
||
y = _rank(y, start=start)
|
||
|
||
else:
|
||
xbar = fsum(x) / n
|
||
ybar = fsum(y) / n
|
||
x = [xi - xbar for xi in x]
|
||
y = [yi - ybar for yi in y]
|
||
|
||
sxy = sumprod(x, y)
|
||
sxx = sumprod(x, x)
|
||
syy = sumprod(y, y)
|
||
|
||
try:
|
||
return sxy / _sqrtprod(sxx, syy)
|
||
except ZeroDivisionError:
|
||
raise StatisticsError('at least one of the inputs is constant')
|
||
|
||
|
||
LinearRegression = namedtuple('LinearRegression', ('slope', 'intercept'))
|
||
|
||
|
||
def linear_regression(x, y, /, *, proportional=False):
|
||
"""Slope and intercept for simple linear regression.
|
||
|
||
Return the slope and intercept of simple linear regression
|
||
parameters estimated using ordinary least squares. Simple linear
|
||
regression describes relationship between an independent variable
|
||
*x* and a dependent variable *y* in terms of a linear function:
|
||
|
||
y = slope * x + intercept + noise
|
||
|
||
where *slope* and *intercept* are the regression parameters that are
|
||
estimated, and noise represents the variability of the data that was
|
||
not explained by the linear regression (it is equal to the
|
||
difference between predicted and actual values of the dependent
|
||
variable).
|
||
|
||
The parameters are returned as a named tuple.
|
||
|
||
>>> x = [1, 2, 3, 4, 5]
|
||
>>> noise = NormalDist().samples(5, seed=42)
|
||
>>> y = [3 * x[i] + 2 + noise[i] for i in range(5)]
|
||
>>> linear_regression(x, y) #doctest: +ELLIPSIS
|
||
LinearRegression(slope=3.17495..., intercept=1.00925...)
|
||
|
||
If *proportional* is true, the independent variable *x* and the
|
||
dependent variable *y* are assumed to be directly proportional.
|
||
The data is fit to a line passing through the origin.
|
||
|
||
Since the *intercept* will always be 0.0, the underlying linear
|
||
function simplifies to:
|
||
|
||
y = slope * x + noise
|
||
|
||
>>> y = [3 * x[i] + noise[i] for i in range(5)]
|
||
>>> linear_regression(x, y, proportional=True) #doctest: +ELLIPSIS
|
||
LinearRegression(slope=2.90475..., intercept=0.0)
|
||
|
||
"""
|
||
# https://en.wikipedia.org/wiki/Simple_linear_regression
|
||
n = len(x)
|
||
if len(y) != n:
|
||
raise StatisticsError('linear regression requires that both inputs have same number of data points')
|
||
if n < 2:
|
||
raise StatisticsError('linear regression requires at least two data points')
|
||
|
||
if not proportional:
|
||
xbar = fsum(x) / n
|
||
ybar = fsum(y) / n
|
||
x = [xi - xbar for xi in x] # List because used three times below
|
||
y = (yi - ybar for yi in y) # Generator because only used once below
|
||
|
||
sxy = sumprod(x, y) + 0.0 # Add zero to coerce result to a float
|
||
sxx = sumprod(x, x)
|
||
|
||
try:
|
||
slope = sxy / sxx # equivalent to: covariance(x, y) / variance(x)
|
||
except ZeroDivisionError:
|
||
raise StatisticsError('x is constant')
|
||
|
||
intercept = 0.0 if proportional else ybar - slope * xbar
|
||
return LinearRegression(slope=slope, intercept=intercept)
|
||
|
||
|
||
## Kernel Density Estimation ###############################################
|
||
|
||
_kernel_specs = {}
|
||
|
||
def register(*kernels):
|
||
"Load the kernel's pdf, cdf, invcdf, and support into _kernel_specs."
|
||
def deco(builder):
|
||
spec = dict(zip(('pdf', 'cdf', 'invcdf', 'support'), builder()))
|
||
for kernel in kernels:
|
||
_kernel_specs[kernel] = spec
|
||
return builder
|
||
return deco
|
||
|
||
@register('normal', 'gauss')
|
||
def normal_kernel():
|
||
sqrt2pi = sqrt(2 * pi)
|
||
sqrt2 = sqrt(2)
|
||
pdf = lambda t: exp(-1/2 * t * t) / sqrt2pi
|
||
cdf = lambda t: 1/2 * (1.0 + erf(t / sqrt2))
|
||
invcdf = lambda t: _normal_dist_inv_cdf(t, 0.0, 1.0)
|
||
support = None
|
||
return pdf, cdf, invcdf, support
|
||
|
||
@register('logistic')
|
||
def logistic_kernel():
|
||
# 1.0 / (exp(t) + 2.0 + exp(-t))
|
||
pdf = lambda t: 1/2 / (1.0 + cosh(t))
|
||
cdf = lambda t: 1.0 - 1.0 / (exp(t) + 1.0)
|
||
invcdf = lambda p: log(p / (1.0 - p))
|
||
support = None
|
||
return pdf, cdf, invcdf, support
|
||
|
||
@register('sigmoid')
|
||
def sigmoid_kernel():
|
||
# (2/pi) / (exp(t) + exp(-t))
|
||
c1 = 1 / pi
|
||
c2 = 2 / pi
|
||
c3 = pi / 2
|
||
pdf = lambda t: c1 / cosh(t)
|
||
cdf = lambda t: c2 * atan(exp(t))
|
||
invcdf = lambda p: log(tan(p * c3))
|
||
support = None
|
||
return pdf, cdf, invcdf, support
|
||
|
||
@register('rectangular', 'uniform')
|
||
def rectangular_kernel():
|
||
pdf = lambda t: 1/2
|
||
cdf = lambda t: 1/2 * t + 1/2
|
||
invcdf = lambda p: 2.0 * p - 1.0
|
||
support = 1.0
|
||
return pdf, cdf, invcdf, support
|
||
|
||
@register('triangular')
|
||
def triangular_kernel():
|
||
pdf = lambda t: 1.0 - abs(t)
|
||
cdf = lambda t: t*t * (1/2 if t < 0.0 else -1/2) + t + 1/2
|
||
invcdf = lambda p: sqrt(2.0*p) - 1.0 if p < 1/2 else 1.0 - sqrt(2.0 - 2.0*p)
|
||
support = 1.0
|
||
return pdf, cdf, invcdf, support
|
||
|
||
@register('parabolic', 'epanechnikov')
|
||
def parabolic_kernel():
|
||
pdf = lambda t: 3/4 * (1.0 - t * t)
|
||
cdf = lambda t: sumprod((-1/4, 3/4, 1/2), (t**3, t, 1.0))
|
||
invcdf = lambda p: 2.0 * cos((acos(2.0*p - 1.0) + pi) / 3.0)
|
||
support = 1.0
|
||
return pdf, cdf, invcdf, support
|
||
|
||
def _newton_raphson(f_inv_estimate, f, f_prime, tolerance=1e-12):
|
||
def f_inv(y):
|
||
"Return x such that f(x) ≈ y within the specified tolerance."
|
||
x = f_inv_estimate(y)
|
||
while abs(diff := f(x) - y) > tolerance:
|
||
x -= diff / f_prime(x)
|
||
return x
|
||
return f_inv
|
||
|
||
def _quartic_invcdf_estimate(p):
|
||
# A handrolled piecewise approximation. There is no magic here.
|
||
sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p)
|
||
if p < 0.0106:
|
||
return ((2.0 * p) ** 0.3838 - 1.0) * sign
|
||
x = (2.0 * p) ** 0.4258865685331 - 1.0
|
||
if p < 0.499:
|
||
x += 0.026818732 * sin(7.101753784 * p + 2.73230839482953)
|
||
return x * sign
|
||
|
||
@register('quartic', 'biweight')
|
||
def quartic_kernel():
|
||
pdf = lambda t: 15/16 * (1.0 - t * t) ** 2
|
||
cdf = lambda t: sumprod((3/16, -5/8, 15/16, 1/2),
|
||
(t**5, t**3, t, 1.0))
|
||
invcdf = _newton_raphson(_quartic_invcdf_estimate, f=cdf, f_prime=pdf)
|
||
support = 1.0
|
||
return pdf, cdf, invcdf, support
|
||
|
||
def _triweight_invcdf_estimate(p):
|
||
# A handrolled piecewise approximation. There is no magic here.
|
||
sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p)
|
||
x = (2.0 * p) ** 0.3400218741872791 - 1.0
|
||
if 0.00001 < p < 0.499:
|
||
x -= 0.033 * sin(1.07 * tau * (p - 0.035))
|
||
return x * sign
|
||
|
||
@register('triweight')
|
||
def triweight_kernel():
|
||
pdf = lambda t: 35/32 * (1.0 - t * t) ** 3
|
||
cdf = lambda t: sumprod((-5/32, 21/32, -35/32, 35/32, 1/2),
|
||
(t**7, t**5, t**3, t, 1.0))
|
||
invcdf = _newton_raphson(_triweight_invcdf_estimate, f=cdf, f_prime=pdf)
|
||
support = 1.0
|
||
return pdf, cdf, invcdf, support
|
||
|
||
@register('cosine')
|
||
def cosine_kernel():
|
||
c1 = pi / 4
|
||
c2 = pi / 2
|
||
pdf = lambda t: c1 * cos(c2 * t)
|
||
cdf = lambda t: 1/2 * sin(c2 * t) + 1/2
|
||
invcdf = lambda p: 2.0 * asin(2.0 * p - 1.0) / pi
|
||
support = 1.0
|
||
return pdf, cdf, invcdf, support
|
||
|
||
del register, normal_kernel, logistic_kernel, sigmoid_kernel
|
||
del rectangular_kernel, triangular_kernel, parabolic_kernel
|
||
del quartic_kernel, triweight_kernel, cosine_kernel
|
||
|
||
|
||
def kde(data, h, kernel='normal', *, cumulative=False):
|
||
"""Kernel Density Estimation: Create a continuous probability density
|
||
function or cumulative distribution function from discrete samples.
|
||
|
||
The basic idea is to smooth the data using a kernel function
|
||
to help draw inferences about a population from a sample.
|
||
|
||
The degree of smoothing is controlled by the scaling parameter h
|
||
which is called the bandwidth. Smaller values emphasize local
|
||
features while larger values give smoother results.
|
||
|
||
The kernel determines the relative weights of the sample data
|
||
points. Generally, the choice of kernel shape does not matter
|
||
as much as the more influential bandwidth smoothing parameter.
|
||
|
||
Kernels that give some weight to every sample point:
|
||
|
||
normal (gauss)
|
||
logistic
|
||
sigmoid
|
||
|
||
Kernels that only give weight to sample points within
|
||
the bandwidth:
|
||
|
||
rectangular (uniform)
|
||
triangular
|
||
parabolic (epanechnikov)
|
||
quartic (biweight)
|
||
triweight
|
||
cosine
|
||
|
||
If *cumulative* is true, will return a cumulative distribution function.
|
||
|
||
A StatisticsError will be raised if the data sequence is empty.
|
||
|
||
Example
|
||
-------
|
||
|
||
Given a sample of six data points, construct a continuous
|
||
function that estimates the underlying probability density:
|
||
|
||
>>> sample = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
|
||
>>> f_hat = kde(sample, h=1.5)
|
||
|
||
Compute the area under the curve:
|
||
|
||
>>> area = sum(f_hat(x) for x in range(-20, 20))
|
||
>>> round(area, 4)
|
||
1.0
|
||
|
||
Plot the estimated probability density function at
|
||
evenly spaced points from -6 to 10:
|
||
|
||
>>> for x in range(-6, 11):
|
||
... density = f_hat(x)
|
||
... plot = ' ' * int(density * 400) + 'x'
|
||
... print(f'{x:2}: {density:.3f} {plot}')
|
||
...
|
||
-6: 0.002 x
|
||
-5: 0.009 x
|
||
-4: 0.031 x
|
||
-3: 0.070 x
|
||
-2: 0.111 x
|
||
-1: 0.125 x
|
||
0: 0.110 x
|
||
1: 0.086 x
|
||
2: 0.068 x
|
||
3: 0.059 x
|
||
4: 0.066 x
|
||
5: 0.082 x
|
||
6: 0.082 x
|
||
7: 0.058 x
|
||
8: 0.028 x
|
||
9: 0.009 x
|
||
10: 0.002 x
|
||
|
||
Estimate P(4.5 < X <= 7.5), the probability that a new sample value
|
||
will be between 4.5 and 7.5:
|
||
|
||
>>> cdf = kde(sample, h=1.5, cumulative=True)
|
||
>>> round(cdf(7.5) - cdf(4.5), 2)
|
||
0.22
|
||
|
||
References
|
||
----------
|
||
|
||
Kernel density estimation and its application:
|
||
https://www.itm-conferences.org/articles/itmconf/pdf/2018/08/itmconf_sam2018_00037.pdf
|
||
|
||
Kernel functions in common use:
|
||
https://en.wikipedia.org/wiki/Kernel_(statistics)#kernel_functions_in_common_use
|
||
|
||
Interactive graphical demonstration and exploration:
|
||
https://demonstrations.wolfram.com/KernelDensityEstimation/
|
||
|
||
Kernel estimation of cumulative distribution function of a random variable with bounded support
|
||
https://www.econstor.eu/bitstream/10419/207829/1/10.21307_stattrans-2016-037.pdf
|
||
|
||
"""
|
||
|
||
n = len(data)
|
||
if not n:
|
||
raise StatisticsError('Empty data sequence')
|
||
|
||
if not isinstance(data[0], (int, float)):
|
||
raise TypeError('Data sequence must contain ints or floats')
|
||
|
||
if h <= 0.0:
|
||
raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}')
|
||
|
||
kernel_spec = _kernel_specs.get(kernel)
|
||
if kernel_spec is None:
|
||
raise StatisticsError(f'Unknown kernel name: {kernel!r}')
|
||
K = kernel_spec['pdf']
|
||
W = kernel_spec['cdf']
|
||
support = kernel_spec['support']
|
||
|
||
if support is None:
|
||
|
||
def pdf(x):
|
||
return sum(K((x - x_i) / h) for x_i in data) / (len(data) * h)
|
||
|
||
def cdf(x):
|
||
return sum(W((x - x_i) / h) for x_i in data) / len(data)
|
||
|
||
else:
|
||
|
||
sample = sorted(data)
|
||
bandwidth = h * support
|
||
|
||
def pdf(x):
|
||
nonlocal n, sample
|
||
if len(data) != n:
|
||
sample = sorted(data)
|
||
n = len(data)
|
||
i = bisect_left(sample, x - bandwidth)
|
||
j = bisect_right(sample, x + bandwidth)
|
||
supported = sample[i : j]
|
||
return sum(K((x - x_i) / h) for x_i in supported) / (n * h)
|
||
|
||
def cdf(x):
|
||
nonlocal n, sample
|
||
if len(data) != n:
|
||
sample = sorted(data)
|
||
n = len(data)
|
||
i = bisect_left(sample, x - bandwidth)
|
||
j = bisect_right(sample, x + bandwidth)
|
||
supported = sample[i : j]
|
||
return sum((W((x - x_i) / h) for x_i in supported), i) / n
|
||
|
||
if cumulative:
|
||
cdf.__doc__ = f'CDF estimate with {h=!r} and {kernel=!r}'
|
||
return cdf
|
||
|
||
else:
|
||
pdf.__doc__ = f'PDF estimate with {h=!r} and {kernel=!r}'
|
||
return pdf
|
||
|
||
|
||
def kde_random(data, h, kernel='normal', *, seed=None):
|
||
"""Return a function that makes a random selection from the estimated
|
||
probability density function created by kde(data, h, kernel).
|
||
|
||
Providing a *seed* allows reproducible selections within a single
|
||
thread. The seed may be an integer, float, str, or bytes.
|
||
|
||
A StatisticsError will be raised if the *data* sequence is empty.
|
||
|
||
Example:
|
||
|
||
>>> data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2]
|
||
>>> rand = kde_random(data, h=1.5, seed=8675309)
|
||
>>> new_selections = [rand() for i in range(10)]
|
||
>>> [round(x, 1) for x in new_selections]
|
||
[0.7, 6.2, 1.2, 6.9, 7.0, 1.8, 2.5, -0.5, -1.8, 5.6]
|
||
|
||
"""
|
||
n = len(data)
|
||
if not n:
|
||
raise StatisticsError('Empty data sequence')
|
||
|
||
if not isinstance(data[0], (int, float)):
|
||
raise TypeError('Data sequence must contain ints or floats')
|
||
|
||
if h <= 0.0:
|
||
raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}')
|
||
|
||
kernel_spec = _kernel_specs.get(kernel)
|
||
if kernel_spec is None:
|
||
raise StatisticsError(f'Unknown kernel name: {kernel!r}')
|
||
invcdf = kernel_spec['invcdf']
|
||
|
||
prng = _random.Random(seed)
|
||
random = prng.random
|
||
choice = prng.choice
|
||
|
||
def rand():
|
||
return choice(data) + h * invcdf(random())
|
||
|
||
rand.__doc__ = f'Random KDE selection with {h=!r} and {kernel=!r}'
|
||
|
||
return rand
|
||
|
||
|
||
## Quantiles ###############################################################
|
||
|
||
# There is no one perfect way to compute quantiles. Here we offer
|
||
# two methods that serve common needs. Most other packages
|
||
# surveyed offered at least one or both of these two, making them
|
||
# "standard" in the sense of "widely-adopted and reproducible".
|
||
# They are also easy to explain, easy to compute manually, and have
|
||
# straight-forward interpretations that aren't surprising.
|
||
|
||
# The default method is known as "R6", "PERCENTILE.EXC", or "expected
|
||
# value of rank order statistics". The alternative method is known as
|
||
# "R7", "PERCENTILE.INC", or "mode of rank order statistics".
|
||
|
||
# For sample data where there is a positive probability for values
|
||
# beyond the range of the data, the R6 exclusive method is a
|
||
# reasonable choice. Consider a random sample of nine values from a
|
||
# population with a uniform distribution from 0.0 to 1.0. The
|
||
# distribution of the third ranked sample point is described by
|
||
# betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and
|
||
# mean=0.300. Only the latter (which corresponds with R6) gives the
|
||
# desired cut point with 30% of the population falling below that
|
||
# value, making it comparable to a result from an inv_cdf() function.
|
||
# The R6 exclusive method is also idempotent.
|
||
|
||
# For describing population data where the end points are known to
|
||
# be included in the data, the R7 inclusive method is a reasonable
|
||
# choice. Instead of the mean, it uses the mode of the beta
|
||
# distribution for the interior points. Per Hyndman & Fan, "One nice
|
||
# property is that the vertices of Q7(p) divide the range into n - 1
|
||
# intervals, and exactly 100p% of the intervals lie to the left of
|
||
# Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)."
|
||
|
||
# If needed, other methods could be added. However, for now, the
|
||
# position is that fewer options make for easier choices and that
|
||
# external packages can be used for anything more advanced.
|
||
|
||
def quantiles(data, *, n=4, method='exclusive'):
|
||
"""Divide *data* into *n* continuous intervals with equal probability.
|
||
|
||
Returns a list of (n - 1) cut points separating the intervals.
|
||
|
||
Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
|
||
Set *n* to 100 for percentiles which gives the 99 cuts points that
|
||
separate *data* in to 100 equal sized groups.
|
||
|
||
The *data* can be any iterable containing sample.
|
||
The cut points are linearly interpolated between data points.
|
||
|
||
If *method* is set to *inclusive*, *data* is treated as population
|
||
data. The minimum value is treated as the 0th percentile and the
|
||
maximum value is treated as the 100th percentile.
|
||
|
||
"""
|
||
if n < 1:
|
||
raise StatisticsError('n must be at least 1')
|
||
|
||
data = sorted(data)
|
||
|
||
ld = len(data)
|
||
if ld < 2:
|
||
if ld == 1:
|
||
return data * (n - 1)
|
||
raise StatisticsError('must have at least one data point')
|
||
|
||
if method == 'inclusive':
|
||
m = ld - 1
|
||
result = []
|
||
for i in range(1, n):
|
||
j, delta = divmod(i * m, n)
|
||
interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n
|
||
result.append(interpolated)
|
||
return result
|
||
|
||
if method == 'exclusive':
|
||
m = ld + 1
|
||
result = []
|
||
for i in range(1, n):
|
||
j = i * m // n # rescale i to m/n
|
||
j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1
|
||
delta = i*m - j*n # exact integer math
|
||
interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n
|
||
result.append(interpolated)
|
||
return result
|
||
|
||
raise ValueError(f'Unknown method: {method!r}')
|
||
|
||
|
||
## Normal Distribution #####################################################
|
||
|
||
class NormalDist:
|
||
"Normal distribution of a random variable"
|
||
# https://en.wikipedia.org/wiki/Normal_distribution
|
||
# https://en.wikipedia.org/wiki/Variance#Properties
|
||
|
||
__slots__ = {
|
||
'_mu': 'Arithmetic mean of a normal distribution',
|
||
'_sigma': 'Standard deviation of a normal distribution',
|
||
}
|
||
|
||
def __init__(self, mu=0.0, sigma=1.0):
|
||
"NormalDist where mu is the mean and sigma is the standard deviation."
|
||
if sigma < 0.0:
|
||
raise StatisticsError('sigma must be non-negative')
|
||
self._mu = float(mu)
|
||
self._sigma = float(sigma)
|
||
|
||
@classmethod
|
||
def from_samples(cls, data):
|
||
"Make a normal distribution instance from sample data."
|
||
return cls(*_mean_stdev(data))
|
||
|
||
def samples(self, n, *, seed=None):
|
||
"Generate *n* samples for a given mean and standard deviation."
|
||
rnd = random.random if seed is None else random.Random(seed).random
|
||
inv_cdf = _normal_dist_inv_cdf
|
||
mu = self._mu
|
||
sigma = self._sigma
|
||
return [inv_cdf(rnd(), mu, sigma) for _ in repeat(None, n)]
|
||
|
||
def pdf(self, x):
|
||
"Probability density function. P(x <= X < x+dx) / dx"
|
||
variance = self._sigma * self._sigma
|
||
if not variance:
|
||
raise StatisticsError('pdf() not defined when sigma is zero')
|
||
diff = x - self._mu
|
||
return exp(diff * diff / (-2.0 * variance)) / sqrt(tau * variance)
|
||
|
||
def cdf(self, x):
|
||
"Cumulative distribution function. P(X <= x)"
|
||
if not self._sigma:
|
||
raise StatisticsError('cdf() not defined when sigma is zero')
|
||
return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * _SQRT2)))
|
||
|
||
def inv_cdf(self, p):
|
||
"""Inverse cumulative distribution function. x : P(X <= x) = p
|
||
|
||
Finds the value of the random variable such that the probability of
|
||
the variable being less than or equal to that value equals the given
|
||
probability.
|
||
|
||
This function is also called the percent point function or quantile
|
||
function.
|
||
"""
|
||
if p <= 0.0 or p >= 1.0:
|
||
raise StatisticsError('p must be in the range 0.0 < p < 1.0')
|
||
return _normal_dist_inv_cdf(p, self._mu, self._sigma)
|
||
|
||
def quantiles(self, n=4):
|
||
"""Divide into *n* continuous intervals with equal probability.
|
||
|
||
Returns a list of (n - 1) cut points separating the intervals.
|
||
|
||
Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles.
|
||
Set *n* to 100 for percentiles which gives the 99 cuts points that
|
||
separate the normal distribution in to 100 equal sized groups.
|
||
"""
|
||
return [self.inv_cdf(i / n) for i in range(1, n)]
|
||
|
||
def overlap(self, other):
|
||
"""Compute the overlapping coefficient (OVL) between two normal distributions.
|
||
|
||
Measures the agreement between two normal probability distributions.
|
||
Returns a value between 0.0 and 1.0 giving the overlapping area in
|
||
the two underlying probability density functions.
|
||
|
||
>>> N1 = NormalDist(2.4, 1.6)
|
||
>>> N2 = NormalDist(3.2, 2.0)
|
||
>>> N1.overlap(N2)
|
||
0.8035050657330205
|
||
"""
|
||
# See: "The overlapping coefficient as a measure of agreement between
|
||
# probability distributions and point estimation of the overlap of two
|
||
# normal densities" -- Henry F. Inman and Edwin L. Bradley Jr
|
||
# http://dx.doi.org/10.1080/03610928908830127
|
||
if not isinstance(other, NormalDist):
|
||
raise TypeError('Expected another NormalDist instance')
|
||
X, Y = self, other
|
||
if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity
|
||
X, Y = Y, X
|
||
X_var, Y_var = X.variance, Y.variance
|
||
if not X_var or not Y_var:
|
||
raise StatisticsError('overlap() not defined when sigma is zero')
|
||
dv = Y_var - X_var
|
||
dm = fabs(Y._mu - X._mu)
|
||
if not dv:
|
||
return 1.0 - erf(dm / (2.0 * X._sigma * _SQRT2))
|
||
a = X._mu * Y_var - Y._mu * X_var
|
||
b = X._sigma * Y._sigma * sqrt(dm * dm + dv * log(Y_var / X_var))
|
||
x1 = (a + b) / dv
|
||
x2 = (a - b) / dv
|
||
return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2)))
|
||
|
||
def zscore(self, x):
|
||
"""Compute the Standard Score. (x - mean) / stdev
|
||
|
||
Describes *x* in terms of the number of standard deviations
|
||
above or below the mean of the normal distribution.
|
||
"""
|
||
# https://www.statisticshowto.com/probability-and-statistics/z-score/
|
||
if not self._sigma:
|
||
raise StatisticsError('zscore() not defined when sigma is zero')
|
||
return (x - self._mu) / self._sigma
|
||
|
||
@property
|
||
def mean(self):
|
||
"Arithmetic mean of the normal distribution."
|
||
return self._mu
|
||
|
||
@property
|
||
def median(self):
|
||
"Return the median of the normal distribution"
|
||
return self._mu
|
||
|
||
@property
|
||
def mode(self):
|
||
"""Return the mode of the normal distribution
|
||
|
||
The mode is the value x where which the probability density
|
||
function (pdf) takes its maximum value.
|
||
"""
|
||
return self._mu
|
||
|
||
@property
|
||
def stdev(self):
|
||
"Standard deviation of the normal distribution."
|
||
return self._sigma
|
||
|
||
@property
|
||
def variance(self):
|
||
"Square of the standard deviation."
|
||
return self._sigma * self._sigma
|
||
|
||
def __add__(x1, x2):
|
||
"""Add a constant or another NormalDist instance.
|
||
|
||
If *other* is a constant, translate mu by the constant,
|
||
leaving sigma unchanged.
|
||
|
||
If *other* is a NormalDist, add both the means and the variances.
|
||
Mathematically, this works only if the two distributions are
|
||
independent or if they are jointly normally distributed.
|
||
"""
|
||
if isinstance(x2, NormalDist):
|
||
return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma))
|
||
return NormalDist(x1._mu + x2, x1._sigma)
|
||
|
||
def __sub__(x1, x2):
|
||
"""Subtract a constant or another NormalDist instance.
|
||
|
||
If *other* is a constant, translate by the constant mu,
|
||
leaving sigma unchanged.
|
||
|
||
If *other* is a NormalDist, subtract the means and add the variances.
|
||
Mathematically, this works only if the two distributions are
|
||
independent or if they are jointly normally distributed.
|
||
"""
|
||
if isinstance(x2, NormalDist):
|
||
return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma))
|
||
return NormalDist(x1._mu - x2, x1._sigma)
|
||
|
||
def __mul__(x1, x2):
|
||
"""Multiply both mu and sigma by a constant.
|
||
|
||
Used for rescaling, perhaps to change measurement units.
|
||
Sigma is scaled with the absolute value of the constant.
|
||
"""
|
||
return NormalDist(x1._mu * x2, x1._sigma * fabs(x2))
|
||
|
||
def __truediv__(x1, x2):
|
||
"""Divide both mu and sigma by a constant.
|
||
|
||
Used for rescaling, perhaps to change measurement units.
|
||
Sigma is scaled with the absolute value of the constant.
|
||
"""
|
||
return NormalDist(x1._mu / x2, x1._sigma / fabs(x2))
|
||
|
||
def __pos__(x1):
|
||
"Return a copy of the instance."
|
||
return NormalDist(x1._mu, x1._sigma)
|
||
|
||
def __neg__(x1):
|
||
"Negates mu while keeping sigma the same."
|
||
return NormalDist(-x1._mu, x1._sigma)
|
||
|
||
__radd__ = __add__
|
||
|
||
def __rsub__(x1, x2):
|
||
"Subtract a NormalDist from a constant or another NormalDist."
|
||
return -(x1 - x2)
|
||
|
||
__rmul__ = __mul__
|
||
|
||
def __eq__(x1, x2):
|
||
"Two NormalDist objects are equal if their mu and sigma are both equal."
|
||
if not isinstance(x2, NormalDist):
|
||
return NotImplemented
|
||
return x1._mu == x2._mu and x1._sigma == x2._sigma
|
||
|
||
def __hash__(self):
|
||
"NormalDist objects hash equal if their mu and sigma are both equal."
|
||
return hash((self._mu, self._sigma))
|
||
|
||
def __repr__(self):
|
||
return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})'
|
||
|
||
def __getstate__(self):
|
||
return self._mu, self._sigma
|
||
|
||
def __setstate__(self, state):
|
||
self._mu, self._sigma = state
|
||
|
||
|
||
## Private utilities #######################################################
|
||
|
||
def _sum(data):
|
||
"""_sum(data) -> (type, sum, count)
|
||
|
||
Return a high-precision sum of the given numeric data as a fraction,
|
||
together with the type to be converted to and the count of items.
|
||
|
||
Examples
|
||
--------
|
||
|
||
>>> _sum([3, 2.25, 4.5, -0.5, 0.25])
|
||
(<class 'float'>, Fraction(19, 2), 5)
|
||
|
||
Some sources of round-off error will be avoided:
|
||
|
||
# Built-in sum returns zero.
|
||
>>> _sum([1e50, 1, -1e50] * 1000)
|
||
(<class 'float'>, Fraction(1000, 1), 3000)
|
||
|
||
Fractions and Decimals are also supported:
|
||
|
||
>>> from fractions import Fraction as F
|
||
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
|
||
(<class 'fractions.Fraction'>, Fraction(63, 20), 4)
|
||
|
||
>>> from decimal import Decimal as D
|
||
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
|
||
>>> _sum(data)
|
||
(<class 'decimal.Decimal'>, Fraction(6963, 10000), 4)
|
||
|
||
Mixed types are currently treated as an error, except that int is
|
||
allowed.
|
||
|
||
"""
|
||
count = 0
|
||
types = set()
|
||
types_add = types.add
|
||
partials = {}
|
||
partials_get = partials.get
|
||
|
||
for typ, values in groupby(data, type):
|
||
types_add(typ)
|
||
for n, d in map(_exact_ratio, values):
|
||
count += 1
|
||
partials[d] = partials_get(d, 0) + n
|
||
|
||
if None in partials:
|
||
# The sum will be a NAN or INF. We can ignore all the finite
|
||
# partials, and just look at this special one.
|
||
total = partials[None]
|
||
assert not _isfinite(total)
|
||
else:
|
||
# Sum all the partial sums using builtin sum.
|
||
total = sum(Fraction(n, d) for d, n in partials.items())
|
||
|
||
T = reduce(_coerce, types, int) # or raise TypeError
|
||
return (T, total, count)
|
||
|
||
|
||
def _ss(data, c=None):
|
||
"""Return the exact mean and sum of square deviations of sequence data.
|
||
|
||
Calculations are done in a single pass, allowing the input to be an iterator.
|
||
|
||
If given *c* is used the mean; otherwise, it is calculated from the data.
|
||
Use the *c* argument with care, as it can lead to garbage results.
|
||
|
||
"""
|
||
if c is not None:
|
||
T, ssd, count = _sum((d := x - c) * d for x in data)
|
||
return (T, ssd, c, count)
|
||
|
||
count = 0
|
||
types = set()
|
||
types_add = types.add
|
||
sx_partials = defaultdict(int)
|
||
sxx_partials = defaultdict(int)
|
||
|
||
for typ, values in groupby(data, type):
|
||
types_add(typ)
|
||
for n, d in map(_exact_ratio, values):
|
||
count += 1
|
||
sx_partials[d] += n
|
||
sxx_partials[d] += n * n
|
||
|
||
if not count:
|
||
ssd = c = Fraction(0)
|
||
|
||
elif None in sx_partials:
|
||
# The sum will be a NAN or INF. We can ignore all the finite
|
||
# partials, and just look at this special one.
|
||
ssd = c = sx_partials[None]
|
||
assert not _isfinite(ssd)
|
||
|
||
else:
|
||
sx = sum(Fraction(n, d) for d, n in sx_partials.items())
|
||
sxx = sum(Fraction(n, d*d) for d, n in sxx_partials.items())
|
||
# This formula has poor numeric properties for floats,
|
||
# but with fractions it is exact.
|
||
ssd = (count * sxx - sx * sx) / count
|
||
c = sx / count
|
||
|
||
T = reduce(_coerce, types, int) # or raise TypeError
|
||
return (T, ssd, c, count)
|
||
|
||
|
||
def _isfinite(x):
|
||
try:
|
||
return x.is_finite() # Likely a Decimal.
|
||
except AttributeError:
|
||
return math.isfinite(x) # Coerces to float first.
|
||
|
||
|
||
def _coerce(T, S):
|
||
"""Coerce types T and S to a common type, or raise TypeError.
|
||
|
||
Coercion rules are currently an implementation detail. See the CoerceTest
|
||
test class in test_statistics for details.
|
||
|
||
"""
|
||
# See http://bugs.python.org/issue24068.
|
||
assert T is not bool, "initial type T is bool"
|
||
# If the types are the same, no need to coerce anything. Put this
|
||
# first, so that the usual case (no coercion needed) happens as soon
|
||
# as possible.
|
||
if T is S: return T
|
||
# Mixed int & other coerce to the other type.
|
||
if S is int or S is bool: return T
|
||
if T is int: return S
|
||
# If one is a (strict) subclass of the other, coerce to the subclass.
|
||
if issubclass(S, T): return S
|
||
if issubclass(T, S): return T
|
||
# Ints coerce to the other type.
|
||
if issubclass(T, int): return S
|
||
if issubclass(S, int): return T
|
||
# Mixed fraction & float coerces to float (or float subclass).
|
||
if issubclass(T, Fraction) and issubclass(S, float):
|
||
return S
|
||
if issubclass(T, float) and issubclass(S, Fraction):
|
||
return T
|
||
# Any other combination is disallowed.
|
||
msg = "don't know how to coerce %s and %s"
|
||
raise TypeError(msg % (T.__name__, S.__name__))
|
||
|
||
|
||
def _exact_ratio(x):
|
||
"""Return Real number x to exact (numerator, denominator) pair.
|
||
|
||
>>> _exact_ratio(0.25)
|
||
(1, 4)
|
||
|
||
x is expected to be an int, Fraction, Decimal or float.
|
||
|
||
"""
|
||
try:
|
||
return x.as_integer_ratio()
|
||
except AttributeError:
|
||
pass
|
||
except (OverflowError, ValueError):
|
||
# float NAN or INF.
|
||
assert not _isfinite(x)
|
||
return (x, None)
|
||
|
||
try:
|
||
# x may be an Integral ABC.
|
||
return (x.numerator, x.denominator)
|
||
except AttributeError:
|
||
msg = f"can't convert type '{type(x).__name__}' to numerator/denominator"
|
||
raise TypeError(msg)
|
||
|
||
|
||
def _convert(value, T):
|
||
"""Convert value to given numeric type T."""
|
||
if type(value) is T:
|
||
# This covers the cases where T is Fraction, or where value is
|
||
# a NAN or INF (Decimal or float).
|
||
return value
|
||
|
||
if issubclass(T, int) and value.denominator != 1:
|
||
T = float
|
||
|
||
try:
|
||
# FIXME: what do we do if this overflows?
|
||
return T(value)
|
||
except TypeError:
|
||
if issubclass(T, Decimal):
|
||
return T(value.numerator) / T(value.denominator)
|
||
else:
|
||
raise
|
||
|
||
|
||
def _fail_neg(values, errmsg='negative value'):
|
||
"""Iterate over values, failing if any are less than zero."""
|
||
for x in values:
|
||
if x < 0:
|
||
raise StatisticsError(errmsg)
|
||
yield x
|
||
|
||
|
||
def _rank(data, /, *, key=None, reverse=False, ties='average', start=1) -> list[float]:
|
||
"""Rank order a dataset. The lowest value has rank 1.
|
||
|
||
Ties are averaged so that equal values receive the same rank:
|
||
|
||
>>> data = [31, 56, 31, 25, 75, 18]
|
||
>>> _rank(data)
|
||
[3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
|
||
|
||
The operation is idempotent:
|
||
|
||
>>> _rank([3.5, 5.0, 3.5, 2.0, 6.0, 1.0])
|
||
[3.5, 5.0, 3.5, 2.0, 6.0, 1.0]
|
||
|
||
It is possible to rank the data in reverse order so that the
|
||
highest value has rank 1. Also, a key-function can extract
|
||
the field to be ranked:
|
||
|
||
>>> goals = [('eagles', 45), ('bears', 48), ('lions', 44)]
|
||
>>> _rank(goals, key=itemgetter(1), reverse=True)
|
||
[2.0, 1.0, 3.0]
|
||
|
||
Ranks are conventionally numbered starting from one; however,
|
||
setting *start* to zero allows the ranks to be used as array indices:
|
||
|
||
>>> prize = ['Gold', 'Silver', 'Bronze', 'Certificate']
|
||
>>> scores = [8.1, 7.3, 9.4, 8.3]
|
||
>>> [prize[int(i)] for i in _rank(scores, start=0, reverse=True)]
|
||
['Bronze', 'Certificate', 'Gold', 'Silver']
|
||
|
||
"""
|
||
# If this function becomes public at some point, more thought
|
||
# needs to be given to the signature. A list of ints is
|
||
# plausible when ties is "min" or "max". When ties is "average",
|
||
# either list[float] or list[Fraction] is plausible.
|
||
|
||
# Default handling of ties matches scipy.stats.mstats.spearmanr.
|
||
if ties != 'average':
|
||
raise ValueError(f'Unknown tie resolution method: {ties!r}')
|
||
if key is not None:
|
||
data = map(key, data)
|
||
val_pos = sorted(zip(data, count()), reverse=reverse)
|
||
i = start - 1
|
||
result = [0] * len(val_pos)
|
||
for _, g in groupby(val_pos, key=itemgetter(0)):
|
||
group = list(g)
|
||
size = len(group)
|
||
rank = i + (size + 1) / 2
|
||
for value, orig_pos in group:
|
||
result[orig_pos] = rank
|
||
i += size
|
||
return result
|
||
|
||
|
||
def _integer_sqrt_of_frac_rto(n: int, m: int) -> int:
|
||
"""Square root of n/m, rounded to the nearest integer using round-to-odd."""
|
||
# Reference: https://www.lri.fr/~melquion/doc/05-imacs17_1-expose.pdf
|
||
a = math.isqrt(n // m)
|
||
return a | (a*a*m != n)
|
||
|
||
|
||
# For 53 bit precision floats, the bit width used in
|
||
# _float_sqrt_of_frac() is 109.
|
||
_sqrt_bit_width: int = 2 * sys.float_info.mant_dig + 3
|
||
|
||
|
||
def _float_sqrt_of_frac(n: int, m: int) -> float:
|
||
"""Square root of n/m as a float, correctly rounded."""
|
||
# See principle and proof sketch at: https://bugs.python.org/msg407078
|
||
q = (n.bit_length() - m.bit_length() - _sqrt_bit_width) // 2
|
||
if q >= 0:
|
||
numerator = _integer_sqrt_of_frac_rto(n, m << 2 * q) << q
|
||
denominator = 1
|
||
else:
|
||
numerator = _integer_sqrt_of_frac_rto(n << -2 * q, m)
|
||
denominator = 1 << -q
|
||
return numerator / denominator # Convert to float
|
||
|
||
|
||
def _decimal_sqrt_of_frac(n: int, m: int) -> Decimal:
|
||
"""Square root of n/m as a Decimal, correctly rounded."""
|
||
# Premise: For decimal, computing (n/m).sqrt() can be off
|
||
# by 1 ulp from the correctly rounded result.
|
||
# Method: Check the result, moving up or down a step if needed.
|
||
if n <= 0:
|
||
if not n:
|
||
return Decimal('0.0')
|
||
n, m = -n, -m
|
||
|
||
root = (Decimal(n) / Decimal(m)).sqrt()
|
||
nr, dr = root.as_integer_ratio()
|
||
|
||
plus = root.next_plus()
|
||
np, dp = plus.as_integer_ratio()
|
||
# test: n / m > ((root + plus) / 2) ** 2
|
||
if 4 * n * (dr*dp)**2 > m * (dr*np + dp*nr)**2:
|
||
return plus
|
||
|
||
minus = root.next_minus()
|
||
nm, dm = minus.as_integer_ratio()
|
||
# test: n / m < ((root + minus) / 2) ** 2
|
||
if 4 * n * (dr*dm)**2 < m * (dr*nm + dm*nr)**2:
|
||
return minus
|
||
|
||
return root
|
||
|
||
|
||
def _mean_stdev(data):
|
||
"""In one pass, compute the mean and sample standard deviation as floats."""
|
||
T, ss, xbar, n = _ss(data)
|
||
if n < 2:
|
||
raise StatisticsError('stdev requires at least two data points')
|
||
mss = ss / (n - 1)
|
||
try:
|
||
return float(xbar), _float_sqrt_of_frac(mss.numerator, mss.denominator)
|
||
except AttributeError:
|
||
# Handle Nans and Infs gracefully
|
||
return float(xbar), float(xbar) / float(ss)
|
||
|
||
|
||
def _sqrtprod(x: float, y: float) -> float:
|
||
"Return sqrt(x * y) computed with improved accuracy and without overflow/underflow."
|
||
|
||
h = sqrt(x * y)
|
||
|
||
if not isfinite(h):
|
||
if isinf(h) and not isinf(x) and not isinf(y):
|
||
# Finite inputs overflowed, so scale down, and recompute.
|
||
scale = 2.0 ** -512 # sqrt(1 / sys.float_info.max)
|
||
return _sqrtprod(scale * x, scale * y) / scale
|
||
return h
|
||
|
||
if not h:
|
||
if x and y:
|
||
# Non-zero inputs underflowed, so scale up, and recompute.
|
||
# Scale: 1 / sqrt(sys.float_info.min * sys.float_info.epsilon)
|
||
scale = 2.0 ** 537
|
||
return _sqrtprod(scale * x, scale * y) / scale
|
||
return h
|
||
|
||
# Improve accuracy with a differential correction.
|
||
# https://www.wolframalpha.com/input/?i=Maclaurin+series+sqrt%28h**2+%2B+x%29+at+x%3D0
|
||
d = sumprod((x, h), (y, -h))
|
||
return h + d / (2.0 * h)
|
||
|
||
|
||
def _normal_dist_inv_cdf(p, mu, sigma):
|
||
# There is no closed-form solution to the inverse CDF for the normal
|
||
# distribution, so we use a rational approximation instead:
|
||
# Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the
|
||
# Normal Distribution". Applied Statistics. Blackwell Publishing. 37
|
||
# (3): 477–484. doi:10.2307/2347330. JSTOR 2347330.
|
||
q = p - 0.5
|
||
|
||
if fabs(q) <= 0.425:
|
||
r = 0.180625 - q * q
|
||
# Hash sum: 55.88319_28806_14901_4439
|
||
num = (((((((2.50908_09287_30122_6727e+3 * r +
|
||
3.34305_75583_58812_8105e+4) * r +
|
||
6.72657_70927_00870_0853e+4) * r +
|
||
4.59219_53931_54987_1457e+4) * r +
|
||
1.37316_93765_50946_1125e+4) * r +
|
||
1.97159_09503_06551_4427e+3) * r +
|
||
1.33141_66789_17843_7745e+2) * r +
|
||
3.38713_28727_96366_6080e+0) * q
|
||
den = (((((((5.22649_52788_52854_5610e+3 * r +
|
||
2.87290_85735_72194_2674e+4) * r +
|
||
3.93078_95800_09271_0610e+4) * r +
|
||
2.12137_94301_58659_5867e+4) * r +
|
||
5.39419_60214_24751_1077e+3) * r +
|
||
6.87187_00749_20579_0830e+2) * r +
|
||
4.23133_30701_60091_1252e+1) * r +
|
||
1.0)
|
||
x = num / den
|
||
return mu + (x * sigma)
|
||
|
||
r = p if q <= 0.0 else 1.0 - p
|
||
r = sqrt(-log(r))
|
||
if r <= 5.0:
|
||
r = r - 1.6
|
||
# Hash sum: 49.33206_50330_16102_89036
|
||
num = (((((((7.74545_01427_83414_07640e-4 * r +
|
||
2.27238_44989_26918_45833e-2) * r +
|
||
2.41780_72517_74506_11770e-1) * r +
|
||
1.27045_82524_52368_38258e+0) * r +
|
||
3.64784_83247_63204_60504e+0) * r +
|
||
5.76949_72214_60691_40550e+0) * r +
|
||
4.63033_78461_56545_29590e+0) * r +
|
||
1.42343_71107_49683_57734e+0)
|
||
den = (((((((1.05075_00716_44416_84324e-9 * r +
|
||
5.47593_80849_95344_94600e-4) * r +
|
||
1.51986_66563_61645_71966e-2) * r +
|
||
1.48103_97642_74800_74590e-1) * r +
|
||
6.89767_33498_51000_04550e-1) * r +
|
||
1.67638_48301_83803_84940e+0) * r +
|
||
2.05319_16266_37758_82187e+0) * r +
|
||
1.0)
|
||
else:
|
||
r = r - 5.0
|
||
# Hash sum: 47.52583_31754_92896_71629
|
||
num = (((((((2.01033_43992_92288_13265e-7 * r +
|
||
2.71155_55687_43487_57815e-5) * r +
|
||
1.24266_09473_88078_43860e-3) * r +
|
||
2.65321_89526_57612_30930e-2) * r +
|
||
2.96560_57182_85048_91230e-1) * r +
|
||
1.78482_65399_17291_33580e+0) * r +
|
||
5.46378_49111_64114_36990e+0) * r +
|
||
6.65790_46435_01103_77720e+0)
|
||
den = (((((((2.04426_31033_89939_78564e-15 * r +
|
||
1.42151_17583_16445_88870e-7) * r +
|
||
1.84631_83175_10054_68180e-5) * r +
|
||
7.86869_13114_56132_59100e-4) * r +
|
||
1.48753_61290_85061_48525e-2) * r +
|
||
1.36929_88092_27358_05310e-1) * r +
|
||
5.99832_20655_58879_37690e-1) * r +
|
||
1.0)
|
||
|
||
x = num / den
|
||
if q < 0.0:
|
||
x = -x
|
||
|
||
return mu + (x * sigma)
|
||
|
||
|
||
# If available, use C implementation
|
||
try:
|
||
from _statistics import _normal_dist_inv_cdf
|
||
except ImportError:
|
||
pass
|