0
0
mirror of https://github.com/python/cpython.git synced 2024-12-01 11:15:56 +01:00
cpython/Doc/library/random.rst
Benjamin Peterson 21896a330a Merged revisions 77952,78030,78102,78104,78107,78206,78216,78296-78297,78328,78331-78332,78336,78339,78343,78378-78379,78415,78559,78717,78791 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk

........
  r77952 | mark.dickinson | 2010-02-03 10:50:14 -0600 (Wed, 03 Feb 2010) | 1 line

  Fix test_inspect.py data to match recent change to inspect_fodder.py (r77942).
........
  r78030 | benjamin.peterson | 2010-02-06 14:14:10 -0600 (Sat, 06 Feb 2010) | 1 line

  check type_getattro for correctness in a descriptor corner case
........
  r78102 | andrew.kuchling | 2010-02-07 19:35:35 -0600 (Sun, 07 Feb 2010) | 1 line

  Move distutils into its own subsection; add various items
........
  r78104 | andrew.kuchling | 2010-02-08 07:22:24 -0600 (Mon, 08 Feb 2010) | 1 line

  Add two items; move a subsection
........
  r78107 | antoine.pitrou | 2010-02-08 14:25:47 -0600 (Mon, 08 Feb 2010) | 3 lines

  Clarify and correct description for ccbench and iobench.
........
  r78206 | r.david.murray | 2010-02-16 11:55:26 -0600 (Tue, 16 Feb 2010) | 3 lines

  Make the references to Popen in the description of Call
  and check_call into links.
........
  r78216 | andrew.kuchling | 2010-02-18 08:16:48 -0600 (Thu, 18 Feb 2010) | 1 line

  Add various items
........
  r78296 | andrew.kuchling | 2010-02-21 20:08:45 -0600 (Sun, 21 Feb 2010) | 1 line

  Re-word
........
  r78297 | andrew.kuchling | 2010-02-21 20:29:10 -0600 (Sun, 21 Feb 2010) | 1 line

  #7076: mention SystemRandom class near start of the module docs; reword change description for clarity.  Noted by Shawn Ligocki.
........
  r78328 | jack.diederich | 2010-02-22 12:17:16 -0600 (Mon, 22 Feb 2010) | 1 line

  fixes issue #7530, serve_forever()
........
  r78331 | andrew.kuchling | 2010-02-22 12:38:23 -0600 (Mon, 22 Feb 2010) | 1 line

  Fix comment typo
........
  r78332 | andrew.kuchling | 2010-02-22 12:42:07 -0600 (Mon, 22 Feb 2010) | 2 lines

  #7627: MH.remove() would fail if the MH mailbox was locked;
  it would call _unlock_file() and pass it a closed file object.  Noted by Rob Austein.
........
  r78336 | jack.diederich | 2010-02-22 13:55:22 -0600 (Mon, 22 Feb 2010) | 1 line

  fixes issue #1522237, bad init check in _threading_local
........
  r78339 | jack.diederich | 2010-02-22 15:27:38 -0600 (Mon, 22 Feb 2010) | 1 line

  * fix issue#7476
........
  r78343 | andrew.kuchling | 2010-02-22 16:48:41 -0600 (Mon, 22 Feb 2010) | 10 lines

  #2560: remove an unnecessary 'for' loop from my_fgets() in Parser/myreadline.c.
  Noted by Joseph Armbruster; patch by Jessica McKellar.

  The original code was 'for (;;) {...}', where ... ended
  with a 'return -2' statement and did not contain a 'break' or 'continue'
  statement.  Therefore, the body of the loop is always executed once.

  Once upon a time there was a 'continue' in the loop, but it was removed in
  rev36346, committed by mwh on Wed Jul 7 17:44:12 2004.
........
  r78378 | jack.diederich | 2010-02-23 11:23:30 -0600 (Tue, 23 Feb 2010) | 1 line

  fixup markup error
........
  r78379 | jack.diederich | 2010-02-23 13:34:06 -0600 (Tue, 23 Feb 2010) | 1 line

   issue#6442 use in operator instead of has_key
........
  r78415 | dirkjan.ochtman | 2010-02-23 22:00:52 -0600 (Tue, 23 Feb 2010) | 1 line

  Issue #7733: add explicit reference in asyncore docs.
........
  r78559 | andrew.kuchling | 2010-03-01 13:45:21 -0600 (Mon, 01 Mar 2010) | 1 line

  #7637: update discussion of minidom.unlink() and garbage collection
........
  r78717 | benjamin.peterson | 2010-03-05 21:13:33 -0600 (Fri, 05 Mar 2010) | 1 line

  settscdump is definitely an implementation detail
........
  r78791 | andrew.kuchling | 2010-03-08 06:00:39 -0600 (Mon, 08 Mar 2010) | 1 line

  Add various items
........
2010-03-21 22:03:03 +00:00

273 lines
10 KiB
ReStructuredText

:mod:`random` --- Generate pseudo-random numbers
================================================
.. module:: random
:synopsis: Generate pseudo-random numbers with various common distributions.
This module implements pseudo-random number generators for various
distributions.
For integers, uniform selection from a range. For sequences, uniform selection
of a random element, a function to generate a random permutation of a list
in-place, and a function for random sampling without replacement.
On the real line, there are functions to compute uniform, normal (Gaussian),
lognormal, negative exponential, gamma, and beta distributions. For generating
distributions of angles, the von Mises distribution is available.
Almost all module functions depend on the basic function :func:`random`, which
generates a random float uniformly in the semi-open range [0.0, 1.0). Python
uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2\*\*19937-1. The underlying implementation in C is
both fast and threadsafe. The Mersenne Twister is one of the most extensively
tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable
for cryptographic purposes.
The functions supplied by this module are actually bound methods of a hidden
instance of the :class:`random.Random` class. You can instantiate your own
instances of :class:`Random` to get generators that don't share state.
Class :class:`Random` can also be subclassed if you want to use a different
basic generator of your own devising: in that case, override the :meth:`random`,
:meth:`seed`, :meth:`getstate`, and :meth:`setstate` methods.
Optionally, a new generator can supply a :meth:`getrandbits` method --- this
allows :meth:`randrange` to produce selections over an arbitrarily large range.
As an example of subclassing, the :mod:`random` module provides the
:class:`WichmannHill` class that implements an alternative generator in pure
Python. The class provides a backward compatible way to reproduce results from
earlier versions of Python, which used the Wichmann-Hill algorithm as the core
generator. Note that this Wichmann-Hill generator can no longer be recommended:
its period is too short by contemporary standards, and the sequence generated is
known to fail some stringent randomness tests. See the references below for a
recent variant that repairs these flaws.
The :mod:`random` module also provides the :class:`SystemRandom` class which
uses the system function :func:`os.urandom` to generate random numbers
from sources provided by the operating system.
Bookkeeping functions:
.. function:: seed([x])
Initialize the basic random number generator. Optional argument *x* can be any
:term:`hashable` object. If *x* is omitted or ``None``, current system time is used;
current system time is also used to initialize the generator when the module is
first imported. If randomness sources are provided by the operating system,
they are used instead of the system time (see the :func:`os.urandom` function
for details on availability).
If *x* is not ``None`` or an int, ``hash(x)`` is used instead. If *x* is an
int, *x* is used directly.
.. function:: getstate()
Return an object capturing the current internal state of the generator. This
object can be passed to :func:`setstate` to restore the state.
.. function:: setstate(state)
*state* should have been obtained from a previous call to :func:`getstate`, and
:func:`setstate` restores the internal state of the generator to what it was at
the time :func:`setstate` was called.
.. function:: getrandbits(k)
Returns a Python integer with *k* random bits. This method is supplied with
the MersenneTwister generator and some other generators may also provide it
as an optional part of the API. When available, :meth:`getrandbits` enables
:meth:`randrange` to handle arbitrarily large ranges.
Functions for integers:
.. function:: randrange([start,] stop[, step])
Return a randomly selected element from ``range(start, stop, step)``. This is
equivalent to ``choice(range(start, stop, step))``, but doesn't actually build a
range object.
.. function:: randint(a, b)
Return a random integer *N* such that ``a <= N <= b``. Alias for
``randrange(a, b+1)``.
Functions for sequences:
.. function:: choice(seq)
Return a random element from the non-empty sequence *seq*. If *seq* is empty,
raises :exc:`IndexError`.
.. function:: shuffle(x[, random])
Shuffle the sequence *x* in place. The optional argument *random* is a
0-argument function returning a random float in [0.0, 1.0); by default, this is
the function :func:`random`.
Note that for even rather small ``len(x)``, the total number of permutations of
*x* is larger than the period of most random number generators; this implies
that most permutations of a long sequence can never be generated.
.. function:: sample(population, k)
Return a *k* length list of unique elements chosen from the population sequence
or set. Used for random sampling without replacement.
Returns a new list containing elements from the population while leaving the
original population unchanged. The resulting list is in selection order so that
all sub-slices will also be valid random samples. This allows raffle winners
(the sample) to be partitioned into grand prize and second place winners (the
subslices).
Members of the population need not be :term:`hashable` or unique. If the population
contains repeats, then each occurrence is a possible selection in the sample.
To choose a sample from a range of integers, use an :func:`range` object as an
argument. This is especially fast and space efficient for sampling from a large
population: ``sample(range(10000000), 60)``.
The following functions generate specific real-valued distributions. Function
parameters are named after the corresponding variables in the distribution's
equation, as used in common mathematical practice; most of these equations can
be found in any statistics text.
.. function:: random()
Return the next random floating point number in the range [0.0, 1.0).
.. function:: uniform(a, b)
Return a random floating point number *N* such that ``a <= N <= b`` for
``a <= b`` and ``b <= N <= a`` for ``b < a``.
The end-point value ``b`` may or may not be included in the range
depending on floating-point rounding in the equation ``a + (b-a) * random()``.
.. function:: triangular(low, high, mode)
Return a random floating point number *N* such that ``low <= N <= high`` and
with the specified *mode* between those bounds. The *low* and *high* bounds
default to zero and one. The *mode* argument defaults to the midpoint
between the bounds, giving a symmetric distribution.
.. function:: betavariate(alpha, beta)
Beta distribution. Conditions on the parameters are ``alpha > 0`` and
``beta > 0``. Returned values range between 0 and 1.
.. function:: expovariate(lambd)
Exponential distribution. *lambd* is 1.0 divided by the desired
mean. It should be nonzero. (The parameter would be called
"lambda", but that is a reserved word in Python.) Returned values
range from 0 to positive infinity if *lambd* is positive, and from
negative infinity to 0 if *lambd* is negative.
.. function:: gammavariate(alpha, beta)
Gamma distribution. (*Not* the gamma function!) Conditions on the
parameters are ``alpha > 0`` and ``beta > 0``.
.. function:: gauss(mu, sigma)
Gaussian distribution. *mu* is the mean, and *sigma* is the standard
deviation. This is slightly faster than the :func:`normalvariate` function
defined below.
.. function:: lognormvariate(mu, sigma)
Log normal distribution. If you take the natural logarithm of this
distribution, you'll get a normal distribution with mean *mu* and standard
deviation *sigma*. *mu* can have any value, and *sigma* must be greater than
zero.
.. function:: normalvariate(mu, sigma)
Normal distribution. *mu* is the mean, and *sigma* is the standard deviation.
.. function:: vonmisesvariate(mu, kappa)
*mu* is the mean angle, expressed in radians between 0 and 2\*\ *pi*, and *kappa*
is the concentration parameter, which must be greater than or equal to zero. If
*kappa* is equal to zero, this distribution reduces to a uniform random angle
over the range 0 to 2\*\ *pi*.
.. function:: paretovariate(alpha)
Pareto distribution. *alpha* is the shape parameter.
.. function:: weibullvariate(alpha, beta)
Weibull distribution. *alpha* is the scale parameter and *beta* is the shape
parameter.
Alternative Generators:
.. class:: SystemRandom([seed])
Class that uses the :func:`os.urandom` function for generating random numbers
from sources provided by the operating system. Not available on all systems.
Does not rely on software state and sequences are not reproducible. Accordingly,
the :meth:`seed` method has no effect and is ignored.
The :meth:`getstate` and :meth:`setstate` methods raise
:exc:`NotImplementedError` if called.
Examples of basic usage::
>>> random.random() # Random float x, 0.0 <= x < 1.0
0.37444887175646646
>>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0
1.1800146073117523
>>> random.randint(1, 10) # Integer from 1 to 10, endpoints included
7
>>> random.randrange(0, 101, 2) # Even integer from 0 to 100
26
>>> random.choice('abcdefghij') # Choose a random element
'c'
>>> items = [1, 2, 3, 4, 5, 6, 7]
>>> random.shuffle(items)
>>> items
[7, 3, 2, 5, 6, 4, 1]
>>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements
[4, 1, 5]
.. seealso::
M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator", ACM Transactions on
Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.
`Complementary-Multiply-with-Carry recipe
<http://code.activestate.com/recipes/576707/>`_ for a compatible alternative
random number generator with a long period and comparatively simple update
operations.