mirror of
https://github.com/python/cpython.git
synced 2024-11-24 17:47:13 +01:00
6f9525dd3f
Fix a bug that can cause a crash when sub-interpreters use "basic" single-phase extension modules. Shared objects could refer to PyGC_Head nodes that had been freed as part of interpreter shutdown.
2253 lines
72 KiB
C
2253 lines
72 KiB
C
// This implements the reference cycle garbage collector.
|
|
// The Python module interface to the collector is in gcmodule.c.
|
|
// See https://devguide.python.org/internals/garbage-collector/
|
|
|
|
#include "Python.h"
|
|
#include "pycore_ceval.h" // _Py_set_eval_breaker_bit()
|
|
#include "pycore_context.h"
|
|
#include "pycore_dict.h" // _PyDict_MaybeUntrack()
|
|
#include "pycore_initconfig.h"
|
|
#include "pycore_interp.h" // PyInterpreterState.gc
|
|
#include "pycore_object.h"
|
|
#include "pycore_object_alloc.h" // _PyObject_MallocWithType()
|
|
#include "pycore_pyerrors.h"
|
|
#include "pycore_pystate.h" // _PyThreadState_GET()
|
|
#include "pycore_weakref.h" // _PyWeakref_ClearRef()
|
|
#include "pydtrace.h"
|
|
|
|
#ifndef Py_GIL_DISABLED
|
|
|
|
typedef struct _gc_runtime_state GCState;
|
|
|
|
#ifdef Py_DEBUG
|
|
# define GC_DEBUG
|
|
#endif
|
|
|
|
#define GC_NEXT _PyGCHead_NEXT
|
|
#define GC_PREV _PyGCHead_PREV
|
|
|
|
// update_refs() set this bit for all objects in current generation.
|
|
// subtract_refs() and move_unreachable() uses this to distinguish
|
|
// visited object is in GCing or not.
|
|
//
|
|
// move_unreachable() removes this flag from reachable objects.
|
|
// Only unreachable objects have this flag.
|
|
//
|
|
// No objects in interpreter have this flag after GC ends.
|
|
#define PREV_MASK_COLLECTING _PyGC_PREV_MASK_COLLECTING
|
|
|
|
// Lowest bit of _gc_next is used for UNREACHABLE flag.
|
|
//
|
|
// This flag represents the object is in unreachable list in move_unreachable()
|
|
//
|
|
// Although this flag is used only in move_unreachable(), move_unreachable()
|
|
// doesn't clear this flag to skip unnecessary iteration.
|
|
// move_legacy_finalizers() removes this flag instead.
|
|
// Between them, unreachable list is not normal list and we can not use
|
|
// most gc_list_* functions for it.
|
|
#define NEXT_MASK_UNREACHABLE 2
|
|
|
|
#define AS_GC(op) _Py_AS_GC(op)
|
|
#define FROM_GC(gc) _Py_FROM_GC(gc)
|
|
|
|
// Automatically choose the generation that needs collecting.
|
|
#define GENERATION_AUTO (-1)
|
|
|
|
static inline int
|
|
gc_is_collecting(PyGC_Head *g)
|
|
{
|
|
return (g->_gc_prev & PREV_MASK_COLLECTING) != 0;
|
|
}
|
|
|
|
static inline void
|
|
gc_clear_collecting(PyGC_Head *g)
|
|
{
|
|
g->_gc_prev &= ~PREV_MASK_COLLECTING;
|
|
}
|
|
|
|
static inline Py_ssize_t
|
|
gc_get_refs(PyGC_Head *g)
|
|
{
|
|
return (Py_ssize_t)(g->_gc_prev >> _PyGC_PREV_SHIFT);
|
|
}
|
|
|
|
static inline void
|
|
gc_set_refs(PyGC_Head *g, Py_ssize_t refs)
|
|
{
|
|
g->_gc_prev = (g->_gc_prev & ~_PyGC_PREV_MASK)
|
|
| ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
|
|
}
|
|
|
|
static inline void
|
|
gc_reset_refs(PyGC_Head *g, Py_ssize_t refs)
|
|
{
|
|
g->_gc_prev = (g->_gc_prev & _PyGC_PREV_MASK_FINALIZED)
|
|
| PREV_MASK_COLLECTING
|
|
| ((uintptr_t)(refs) << _PyGC_PREV_SHIFT);
|
|
}
|
|
|
|
static inline void
|
|
gc_decref(PyGC_Head *g)
|
|
{
|
|
_PyObject_ASSERT_WITH_MSG(FROM_GC(g),
|
|
gc_get_refs(g) > 0,
|
|
"refcount is too small");
|
|
g->_gc_prev -= 1 << _PyGC_PREV_SHIFT;
|
|
}
|
|
|
|
static inline int
|
|
gc_old_space(PyGC_Head *g)
|
|
{
|
|
return g->_gc_next & _PyGC_NEXT_MASK_OLD_SPACE_1;
|
|
}
|
|
|
|
static inline int
|
|
flip_old_space(int space)
|
|
{
|
|
assert(space == 0 || space == 1);
|
|
return space ^ _PyGC_NEXT_MASK_OLD_SPACE_1;
|
|
}
|
|
|
|
static inline void
|
|
gc_flip_old_space(PyGC_Head *g)
|
|
{
|
|
g->_gc_next ^= _PyGC_NEXT_MASK_OLD_SPACE_1;
|
|
}
|
|
|
|
static inline void
|
|
gc_set_old_space(PyGC_Head *g, int space)
|
|
{
|
|
assert(space == 0 || space == _PyGC_NEXT_MASK_OLD_SPACE_1);
|
|
g->_gc_next &= ~_PyGC_NEXT_MASK_OLD_SPACE_1;
|
|
g->_gc_next |= space;
|
|
}
|
|
|
|
static PyGC_Head *
|
|
GEN_HEAD(GCState *gcstate, int n)
|
|
{
|
|
assert((gcstate->visited_space & (~1)) == 0);
|
|
switch(n) {
|
|
case 0:
|
|
return &gcstate->young.head;
|
|
case 1:
|
|
return &gcstate->old[gcstate->visited_space].head;
|
|
case 2:
|
|
return &gcstate->old[gcstate->visited_space^1].head;
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
static GCState *
|
|
get_gc_state(void)
|
|
{
|
|
PyInterpreterState *interp = _PyInterpreterState_GET();
|
|
return &interp->gc;
|
|
}
|
|
|
|
|
|
void
|
|
_PyGC_InitState(GCState *gcstate)
|
|
{
|
|
#define INIT_HEAD(GEN) \
|
|
do { \
|
|
GEN.head._gc_next = (uintptr_t)&GEN.head; \
|
|
GEN.head._gc_prev = (uintptr_t)&GEN.head; \
|
|
} while (0)
|
|
|
|
assert(gcstate->young.count == 0);
|
|
assert(gcstate->old[0].count == 0);
|
|
assert(gcstate->old[1].count == 0);
|
|
INIT_HEAD(gcstate->young);
|
|
INIT_HEAD(gcstate->old[0]);
|
|
INIT_HEAD(gcstate->old[1]);
|
|
INIT_HEAD(gcstate->permanent_generation);
|
|
|
|
#undef INIT_HEAD
|
|
}
|
|
|
|
|
|
PyStatus
|
|
_PyGC_Init(PyInterpreterState *interp)
|
|
{
|
|
GCState *gcstate = &interp->gc;
|
|
|
|
gcstate->garbage = PyList_New(0);
|
|
if (gcstate->garbage == NULL) {
|
|
return _PyStatus_NO_MEMORY();
|
|
}
|
|
|
|
gcstate->callbacks = PyList_New(0);
|
|
if (gcstate->callbacks == NULL) {
|
|
return _PyStatus_NO_MEMORY();
|
|
}
|
|
gcstate->heap_size = 0;
|
|
|
|
return _PyStatus_OK();
|
|
}
|
|
|
|
|
|
/*
|
|
_gc_prev values
|
|
---------------
|
|
|
|
Between collections, _gc_prev is used for doubly linked list.
|
|
|
|
Lowest two bits of _gc_prev are used for flags.
|
|
PREV_MASK_COLLECTING is used only while collecting and cleared before GC ends
|
|
or _PyObject_GC_UNTRACK() is called.
|
|
|
|
During a collection, _gc_prev is temporary used for gc_refs, and the gc list
|
|
is singly linked until _gc_prev is restored.
|
|
|
|
gc_refs
|
|
At the start of a collection, update_refs() copies the true refcount
|
|
to gc_refs, for each object in the generation being collected.
|
|
subtract_refs() then adjusts gc_refs so that it equals the number of
|
|
times an object is referenced directly from outside the generation
|
|
being collected.
|
|
|
|
PREV_MASK_COLLECTING
|
|
Objects in generation being collected are marked PREV_MASK_COLLECTING in
|
|
update_refs().
|
|
|
|
|
|
_gc_next values
|
|
---------------
|
|
|
|
_gc_next takes these values:
|
|
|
|
0
|
|
The object is not tracked
|
|
|
|
!= 0
|
|
Pointer to the next object in the GC list.
|
|
Additionally, lowest bit is used temporary for
|
|
NEXT_MASK_UNREACHABLE flag described below.
|
|
|
|
NEXT_MASK_UNREACHABLE
|
|
move_unreachable() then moves objects not reachable (whether directly or
|
|
indirectly) from outside the generation into an "unreachable" set and
|
|
set this flag.
|
|
|
|
Objects that are found to be reachable have gc_refs set to 1.
|
|
When this flag is set for the reachable object, the object must be in
|
|
"unreachable" set.
|
|
The flag is unset and the object is moved back to "reachable" set.
|
|
|
|
move_legacy_finalizers() will remove this flag from "unreachable" set.
|
|
*/
|
|
|
|
/*** list functions ***/
|
|
|
|
static inline void
|
|
gc_list_init(PyGC_Head *list)
|
|
{
|
|
// List header must not have flags.
|
|
// We can assign pointer by simple cast.
|
|
list->_gc_prev = (uintptr_t)list;
|
|
list->_gc_next = (uintptr_t)list;
|
|
}
|
|
|
|
static inline int
|
|
gc_list_is_empty(PyGC_Head *list)
|
|
{
|
|
return (list->_gc_next == (uintptr_t)list);
|
|
}
|
|
|
|
/* Append `node` to `list`. */
|
|
static inline void
|
|
gc_list_append(PyGC_Head *node, PyGC_Head *list)
|
|
{
|
|
assert((list->_gc_prev & ~_PyGC_PREV_MASK) == 0);
|
|
PyGC_Head *last = (PyGC_Head *)list->_gc_prev;
|
|
|
|
// last <-> node
|
|
_PyGCHead_SET_PREV(node, last);
|
|
_PyGCHead_SET_NEXT(last, node);
|
|
|
|
// node <-> list
|
|
_PyGCHead_SET_NEXT(node, list);
|
|
list->_gc_prev = (uintptr_t)node;
|
|
}
|
|
|
|
/* Remove `node` from the gc list it's currently in. */
|
|
static inline void
|
|
gc_list_remove(PyGC_Head *node)
|
|
{
|
|
PyGC_Head *prev = GC_PREV(node);
|
|
PyGC_Head *next = GC_NEXT(node);
|
|
|
|
_PyGCHead_SET_NEXT(prev, next);
|
|
_PyGCHead_SET_PREV(next, prev);
|
|
|
|
node->_gc_next = 0; /* object is not currently tracked */
|
|
}
|
|
|
|
/* Move `node` from the gc list it's currently in (which is not explicitly
|
|
* named here) to the end of `list`. This is semantically the same as
|
|
* gc_list_remove(node) followed by gc_list_append(node, list).
|
|
*/
|
|
static void
|
|
gc_list_move(PyGC_Head *node, PyGC_Head *list)
|
|
{
|
|
/* Unlink from current list. */
|
|
PyGC_Head *from_prev = GC_PREV(node);
|
|
PyGC_Head *from_next = GC_NEXT(node);
|
|
_PyGCHead_SET_NEXT(from_prev, from_next);
|
|
_PyGCHead_SET_PREV(from_next, from_prev);
|
|
|
|
/* Relink at end of new list. */
|
|
// list must not have flags. So we can skip macros.
|
|
PyGC_Head *to_prev = (PyGC_Head*)list->_gc_prev;
|
|
_PyGCHead_SET_PREV(node, to_prev);
|
|
_PyGCHead_SET_NEXT(to_prev, node);
|
|
list->_gc_prev = (uintptr_t)node;
|
|
_PyGCHead_SET_NEXT(node, list);
|
|
}
|
|
|
|
/* append list `from` onto list `to`; `from` becomes an empty list */
|
|
static void
|
|
gc_list_merge(PyGC_Head *from, PyGC_Head *to)
|
|
{
|
|
assert(from != to);
|
|
if (!gc_list_is_empty(from)) {
|
|
PyGC_Head *to_tail = GC_PREV(to);
|
|
PyGC_Head *from_head = GC_NEXT(from);
|
|
PyGC_Head *from_tail = GC_PREV(from);
|
|
assert(from_head != from);
|
|
assert(from_tail != from);
|
|
assert(gc_list_is_empty(to) ||
|
|
gc_old_space(to_tail) == gc_old_space(from_tail));
|
|
|
|
_PyGCHead_SET_NEXT(to_tail, from_head);
|
|
_PyGCHead_SET_PREV(from_head, to_tail);
|
|
|
|
_PyGCHead_SET_NEXT(from_tail, to);
|
|
_PyGCHead_SET_PREV(to, from_tail);
|
|
}
|
|
gc_list_init(from);
|
|
}
|
|
|
|
static Py_ssize_t
|
|
gc_list_size(PyGC_Head *list)
|
|
{
|
|
PyGC_Head *gc;
|
|
Py_ssize_t n = 0;
|
|
for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
/* Walk the list and mark all objects as non-collecting */
|
|
static inline void
|
|
gc_list_clear_collecting(PyGC_Head *collectable)
|
|
{
|
|
PyGC_Head *gc;
|
|
for (gc = GC_NEXT(collectable); gc != collectable; gc = GC_NEXT(gc)) {
|
|
gc_clear_collecting(gc);
|
|
}
|
|
}
|
|
|
|
/* Append objects in a GC list to a Python list.
|
|
* Return 0 if all OK, < 0 if error (out of memory for list)
|
|
*/
|
|
static int
|
|
append_objects(PyObject *py_list, PyGC_Head *gc_list)
|
|
{
|
|
PyGC_Head *gc;
|
|
for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
|
|
PyObject *op = FROM_GC(gc);
|
|
if (op != py_list) {
|
|
if (PyList_Append(py_list, op)) {
|
|
return -1; /* exception */
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Constants for validate_list's flags argument.
|
|
enum flagstates {collecting_clear_unreachable_clear,
|
|
collecting_clear_unreachable_set,
|
|
collecting_set_unreachable_clear,
|
|
collecting_set_unreachable_set};
|
|
|
|
#ifdef GC_DEBUG
|
|
// validate_list checks list consistency. And it works as document
|
|
// describing when flags are expected to be set / unset.
|
|
// `head` must be a doubly-linked gc list, although it's fine (expected!) if
|
|
// the prev and next pointers are "polluted" with flags.
|
|
// What's checked:
|
|
// - The `head` pointers are not polluted.
|
|
// - The objects' PREV_MASK_COLLECTING and NEXT_MASK_UNREACHABLE flags are all
|
|
// `set or clear, as specified by the 'flags' argument.
|
|
// - The prev and next pointers are mutually consistent.
|
|
static void
|
|
validate_list(PyGC_Head *head, enum flagstates flags)
|
|
{
|
|
assert((head->_gc_prev & ~_PyGC_PREV_MASK) == 0);
|
|
assert((head->_gc_next & ~_PyGC_PREV_MASK) == 0);
|
|
uintptr_t prev_value = 0, next_value = 0;
|
|
switch (flags) {
|
|
case collecting_clear_unreachable_clear:
|
|
break;
|
|
case collecting_set_unreachable_clear:
|
|
prev_value = PREV_MASK_COLLECTING;
|
|
break;
|
|
case collecting_clear_unreachable_set:
|
|
next_value = NEXT_MASK_UNREACHABLE;
|
|
break;
|
|
case collecting_set_unreachable_set:
|
|
prev_value = PREV_MASK_COLLECTING;
|
|
next_value = NEXT_MASK_UNREACHABLE;
|
|
break;
|
|
default:
|
|
assert(! "bad internal flags argument");
|
|
}
|
|
PyGC_Head *prev = head;
|
|
PyGC_Head *gc = GC_NEXT(head);
|
|
while (gc != head) {
|
|
PyGC_Head *trueprev = GC_PREV(gc);
|
|
PyGC_Head *truenext = GC_NEXT(gc);
|
|
assert(truenext != NULL);
|
|
assert(trueprev == prev);
|
|
assert((gc->_gc_prev & PREV_MASK_COLLECTING) == prev_value);
|
|
assert((gc->_gc_next & NEXT_MASK_UNREACHABLE) == next_value);
|
|
prev = gc;
|
|
gc = truenext;
|
|
}
|
|
assert(prev == GC_PREV(head));
|
|
}
|
|
|
|
static void
|
|
validate_old(GCState *gcstate)
|
|
{
|
|
for (int space = 0; space < 2; space++) {
|
|
PyGC_Head *head = &gcstate->old[space].head;
|
|
PyGC_Head *gc = GC_NEXT(head);
|
|
while (gc != head) {
|
|
PyGC_Head *next = GC_NEXT(gc);
|
|
assert(gc_old_space(gc) == space);
|
|
gc = next;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
validate_consistent_old_space(PyGC_Head *head)
|
|
{
|
|
PyGC_Head *prev = head;
|
|
PyGC_Head *gc = GC_NEXT(head);
|
|
if (gc == head) {
|
|
return;
|
|
}
|
|
int old_space = gc_old_space(gc);
|
|
while (gc != head) {
|
|
PyGC_Head *truenext = GC_NEXT(gc);
|
|
assert(truenext != NULL);
|
|
assert(gc_old_space(gc) == old_space);
|
|
prev = gc;
|
|
gc = truenext;
|
|
}
|
|
assert(prev == GC_PREV(head));
|
|
}
|
|
|
|
static void
|
|
gc_list_validate_space(PyGC_Head *head, int space) {
|
|
PyGC_Head *gc = GC_NEXT(head);
|
|
while (gc != head) {
|
|
assert(gc_old_space(gc) == space);
|
|
gc = GC_NEXT(gc);
|
|
}
|
|
}
|
|
|
|
#else
|
|
#define validate_list(x, y) do{}while(0)
|
|
#define validate_old(g) do{}while(0)
|
|
#define validate_consistent_old_space(l) do{}while(0)
|
|
#define gc_list_validate_space(l, s) do{}while(0)
|
|
#endif
|
|
|
|
/*** end of list stuff ***/
|
|
|
|
|
|
/* Set all gc_refs = ob_refcnt. After this, gc_refs is > 0 and
|
|
* PREV_MASK_COLLECTING bit is set for all objects in containers.
|
|
*/
|
|
static void
|
|
update_refs(PyGC_Head *containers)
|
|
{
|
|
PyGC_Head *next;
|
|
PyGC_Head *gc = GC_NEXT(containers);
|
|
|
|
while (gc != containers) {
|
|
next = GC_NEXT(gc);
|
|
PyObject *op = FROM_GC(gc);
|
|
if (_Py_IsImmortal(op)) {
|
|
gc_list_move(gc, &get_gc_state()->permanent_generation.head);
|
|
gc = next;
|
|
continue;
|
|
}
|
|
gc_reset_refs(gc, Py_REFCNT(op));
|
|
/* Python's cyclic gc should never see an incoming refcount
|
|
* of 0: if something decref'ed to 0, it should have been
|
|
* deallocated immediately at that time.
|
|
* Possible cause (if the assert triggers): a tp_dealloc
|
|
* routine left a gc-aware object tracked during its teardown
|
|
* phase, and did something-- or allowed something to happen --
|
|
* that called back into Python. gc can trigger then, and may
|
|
* see the still-tracked dying object. Before this assert
|
|
* was added, such mistakes went on to allow gc to try to
|
|
* delete the object again. In a debug build, that caused
|
|
* a mysterious segfault, when _Py_ForgetReference tried
|
|
* to remove the object from the doubly-linked list of all
|
|
* objects a second time. In a release build, an actual
|
|
* double deallocation occurred, which leads to corruption
|
|
* of the allocator's internal bookkeeping pointers. That's
|
|
* so serious that maybe this should be a release-build
|
|
* check instead of an assert?
|
|
*/
|
|
_PyObject_ASSERT(op, gc_get_refs(gc) != 0);
|
|
gc = next;
|
|
}
|
|
}
|
|
|
|
/* A traversal callback for subtract_refs. */
|
|
static int
|
|
visit_decref(PyObject *op, void *parent)
|
|
{
|
|
OBJECT_STAT_INC(object_visits);
|
|
_PyObject_ASSERT(_PyObject_CAST(parent), !_PyObject_IsFreed(op));
|
|
|
|
if (_PyObject_IS_GC(op)) {
|
|
PyGC_Head *gc = AS_GC(op);
|
|
/* We're only interested in gc_refs for objects in the
|
|
* generation being collected, which can be recognized
|
|
* because only they have positive gc_refs.
|
|
*/
|
|
if (gc_is_collecting(gc)) {
|
|
gc_decref(gc);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyGC_VisitStackRef(_PyStackRef *ref, visitproc visit, void *arg)
|
|
{
|
|
Py_VISIT(PyStackRef_AsPyObjectBorrow(*ref));
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
_PyGC_VisitFrameStack(_PyInterpreterFrame *frame, visitproc visit, void *arg)
|
|
{
|
|
_PyStackRef *ref = _PyFrame_GetLocalsArray(frame);
|
|
/* locals and stack */
|
|
for (; ref < frame->stackpointer; ref++) {
|
|
Py_VISIT(PyStackRef_AsPyObjectBorrow(*ref));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Subtract internal references from gc_refs. After this, gc_refs is >= 0
|
|
* for all objects in containers, and is GC_REACHABLE for all tracked gc
|
|
* objects not in containers. The ones with gc_refs > 0 are directly
|
|
* reachable from outside containers, and so can't be collected.
|
|
*/
|
|
static void
|
|
subtract_refs(PyGC_Head *containers)
|
|
{
|
|
traverseproc traverse;
|
|
PyGC_Head *gc = GC_NEXT(containers);
|
|
for (; gc != containers; gc = GC_NEXT(gc)) {
|
|
PyObject *op = FROM_GC(gc);
|
|
traverse = Py_TYPE(op)->tp_traverse;
|
|
(void) traverse(op,
|
|
visit_decref,
|
|
op);
|
|
}
|
|
}
|
|
|
|
/* A traversal callback for move_unreachable. */
|
|
static int
|
|
visit_reachable(PyObject *op, void *arg)
|
|
{
|
|
PyGC_Head *reachable = arg;
|
|
OBJECT_STAT_INC(object_visits);
|
|
if (!_PyObject_IS_GC(op)) {
|
|
return 0;
|
|
}
|
|
|
|
PyGC_Head *gc = AS_GC(op);
|
|
const Py_ssize_t gc_refs = gc_get_refs(gc);
|
|
|
|
// Ignore objects in other generation.
|
|
// This also skips objects "to the left" of the current position in
|
|
// move_unreachable's scan of the 'young' list - they've already been
|
|
// traversed, and no longer have the PREV_MASK_COLLECTING flag.
|
|
if (! gc_is_collecting(gc)) {
|
|
return 0;
|
|
}
|
|
// It would be a logic error elsewhere if the collecting flag were set on
|
|
// an untracked object.
|
|
_PyObject_ASSERT(op, gc->_gc_next != 0);
|
|
|
|
if (gc->_gc_next & NEXT_MASK_UNREACHABLE) {
|
|
/* This had gc_refs = 0 when move_unreachable got
|
|
* to it, but turns out it's reachable after all.
|
|
* Move it back to move_unreachable's 'young' list,
|
|
* and move_unreachable will eventually get to it
|
|
* again.
|
|
*/
|
|
// Manually unlink gc from unreachable list because the list functions
|
|
// don't work right in the presence of NEXT_MASK_UNREACHABLE flags.
|
|
PyGC_Head *prev = GC_PREV(gc);
|
|
PyGC_Head *next = GC_NEXT(gc);
|
|
_PyObject_ASSERT(FROM_GC(prev),
|
|
prev->_gc_next & NEXT_MASK_UNREACHABLE);
|
|
_PyObject_ASSERT(FROM_GC(next),
|
|
next->_gc_next & NEXT_MASK_UNREACHABLE);
|
|
prev->_gc_next = gc->_gc_next; // copy flag bits
|
|
gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
|
|
_PyGCHead_SET_PREV(next, prev);
|
|
|
|
gc_list_append(gc, reachable);
|
|
gc_set_refs(gc, 1);
|
|
}
|
|
else if (gc_refs == 0) {
|
|
/* This is in move_unreachable's 'young' list, but
|
|
* the traversal hasn't yet gotten to it. All
|
|
* we need to do is tell move_unreachable that it's
|
|
* reachable.
|
|
*/
|
|
gc_set_refs(gc, 1);
|
|
}
|
|
/* Else there's nothing to do.
|
|
* If gc_refs > 0, it must be in move_unreachable's 'young'
|
|
* list, and move_unreachable will eventually get to it.
|
|
*/
|
|
else {
|
|
_PyObject_ASSERT_WITH_MSG(op, gc_refs > 0, "refcount is too small");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Move the unreachable objects from young to unreachable. After this,
|
|
* all objects in young don't have PREV_MASK_COLLECTING flag and
|
|
* unreachable have the flag.
|
|
* All objects in young after this are directly or indirectly reachable
|
|
* from outside the original young; and all objects in unreachable are
|
|
* not.
|
|
*
|
|
* This function restores _gc_prev pointer. young and unreachable are
|
|
* doubly linked list after this function.
|
|
* But _gc_next in unreachable list has NEXT_MASK_UNREACHABLE flag.
|
|
* So we can not gc_list_* functions for unreachable until we remove the flag.
|
|
*/
|
|
static void
|
|
move_unreachable(PyGC_Head *young, PyGC_Head *unreachable)
|
|
{
|
|
// previous elem in the young list, used for restore gc_prev.
|
|
PyGC_Head *prev = young;
|
|
PyGC_Head *gc = GC_NEXT(young);
|
|
|
|
/* Invariants: all objects "to the left" of us in young are reachable
|
|
* (directly or indirectly) from outside the young list as it was at entry.
|
|
*
|
|
* All other objects from the original young "to the left" of us are in
|
|
* unreachable now, and have NEXT_MASK_UNREACHABLE. All objects to the
|
|
* left of us in 'young' now have been scanned, and no objects here
|
|
* or to the right have been scanned yet.
|
|
*/
|
|
|
|
validate_consistent_old_space(young);
|
|
/* Record which old space we are in, and set NEXT_MASK_UNREACHABLE bit for convenience */
|
|
uintptr_t flags = NEXT_MASK_UNREACHABLE | (gc->_gc_next & _PyGC_NEXT_MASK_OLD_SPACE_1);
|
|
while (gc != young) {
|
|
if (gc_get_refs(gc)) {
|
|
/* gc is definitely reachable from outside the
|
|
* original 'young'. Mark it as such, and traverse
|
|
* its pointers to find any other objects that may
|
|
* be directly reachable from it. Note that the
|
|
* call to tp_traverse may append objects to young,
|
|
* so we have to wait until it returns to determine
|
|
* the next object to visit.
|
|
*/
|
|
PyObject *op = FROM_GC(gc);
|
|
traverseproc traverse = Py_TYPE(op)->tp_traverse;
|
|
_PyObject_ASSERT_WITH_MSG(op, gc_get_refs(gc) > 0,
|
|
"refcount is too small");
|
|
// NOTE: visit_reachable may change gc->_gc_next when
|
|
// young->_gc_prev == gc. Don't do gc = GC_NEXT(gc) before!
|
|
(void) traverse(op,
|
|
visit_reachable,
|
|
(void *)young);
|
|
// relink gc_prev to prev element.
|
|
_PyGCHead_SET_PREV(gc, prev);
|
|
// gc is not COLLECTING state after here.
|
|
gc_clear_collecting(gc);
|
|
prev = gc;
|
|
}
|
|
else {
|
|
/* This *may* be unreachable. To make progress,
|
|
* assume it is. gc isn't directly reachable from
|
|
* any object we've already traversed, but may be
|
|
* reachable from an object we haven't gotten to yet.
|
|
* visit_reachable will eventually move gc back into
|
|
* young if that's so, and we'll see it again.
|
|
*/
|
|
// Move gc to unreachable.
|
|
// No need to gc->next->prev = prev because it is single linked.
|
|
prev->_gc_next = gc->_gc_next;
|
|
|
|
// We can't use gc_list_append() here because we use
|
|
// NEXT_MASK_UNREACHABLE here.
|
|
PyGC_Head *last = GC_PREV(unreachable);
|
|
// NOTE: Since all objects in unreachable set has
|
|
// NEXT_MASK_UNREACHABLE flag, we set it unconditionally.
|
|
// But this may pollute the unreachable list head's 'next' pointer
|
|
// too. That's semantically senseless but expedient here - the
|
|
// damage is repaired when this function ends.
|
|
last->_gc_next = flags | (uintptr_t)gc;
|
|
_PyGCHead_SET_PREV(gc, last);
|
|
gc->_gc_next = flags | (uintptr_t)unreachable;
|
|
unreachable->_gc_prev = (uintptr_t)gc;
|
|
}
|
|
gc = _PyGCHead_NEXT(prev);
|
|
}
|
|
// young->_gc_prev must be last element remained in the list.
|
|
young->_gc_prev = (uintptr_t)prev;
|
|
young->_gc_next &= _PyGC_PREV_MASK;
|
|
// don't let the pollution of the list head's next pointer leak
|
|
unreachable->_gc_next &= _PyGC_PREV_MASK;
|
|
}
|
|
|
|
static void
|
|
untrack_tuples(PyGC_Head *head)
|
|
{
|
|
PyGC_Head *next, *gc = GC_NEXT(head);
|
|
while (gc != head) {
|
|
PyObject *op = FROM_GC(gc);
|
|
next = GC_NEXT(gc);
|
|
if (PyTuple_CheckExact(op)) {
|
|
_PyTuple_MaybeUntrack(op);
|
|
}
|
|
gc = next;
|
|
}
|
|
}
|
|
|
|
/* Try to untrack all currently tracked dictionaries */
|
|
static void
|
|
untrack_dicts(PyGC_Head *head)
|
|
{
|
|
PyGC_Head *next, *gc = GC_NEXT(head);
|
|
while (gc != head) {
|
|
PyObject *op = FROM_GC(gc);
|
|
next = GC_NEXT(gc);
|
|
if (PyDict_CheckExact(op)) {
|
|
_PyDict_MaybeUntrack(op);
|
|
}
|
|
gc = next;
|
|
}
|
|
}
|
|
|
|
/* Return true if object has a pre-PEP 442 finalization method. */
|
|
static int
|
|
has_legacy_finalizer(PyObject *op)
|
|
{
|
|
return Py_TYPE(op)->tp_del != NULL;
|
|
}
|
|
|
|
/* Move the objects in unreachable with tp_del slots into `finalizers`.
|
|
*
|
|
* This function also removes NEXT_MASK_UNREACHABLE flag
|
|
* from _gc_next in unreachable.
|
|
*/
|
|
static void
|
|
move_legacy_finalizers(PyGC_Head *unreachable, PyGC_Head *finalizers)
|
|
{
|
|
PyGC_Head *gc, *next;
|
|
_PyObject_ASSERT(
|
|
FROM_GC(unreachable),
|
|
(unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
|
|
|
|
/* March over unreachable. Move objects with finalizers into
|
|
* `finalizers`.
|
|
*/
|
|
for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
|
|
PyObject *op = FROM_GC(gc);
|
|
|
|
_PyObject_ASSERT(op, gc->_gc_next & NEXT_MASK_UNREACHABLE);
|
|
next = GC_NEXT(gc);
|
|
gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
|
|
|
|
if (has_legacy_finalizer(op)) {
|
|
gc_clear_collecting(gc);
|
|
gc_list_move(gc, finalizers);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
clear_unreachable_mask(PyGC_Head *unreachable)
|
|
{
|
|
/* Check that the list head does not have the unreachable bit set */
|
|
_PyObject_ASSERT(
|
|
FROM_GC(unreachable),
|
|
((uintptr_t)unreachable & NEXT_MASK_UNREACHABLE) == 0);
|
|
_PyObject_ASSERT(
|
|
FROM_GC(unreachable),
|
|
(unreachable->_gc_next & NEXT_MASK_UNREACHABLE) == 0);
|
|
|
|
PyGC_Head *gc, *next;
|
|
for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
|
|
_PyObject_ASSERT((PyObject*)FROM_GC(gc), gc->_gc_next & NEXT_MASK_UNREACHABLE);
|
|
next = GC_NEXT(gc);
|
|
gc->_gc_next &= ~NEXT_MASK_UNREACHABLE;
|
|
}
|
|
validate_list(unreachable, collecting_set_unreachable_clear);
|
|
}
|
|
|
|
/* A traversal callback for move_legacy_finalizer_reachable. */
|
|
static int
|
|
visit_move(PyObject *op, void *arg)
|
|
{
|
|
PyGC_Head *tolist = arg;
|
|
OBJECT_STAT_INC(object_visits);
|
|
if (_PyObject_IS_GC(op)) {
|
|
PyGC_Head *gc = AS_GC(op);
|
|
if (gc_is_collecting(gc)) {
|
|
gc_list_move(gc, tolist);
|
|
gc_clear_collecting(gc);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Move objects that are reachable from finalizers, from the unreachable set
|
|
* into finalizers set.
|
|
*/
|
|
static void
|
|
move_legacy_finalizer_reachable(PyGC_Head *finalizers)
|
|
{
|
|
traverseproc traverse;
|
|
PyGC_Head *gc = GC_NEXT(finalizers);
|
|
for (; gc != finalizers; gc = GC_NEXT(gc)) {
|
|
/* Note that the finalizers list may grow during this. */
|
|
traverse = Py_TYPE(FROM_GC(gc))->tp_traverse;
|
|
(void) traverse(FROM_GC(gc),
|
|
visit_move,
|
|
(void *)finalizers);
|
|
}
|
|
}
|
|
|
|
/* Clear all weakrefs to unreachable objects, and if such a weakref has a
|
|
* callback, invoke it if necessary. Note that it's possible for such
|
|
* weakrefs to be outside the unreachable set -- indeed, those are precisely
|
|
* the weakrefs whose callbacks must be invoked. See gc_weakref.txt for
|
|
* overview & some details. Some weakrefs with callbacks may be reclaimed
|
|
* directly by this routine; the number reclaimed is the return value. Other
|
|
* weakrefs with callbacks may be moved into the `old` generation. Objects
|
|
* moved into `old` have gc_refs set to GC_REACHABLE; the objects remaining in
|
|
* unreachable are left at GC_TENTATIVELY_UNREACHABLE. When this returns,
|
|
* no object in `unreachable` is weakly referenced anymore.
|
|
*/
|
|
static int
|
|
handle_weakrefs(PyGC_Head *unreachable, PyGC_Head *old)
|
|
{
|
|
PyGC_Head *gc;
|
|
PyObject *op; /* generally FROM_GC(gc) */
|
|
PyWeakReference *wr; /* generally a cast of op */
|
|
PyGC_Head wrcb_to_call; /* weakrefs with callbacks to call */
|
|
PyGC_Head *next;
|
|
int num_freed = 0;
|
|
|
|
gc_list_init(&wrcb_to_call);
|
|
|
|
/* Clear all weakrefs to the objects in unreachable. If such a weakref
|
|
* also has a callback, move it into `wrcb_to_call` if the callback
|
|
* needs to be invoked. Note that we cannot invoke any callbacks until
|
|
* all weakrefs to unreachable objects are cleared, lest the callback
|
|
* resurrect an unreachable object via a still-active weakref. We
|
|
* make another pass over wrcb_to_call, invoking callbacks, after this
|
|
* pass completes.
|
|
*/
|
|
for (gc = GC_NEXT(unreachable); gc != unreachable; gc = next) {
|
|
PyWeakReference **wrlist;
|
|
|
|
op = FROM_GC(gc);
|
|
next = GC_NEXT(gc);
|
|
|
|
if (PyWeakref_Check(op)) {
|
|
/* A weakref inside the unreachable set must be cleared. If we
|
|
* allow its callback to execute inside delete_garbage(), it
|
|
* could expose objects that have tp_clear already called on
|
|
* them. Or, it could resurrect unreachable objects. One way
|
|
* this can happen is if some container objects do not implement
|
|
* tp_traverse. Then, wr_object can be outside the unreachable
|
|
* set but can be deallocated as a result of breaking the
|
|
* reference cycle. If we don't clear the weakref, the callback
|
|
* will run and potentially cause a crash. See bpo-38006 for
|
|
* one example.
|
|
*/
|
|
_PyWeakref_ClearRef((PyWeakReference *)op);
|
|
}
|
|
|
|
if (! _PyType_SUPPORTS_WEAKREFS(Py_TYPE(op))) {
|
|
continue;
|
|
}
|
|
|
|
/* It supports weakrefs. Does it have any?
|
|
*
|
|
* This is never triggered for static types so we can avoid the
|
|
* (slightly) more costly _PyObject_GET_WEAKREFS_LISTPTR().
|
|
*/
|
|
wrlist = _PyObject_GET_WEAKREFS_LISTPTR_FROM_OFFSET(op);
|
|
|
|
/* `op` may have some weakrefs. March over the list, clear
|
|
* all the weakrefs, and move the weakrefs with callbacks
|
|
* that must be called into wrcb_to_call.
|
|
*/
|
|
for (wr = *wrlist; wr != NULL; wr = *wrlist) {
|
|
PyGC_Head *wrasgc; /* AS_GC(wr) */
|
|
|
|
/* _PyWeakref_ClearRef clears the weakref but leaves
|
|
* the callback pointer intact. Obscure: it also
|
|
* changes *wrlist.
|
|
*/
|
|
_PyObject_ASSERT((PyObject *)wr, wr->wr_object == op);
|
|
_PyWeakref_ClearRef(wr);
|
|
_PyObject_ASSERT((PyObject *)wr, wr->wr_object == Py_None);
|
|
if (wr->wr_callback == NULL) {
|
|
/* no callback */
|
|
continue;
|
|
}
|
|
|
|
/* Headache time. `op` is going away, and is weakly referenced by
|
|
* `wr`, which has a callback. Should the callback be invoked? If wr
|
|
* is also trash, no:
|
|
*
|
|
* 1. There's no need to call it. The object and the weakref are
|
|
* both going away, so it's legitimate to pretend the weakref is
|
|
* going away first. The user has to ensure a weakref outlives its
|
|
* referent if they want a guarantee that the wr callback will get
|
|
* invoked.
|
|
*
|
|
* 2. It may be catastrophic to call it. If the callback is also in
|
|
* cyclic trash (CT), then although the CT is unreachable from
|
|
* outside the current generation, CT may be reachable from the
|
|
* callback. Then the callback could resurrect insane objects.
|
|
*
|
|
* Since the callback is never needed and may be unsafe in this case,
|
|
* wr is simply left in the unreachable set. Note that because we
|
|
* already called _PyWeakref_ClearRef(wr), its callback will never
|
|
* trigger.
|
|
*
|
|
* OTOH, if wr isn't part of CT, we should invoke the callback: the
|
|
* weakref outlived the trash. Note that since wr isn't CT in this
|
|
* case, its callback can't be CT either -- wr acted as an external
|
|
* root to this generation, and therefore its callback did too. So
|
|
* nothing in CT is reachable from the callback either, so it's hard
|
|
* to imagine how calling it later could create a problem for us. wr
|
|
* is moved to wrcb_to_call in this case.
|
|
*/
|
|
if (gc_is_collecting(AS_GC((PyObject *)wr))) {
|
|
/* it should already have been cleared above */
|
|
_PyObject_ASSERT((PyObject*)wr, wr->wr_object == Py_None);
|
|
continue;
|
|
}
|
|
|
|
/* Create a new reference so that wr can't go away
|
|
* before we can process it again.
|
|
*/
|
|
Py_INCREF(wr);
|
|
|
|
/* Move wr to wrcb_to_call, for the next pass. */
|
|
wrasgc = AS_GC((PyObject *)wr);
|
|
// wrasgc is reachable, but next isn't, so they can't be the same
|
|
_PyObject_ASSERT((PyObject *)wr, wrasgc != next);
|
|
gc_list_move(wrasgc, &wrcb_to_call);
|
|
}
|
|
}
|
|
|
|
/* Invoke the callbacks we decided to honor. It's safe to invoke them
|
|
* because they can't reference unreachable objects.
|
|
*/
|
|
int visited_space = get_gc_state()->visited_space;
|
|
while (! gc_list_is_empty(&wrcb_to_call)) {
|
|
PyObject *temp;
|
|
PyObject *callback;
|
|
|
|
gc = (PyGC_Head*)wrcb_to_call._gc_next;
|
|
op = FROM_GC(gc);
|
|
_PyObject_ASSERT(op, PyWeakref_Check(op));
|
|
wr = (PyWeakReference *)op;
|
|
callback = wr->wr_callback;
|
|
_PyObject_ASSERT(op, callback != NULL);
|
|
|
|
/* copy-paste of weakrefobject.c's handle_callback() */
|
|
temp = PyObject_CallOneArg(callback, (PyObject *)wr);
|
|
if (temp == NULL) {
|
|
PyErr_WriteUnraisable(callback);
|
|
}
|
|
else {
|
|
Py_DECREF(temp);
|
|
}
|
|
|
|
/* Give up the reference we created in the first pass. When
|
|
* op's refcount hits 0 (which it may or may not do right now),
|
|
* op's tp_dealloc will decref op->wr_callback too. Note
|
|
* that the refcount probably will hit 0 now, and because this
|
|
* weakref was reachable to begin with, gc didn't already
|
|
* add it to its count of freed objects. Example: a reachable
|
|
* weak value dict maps some key to this reachable weakref.
|
|
* The callback removes this key->weakref mapping from the
|
|
* dict, leaving no other references to the weakref (excepting
|
|
* ours).
|
|
*/
|
|
Py_DECREF(op);
|
|
if (wrcb_to_call._gc_next == (uintptr_t)gc) {
|
|
/* object is still alive -- move it */
|
|
gc_set_old_space(gc, visited_space);
|
|
gc_list_move(gc, old);
|
|
}
|
|
else {
|
|
++num_freed;
|
|
}
|
|
}
|
|
|
|
return num_freed;
|
|
}
|
|
|
|
static void
|
|
debug_cycle(const char *msg, PyObject *op)
|
|
{
|
|
PySys_FormatStderr("gc: %s <%s %p>\n",
|
|
msg, Py_TYPE(op)->tp_name, op);
|
|
}
|
|
|
|
/* Handle uncollectable garbage (cycles with tp_del slots, and stuff reachable
|
|
* only from such cycles).
|
|
* If _PyGC_DEBUG_SAVEALL, all objects in finalizers are appended to the module
|
|
* garbage list (a Python list), else only the objects in finalizers with
|
|
* __del__ methods are appended to garbage. All objects in finalizers are
|
|
* merged into the old list regardless.
|
|
*/
|
|
static void
|
|
handle_legacy_finalizers(PyThreadState *tstate,
|
|
GCState *gcstate,
|
|
PyGC_Head *finalizers, PyGC_Head *old)
|
|
{
|
|
assert(!_PyErr_Occurred(tstate));
|
|
assert(gcstate->garbage != NULL);
|
|
|
|
PyGC_Head *gc = GC_NEXT(finalizers);
|
|
for (; gc != finalizers; gc = GC_NEXT(gc)) {
|
|
PyObject *op = FROM_GC(gc);
|
|
|
|
if ((gcstate->debug & _PyGC_DEBUG_SAVEALL) || has_legacy_finalizer(op)) {
|
|
if (PyList_Append(gcstate->garbage, op) < 0) {
|
|
_PyErr_Clear(tstate);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
gc_list_merge(finalizers, old);
|
|
}
|
|
|
|
/* Run first-time finalizers (if any) on all the objects in collectable.
|
|
* Note that this may remove some (or even all) of the objects from the
|
|
* list, due to refcounts falling to 0.
|
|
*/
|
|
static void
|
|
finalize_garbage(PyThreadState *tstate, PyGC_Head *collectable)
|
|
{
|
|
destructor finalize;
|
|
PyGC_Head seen;
|
|
|
|
/* While we're going through the loop, `finalize(op)` may cause op, or
|
|
* other objects, to be reclaimed via refcounts falling to zero. So
|
|
* there's little we can rely on about the structure of the input
|
|
* `collectable` list across iterations. For safety, we always take the
|
|
* first object in that list and move it to a temporary `seen` list.
|
|
* If objects vanish from the `collectable` and `seen` lists we don't
|
|
* care.
|
|
*/
|
|
gc_list_init(&seen);
|
|
|
|
while (!gc_list_is_empty(collectable)) {
|
|
PyGC_Head *gc = GC_NEXT(collectable);
|
|
PyObject *op = FROM_GC(gc);
|
|
gc_list_move(gc, &seen);
|
|
if (!_PyGC_FINALIZED(op) &&
|
|
(finalize = Py_TYPE(op)->tp_finalize) != NULL)
|
|
{
|
|
_PyGC_SET_FINALIZED(op);
|
|
Py_INCREF(op);
|
|
finalize(op);
|
|
assert(!_PyErr_Occurred(tstate));
|
|
Py_DECREF(op);
|
|
}
|
|
}
|
|
gc_list_merge(&seen, collectable);
|
|
}
|
|
|
|
/* Break reference cycles by clearing the containers involved. This is
|
|
* tricky business as the lists can be changing and we don't know which
|
|
* objects may be freed. It is possible I screwed something up here.
|
|
*/
|
|
static void
|
|
delete_garbage(PyThreadState *tstate, GCState *gcstate,
|
|
PyGC_Head *collectable, PyGC_Head *old)
|
|
{
|
|
assert(!_PyErr_Occurred(tstate));
|
|
|
|
while (!gc_list_is_empty(collectable)) {
|
|
PyGC_Head *gc = GC_NEXT(collectable);
|
|
PyObject *op = FROM_GC(gc);
|
|
|
|
_PyObject_ASSERT_WITH_MSG(op, Py_REFCNT(op) > 0,
|
|
"refcount is too small");
|
|
|
|
if (gcstate->debug & _PyGC_DEBUG_SAVEALL) {
|
|
assert(gcstate->garbage != NULL);
|
|
if (PyList_Append(gcstate->garbage, op) < 0) {
|
|
_PyErr_Clear(tstate);
|
|
}
|
|
}
|
|
else {
|
|
inquiry clear;
|
|
if ((clear = Py_TYPE(op)->tp_clear) != NULL) {
|
|
Py_INCREF(op);
|
|
(void) clear(op);
|
|
if (_PyErr_Occurred(tstate)) {
|
|
PyErr_FormatUnraisable("Exception ignored in tp_clear of %s",
|
|
Py_TYPE(op)->tp_name);
|
|
}
|
|
Py_DECREF(op);
|
|
}
|
|
}
|
|
if (GC_NEXT(collectable) == gc) {
|
|
/* object is still alive, move it, it may die later */
|
|
gc_clear_collecting(gc);
|
|
gc_list_move(gc, old);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Deduce which objects among "base" are unreachable from outside the list
|
|
and move them to 'unreachable'. The process consist in the following steps:
|
|
|
|
1. Copy all reference counts to a different field (gc_prev is used to hold
|
|
this copy to save memory).
|
|
2. Traverse all objects in "base" and visit all referred objects using
|
|
"tp_traverse" and for every visited object, subtract 1 to the reference
|
|
count (the one that we copied in the previous step). After this step, all
|
|
objects that can be reached directly from outside must have strictly positive
|
|
reference count, while all unreachable objects must have a count of exactly 0.
|
|
3. Identify all unreachable objects (the ones with 0 reference count) and move
|
|
them to the "unreachable" list. This step also needs to move back to "base" all
|
|
objects that were initially marked as unreachable but are referred transitively
|
|
by the reachable objects (the ones with strictly positive reference count).
|
|
|
|
Contracts:
|
|
|
|
* The "base" has to be a valid list with no mask set.
|
|
|
|
* The "unreachable" list must be uninitialized (this function calls
|
|
gc_list_init over 'unreachable').
|
|
|
|
IMPORTANT: This function leaves 'unreachable' with the NEXT_MASK_UNREACHABLE
|
|
flag set but it does not clear it to skip unnecessary iteration. Before the
|
|
flag is cleared (for example, by using 'clear_unreachable_mask' function or
|
|
by a call to 'move_legacy_finalizers'), the 'unreachable' list is not a normal
|
|
list and we can not use most gc_list_* functions for it. */
|
|
static inline void
|
|
deduce_unreachable(PyGC_Head *base, PyGC_Head *unreachable) {
|
|
validate_list(base, collecting_clear_unreachable_clear);
|
|
/* Using ob_refcnt and gc_refs, calculate which objects in the
|
|
* container set are reachable from outside the set (i.e., have a
|
|
* refcount greater than 0 when all the references within the
|
|
* set are taken into account).
|
|
*/
|
|
update_refs(base); // gc_prev is used for gc_refs
|
|
subtract_refs(base);
|
|
|
|
/* Leave everything reachable from outside base in base, and move
|
|
* everything else (in base) to unreachable.
|
|
*
|
|
* NOTE: This used to move the reachable objects into a reachable
|
|
* set instead. But most things usually turn out to be reachable,
|
|
* so it's more efficient to move the unreachable things. It "sounds slick"
|
|
* to move the unreachable objects, until you think about it - the reason it
|
|
* pays isn't actually obvious.
|
|
*
|
|
* Suppose we create objects A, B, C in that order. They appear in the young
|
|
* generation in the same order. If B points to A, and C to B, and C is
|
|
* reachable from outside, then the adjusted refcounts will be 0, 0, and 1
|
|
* respectively.
|
|
*
|
|
* When move_unreachable finds A, A is moved to the unreachable list. The
|
|
* same for B when it's first encountered. Then C is traversed, B is moved
|
|
* _back_ to the reachable list. B is eventually traversed, and then A is
|
|
* moved back to the reachable list.
|
|
*
|
|
* So instead of not moving at all, the reachable objects B and A are moved
|
|
* twice each. Why is this a win? A straightforward algorithm to move the
|
|
* reachable objects instead would move A, B, and C once each.
|
|
*
|
|
* The key is that this dance leaves the objects in order C, B, A - it's
|
|
* reversed from the original order. On all _subsequent_ scans, none of
|
|
* them will move. Since most objects aren't in cycles, this can save an
|
|
* unbounded number of moves across an unbounded number of later collections.
|
|
* It can cost more only the first time the chain is scanned.
|
|
*
|
|
* Drawback: move_unreachable is also used to find out what's still trash
|
|
* after finalizers may resurrect objects. In _that_ case most unreachable
|
|
* objects will remain unreachable, so it would be more efficient to move
|
|
* the reachable objects instead. But this is a one-time cost, probably not
|
|
* worth complicating the code to speed just a little.
|
|
*/
|
|
move_unreachable(base, unreachable); // gc_prev is pointer again
|
|
validate_list(base, collecting_clear_unreachable_clear);
|
|
validate_list(unreachable, collecting_set_unreachable_set);
|
|
}
|
|
|
|
/* Handle objects that may have resurrected after a call to 'finalize_garbage', moving
|
|
them to 'old_generation' and placing the rest on 'still_unreachable'.
|
|
|
|
Contracts:
|
|
* After this function 'unreachable' must not be used anymore and 'still_unreachable'
|
|
will contain the objects that did not resurrect.
|
|
|
|
* The "still_unreachable" list must be uninitialized (this function calls
|
|
gc_list_init over 'still_unreachable').
|
|
|
|
IMPORTANT: After a call to this function, the 'still_unreachable' set will have the
|
|
PREV_MARK_COLLECTING set, but the objects in this set are going to be removed so
|
|
we can skip the expense of clearing the flag to avoid extra iteration. */
|
|
static inline void
|
|
handle_resurrected_objects(PyGC_Head *unreachable, PyGC_Head* still_unreachable,
|
|
PyGC_Head *old_generation)
|
|
{
|
|
// Remove the PREV_MASK_COLLECTING from unreachable
|
|
// to prepare it for a new call to 'deduce_unreachable'
|
|
gc_list_clear_collecting(unreachable);
|
|
|
|
// After the call to deduce_unreachable, the 'still_unreachable' set will
|
|
// have the PREV_MARK_COLLECTING set, but the objects are going to be
|
|
// removed so we can skip the expense of clearing the flag.
|
|
PyGC_Head* resurrected = unreachable;
|
|
deduce_unreachable(resurrected, still_unreachable);
|
|
clear_unreachable_mask(still_unreachable);
|
|
|
|
// Move the resurrected objects to the old generation for future collection.
|
|
gc_list_merge(resurrected, old_generation);
|
|
}
|
|
|
|
|
|
#define UNTRACK_TUPLES 1
|
|
#define UNTRACK_DICTS 2
|
|
|
|
static void
|
|
gc_collect_region(PyThreadState *tstate,
|
|
PyGC_Head *from,
|
|
PyGC_Head *to,
|
|
int untrack,
|
|
struct gc_collection_stats *stats);
|
|
|
|
static inline Py_ssize_t
|
|
gc_list_set_space(PyGC_Head *list, int space)
|
|
{
|
|
Py_ssize_t size = 0;
|
|
PyGC_Head *gc;
|
|
for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
|
|
gc_set_old_space(gc, space);
|
|
size++;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/* Making progress in the incremental collector
|
|
* In order to eventually collect all cycles
|
|
* the incremental collector must progress through the old
|
|
* space faster than objects are added to the old space.
|
|
*
|
|
* Each young or incremental collection adds a number of
|
|
* objects, S (for survivors) to the old space, and
|
|
* incremental collectors scan I objects from the old space.
|
|
* I > S must be true. We also want I > S * N to be where
|
|
* N > 1. Higher values of N mean that the old space is
|
|
* scanned more rapidly.
|
|
* The default incremental threshold of 10 translates to
|
|
* N == 1.4 (1 + 4/threshold)
|
|
*/
|
|
|
|
/* Divide by 10, so that the default incremental threshold of 10
|
|
* scans objects at 1% of the heap size */
|
|
#define SCAN_RATE_DIVISOR 10
|
|
|
|
static void
|
|
add_stats(GCState *gcstate, int gen, struct gc_collection_stats *stats)
|
|
{
|
|
gcstate->generation_stats[gen].collected += stats->collected;
|
|
gcstate->generation_stats[gen].uncollectable += stats->uncollectable;
|
|
gcstate->generation_stats[gen].collections += 1;
|
|
}
|
|
|
|
static void
|
|
gc_collect_young(PyThreadState *tstate,
|
|
struct gc_collection_stats *stats)
|
|
{
|
|
GCState *gcstate = &tstate->interp->gc;
|
|
PyGC_Head *young = &gcstate->young.head;
|
|
PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
|
|
GC_STAT_ADD(0, collections, 1);
|
|
#ifdef Py_STATS
|
|
{
|
|
Py_ssize_t count = 0;
|
|
PyGC_Head *gc;
|
|
for (gc = GC_NEXT(young); gc != young; gc = GC_NEXT(gc)) {
|
|
count++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
PyGC_Head survivors;
|
|
gc_list_init(&survivors);
|
|
gc_collect_region(tstate, young, &survivors, UNTRACK_TUPLES, stats);
|
|
Py_ssize_t survivor_count = 0;
|
|
if (gcstate->visited_space) {
|
|
/* objects in visited space have bit set, so we set it here */
|
|
survivor_count = gc_list_set_space(&survivors, 1);
|
|
}
|
|
else {
|
|
PyGC_Head *gc;
|
|
for (gc = GC_NEXT(&survivors); gc != &survivors; gc = GC_NEXT(gc)) {
|
|
#ifdef GC_DEBUG
|
|
assert(gc_old_space(gc) == 0);
|
|
#endif
|
|
survivor_count++;
|
|
}
|
|
}
|
|
(void)survivor_count; // Silence compiler warning
|
|
gc_list_merge(&survivors, visited);
|
|
validate_old(gcstate);
|
|
gcstate->young.count = 0;
|
|
gcstate->old[gcstate->visited_space].count++;
|
|
Py_ssize_t scale_factor = gcstate->old[0].threshold;
|
|
if (scale_factor < 1) {
|
|
scale_factor = 1;
|
|
}
|
|
gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
|
|
add_stats(gcstate, 0, stats);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static inline int
|
|
IS_IN_VISITED(PyGC_Head *gc, int visited_space)
|
|
{
|
|
assert(visited_space == 0 || flip_old_space(visited_space) == 0);
|
|
return gc_old_space(gc) == visited_space;
|
|
}
|
|
#endif
|
|
|
|
struct container_and_flag {
|
|
PyGC_Head *container;
|
|
int visited_space;
|
|
uintptr_t size;
|
|
};
|
|
|
|
/* A traversal callback for adding to container) */
|
|
static int
|
|
visit_add_to_container(PyObject *op, void *arg)
|
|
{
|
|
OBJECT_STAT_INC(object_visits);
|
|
struct container_and_flag *cf = (struct container_and_flag *)arg;
|
|
int visited = cf->visited_space;
|
|
assert(visited == get_gc_state()->visited_space);
|
|
if (!_Py_IsImmortal(op) && _PyObject_IS_GC(op)) {
|
|
PyGC_Head *gc = AS_GC(op);
|
|
if (_PyObject_GC_IS_TRACKED(op) &&
|
|
gc_old_space(gc) != visited) {
|
|
gc_flip_old_space(gc);
|
|
gc_list_move(gc, cf->container);
|
|
cf->size++;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uintptr_t
|
|
expand_region_transitively_reachable(PyGC_Head *container, PyGC_Head *gc, GCState *gcstate)
|
|
{
|
|
validate_list(container, collecting_clear_unreachable_clear);
|
|
struct container_and_flag arg = {
|
|
.container = container,
|
|
.visited_space = gcstate->visited_space,
|
|
.size = 0
|
|
};
|
|
assert(GC_NEXT(gc) == container);
|
|
while (gc != container) {
|
|
/* Survivors will be moved to visited space, so they should
|
|
* have been marked as visited */
|
|
assert(IS_IN_VISITED(gc, gcstate->visited_space));
|
|
PyObject *op = FROM_GC(gc);
|
|
if (_Py_IsImmortal(op)) {
|
|
PyGC_Head *next = GC_NEXT(gc);
|
|
gc_list_move(gc, &get_gc_state()->permanent_generation.head);
|
|
gc = next;
|
|
continue;
|
|
}
|
|
traverseproc traverse = Py_TYPE(op)->tp_traverse;
|
|
(void) traverse(op,
|
|
visit_add_to_container,
|
|
&arg);
|
|
gc = GC_NEXT(gc);
|
|
}
|
|
return arg.size;
|
|
}
|
|
|
|
/* Do bookkeeping for a completed GC cycle */
|
|
static void
|
|
completed_cycle(GCState *gcstate)
|
|
{
|
|
#ifdef Py_DEBUG
|
|
PyGC_Head *not_visited = &gcstate->old[gcstate->visited_space^1].head;
|
|
assert(gc_list_is_empty(not_visited));
|
|
#endif
|
|
gcstate->visited_space = flip_old_space(gcstate->visited_space);
|
|
/* Make sure all young objects have old space bit set correctly */
|
|
PyGC_Head *young = &gcstate->young.head;
|
|
PyGC_Head *gc = GC_NEXT(young);
|
|
while (gc != young) {
|
|
PyGC_Head *next = GC_NEXT(gc);
|
|
gc_set_old_space(gc, gcstate->visited_space);
|
|
gc = next;
|
|
}
|
|
gcstate->work_to_do = 0;
|
|
}
|
|
|
|
static void
|
|
gc_collect_increment(PyThreadState *tstate, struct gc_collection_stats *stats)
|
|
{
|
|
GC_STAT_ADD(1, collections, 1);
|
|
GCState *gcstate = &tstate->interp->gc;
|
|
PyGC_Head *not_visited = &gcstate->old[gcstate->visited_space^1].head;
|
|
PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
|
|
PyGC_Head increment;
|
|
gc_list_init(&increment);
|
|
Py_ssize_t scale_factor = gcstate->old[0].threshold;
|
|
if (scale_factor < 1) {
|
|
scale_factor = 1;
|
|
}
|
|
gc_list_merge(&gcstate->young.head, &increment);
|
|
gcstate->young.count = 0;
|
|
gc_list_validate_space(&increment, gcstate->visited_space);
|
|
Py_ssize_t increment_size = 0;
|
|
while (increment_size < gcstate->work_to_do) {
|
|
if (gc_list_is_empty(not_visited)) {
|
|
break;
|
|
}
|
|
PyGC_Head *gc = _PyGCHead_NEXT(not_visited);
|
|
gc_list_move(gc, &increment);
|
|
increment_size++;
|
|
gc_set_old_space(gc, gcstate->visited_space);
|
|
increment_size += expand_region_transitively_reachable(&increment, gc, gcstate);
|
|
}
|
|
gc_list_validate_space(&increment, gcstate->visited_space);
|
|
PyGC_Head survivors;
|
|
gc_list_init(&survivors);
|
|
gc_collect_region(tstate, &increment, &survivors, UNTRACK_TUPLES, stats);
|
|
gc_list_validate_space(&survivors, gcstate->visited_space);
|
|
gc_list_merge(&survivors, visited);
|
|
assert(gc_list_is_empty(&increment));
|
|
gcstate->work_to_do += gcstate->heap_size / SCAN_RATE_DIVISOR / scale_factor;
|
|
gcstate->work_to_do -= increment_size;
|
|
|
|
validate_old(gcstate);
|
|
add_stats(gcstate, 1, stats);
|
|
if (gc_list_is_empty(not_visited)) {
|
|
completed_cycle(gcstate);
|
|
}
|
|
}
|
|
|
|
|
|
static void
|
|
gc_collect_full(PyThreadState *tstate,
|
|
struct gc_collection_stats *stats)
|
|
{
|
|
GC_STAT_ADD(2, collections, 1);
|
|
GCState *gcstate = &tstate->interp->gc;
|
|
validate_old(gcstate);
|
|
PyGC_Head *young = &gcstate->young.head;
|
|
PyGC_Head *pending = &gcstate->old[gcstate->visited_space^1].head;
|
|
PyGC_Head *visited = &gcstate->old[gcstate->visited_space].head;
|
|
/* merge all generations into visited */
|
|
gc_list_validate_space(young, gcstate->visited_space);
|
|
gc_list_set_space(pending, gcstate->visited_space);
|
|
gc_list_merge(young, pending);
|
|
gcstate->young.count = 0;
|
|
gc_list_merge(pending, visited);
|
|
|
|
gc_collect_region(tstate, visited, visited,
|
|
UNTRACK_TUPLES | UNTRACK_DICTS,
|
|
stats);
|
|
gcstate->young.count = 0;
|
|
gcstate->old[0].count = 0;
|
|
gcstate->old[1].count = 0;
|
|
|
|
gcstate->work_to_do = - gcstate->young.threshold * 2;
|
|
_PyGC_ClearAllFreeLists(tstate->interp);
|
|
validate_old(gcstate);
|
|
add_stats(gcstate, 2, stats);
|
|
}
|
|
|
|
/* This is the main function. Read this to understand how the
|
|
* collection process works. */
|
|
static void
|
|
gc_collect_region(PyThreadState *tstate,
|
|
PyGC_Head *from,
|
|
PyGC_Head *to,
|
|
int untrack,
|
|
struct gc_collection_stats *stats)
|
|
{
|
|
PyGC_Head unreachable; /* non-problematic unreachable trash */
|
|
PyGC_Head finalizers; /* objects with, & reachable from, __del__ */
|
|
PyGC_Head *gc; /* initialize to prevent a compiler warning */
|
|
GCState *gcstate = &tstate->interp->gc;
|
|
|
|
assert(gcstate->garbage != NULL);
|
|
assert(!_PyErr_Occurred(tstate));
|
|
|
|
gc_list_init(&unreachable);
|
|
deduce_unreachable(from, &unreachable);
|
|
validate_consistent_old_space(from);
|
|
if (untrack & UNTRACK_TUPLES) {
|
|
untrack_tuples(from);
|
|
}
|
|
if (untrack & UNTRACK_DICTS) {
|
|
untrack_dicts(from);
|
|
}
|
|
validate_consistent_old_space(to);
|
|
if (from != to) {
|
|
gc_list_merge(from, to);
|
|
}
|
|
validate_consistent_old_space(to);
|
|
/* Move reachable objects to next generation. */
|
|
|
|
/* All objects in unreachable are trash, but objects reachable from
|
|
* legacy finalizers (e.g. tp_del) can't safely be deleted.
|
|
*/
|
|
gc_list_init(&finalizers);
|
|
// NEXT_MASK_UNREACHABLE is cleared here.
|
|
// After move_legacy_finalizers(), unreachable is normal list.
|
|
move_legacy_finalizers(&unreachable, &finalizers);
|
|
/* finalizers contains the unreachable objects with a legacy finalizer;
|
|
* unreachable objects reachable *from* those are also uncollectable,
|
|
* and we move those into the finalizers list too.
|
|
*/
|
|
move_legacy_finalizer_reachable(&finalizers);
|
|
validate_list(&finalizers, collecting_clear_unreachable_clear);
|
|
validate_list(&unreachable, collecting_set_unreachable_clear);
|
|
/* Print debugging information. */
|
|
if (gcstate->debug & _PyGC_DEBUG_COLLECTABLE) {
|
|
for (gc = GC_NEXT(&unreachable); gc != &unreachable; gc = GC_NEXT(gc)) {
|
|
debug_cycle("collectable", FROM_GC(gc));
|
|
}
|
|
}
|
|
|
|
/* Clear weakrefs and invoke callbacks as necessary. */
|
|
stats->collected += handle_weakrefs(&unreachable, to);
|
|
gc_list_validate_space(to, gcstate->visited_space);
|
|
validate_list(to, collecting_clear_unreachable_clear);
|
|
validate_list(&unreachable, collecting_set_unreachable_clear);
|
|
|
|
/* Call tp_finalize on objects which have one. */
|
|
finalize_garbage(tstate, &unreachable);
|
|
/* Handle any objects that may have resurrected after the call
|
|
* to 'finalize_garbage' and continue the collection with the
|
|
* objects that are still unreachable */
|
|
PyGC_Head final_unreachable;
|
|
gc_list_init(&final_unreachable);
|
|
handle_resurrected_objects(&unreachable, &final_unreachable, to);
|
|
|
|
/* Call tp_clear on objects in the final_unreachable set. This will cause
|
|
* the reference cycles to be broken. It may also cause some objects
|
|
* in finalizers to be freed.
|
|
*/
|
|
stats->collected += gc_list_size(&final_unreachable);
|
|
delete_garbage(tstate, gcstate, &final_unreachable, to);
|
|
|
|
/* Collect statistics on uncollectable objects found and print
|
|
* debugging information. */
|
|
Py_ssize_t n = 0;
|
|
for (gc = GC_NEXT(&finalizers); gc != &finalizers; gc = GC_NEXT(gc)) {
|
|
n++;
|
|
if (gcstate->debug & _PyGC_DEBUG_COLLECTABLE)
|
|
debug_cycle("uncollectable", FROM_GC(gc));
|
|
}
|
|
stats->uncollectable = n;
|
|
/* Append instances in the uncollectable set to a Python
|
|
* reachable list of garbage. The programmer has to deal with
|
|
* this if they insist on creating this type of structure.
|
|
*/
|
|
handle_legacy_finalizers(tstate, gcstate, &finalizers, to);
|
|
gc_list_validate_space(to, gcstate->visited_space);
|
|
validate_list(to, collecting_clear_unreachable_clear);
|
|
}
|
|
|
|
/* Invoke progress callbacks to notify clients that garbage collection
|
|
* is starting or stopping
|
|
*/
|
|
static void
|
|
do_gc_callback(GCState *gcstate, const char *phase,
|
|
int generation, struct gc_collection_stats *stats)
|
|
{
|
|
assert(!PyErr_Occurred());
|
|
|
|
/* The local variable cannot be rebound, check it for sanity */
|
|
assert(PyList_CheckExact(gcstate->callbacks));
|
|
PyObject *info = NULL;
|
|
if (PyList_GET_SIZE(gcstate->callbacks) != 0) {
|
|
info = Py_BuildValue("{sisnsn}",
|
|
"generation", generation,
|
|
"collected", stats->collected,
|
|
"uncollectable", stats->uncollectable);
|
|
if (info == NULL) {
|
|
PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
|
|
return;
|
|
}
|
|
}
|
|
|
|
PyObject *phase_obj = PyUnicode_FromString(phase);
|
|
if (phase_obj == NULL) {
|
|
Py_XDECREF(info);
|
|
PyErr_FormatUnraisable("Exception ignored on invoking gc callbacks");
|
|
return;
|
|
}
|
|
|
|
PyObject *stack[] = {phase_obj, info};
|
|
for (Py_ssize_t i=0; i<PyList_GET_SIZE(gcstate->callbacks); i++) {
|
|
PyObject *r, *cb = PyList_GET_ITEM(gcstate->callbacks, i);
|
|
Py_INCREF(cb); /* make sure cb doesn't go away */
|
|
r = PyObject_Vectorcall(cb, stack, 2, NULL);
|
|
if (r == NULL) {
|
|
PyErr_WriteUnraisable(cb);
|
|
}
|
|
else {
|
|
Py_DECREF(r);
|
|
}
|
|
Py_DECREF(cb);
|
|
}
|
|
Py_DECREF(phase_obj);
|
|
Py_XDECREF(info);
|
|
assert(!PyErr_Occurred());
|
|
}
|
|
|
|
static void
|
|
invoke_gc_callback(GCState *gcstate, const char *phase,
|
|
int generation, struct gc_collection_stats *stats)
|
|
{
|
|
if (gcstate->callbacks == NULL) {
|
|
return;
|
|
}
|
|
do_gc_callback(gcstate, phase, generation, stats);
|
|
}
|
|
|
|
static int
|
|
referrersvisit(PyObject* obj, void *arg)
|
|
{
|
|
PyObject *objs = arg;
|
|
Py_ssize_t i;
|
|
for (i = 0; i < PyTuple_GET_SIZE(objs); i++) {
|
|
if (PyTuple_GET_ITEM(objs, i) == obj) {
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
gc_referrers_for(PyObject *objs, PyGC_Head *list, PyObject *resultlist)
|
|
{
|
|
PyGC_Head *gc;
|
|
PyObject *obj;
|
|
traverseproc traverse;
|
|
for (gc = GC_NEXT(list); gc != list; gc = GC_NEXT(gc)) {
|
|
obj = FROM_GC(gc);
|
|
traverse = Py_TYPE(obj)->tp_traverse;
|
|
if (obj == objs || obj == resultlist) {
|
|
continue;
|
|
}
|
|
if (traverse(obj, referrersvisit, objs)) {
|
|
if (PyList_Append(resultlist, obj) < 0) {
|
|
return 0; /* error */
|
|
}
|
|
}
|
|
}
|
|
return 1; /* no error */
|
|
}
|
|
|
|
PyObject *
|
|
_PyGC_GetReferrers(PyInterpreterState *interp, PyObject *objs)
|
|
{
|
|
PyObject *result = PyList_New(0);
|
|
if (!result) {
|
|
return NULL;
|
|
}
|
|
|
|
GCState *gcstate = &interp->gc;
|
|
for (int i = 0; i < NUM_GENERATIONS; i++) {
|
|
if (!(gc_referrers_for(objs, GEN_HEAD(gcstate, i), result))) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
PyObject *
|
|
_PyGC_GetObjects(PyInterpreterState *interp, int generation)
|
|
{
|
|
assert(generation >= -1 && generation < NUM_GENERATIONS);
|
|
GCState *gcstate = &interp->gc;
|
|
|
|
PyObject *result = PyList_New(0);
|
|
/* Generation:
|
|
* -1: Return all objects
|
|
* 0: All young objects
|
|
* 1: No objects
|
|
* 2: All old objects
|
|
*/
|
|
if (result == NULL || generation == 1) {
|
|
return result;
|
|
}
|
|
if (generation <= 0) {
|
|
if (append_objects(result, &gcstate->young.head)) {
|
|
goto error;
|
|
}
|
|
}
|
|
if (generation != 0) {
|
|
if (append_objects(result, &gcstate->old[0].head)) {
|
|
goto error;
|
|
}
|
|
if (append_objects(result, &gcstate->old[1].head)) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
return result;
|
|
error:
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
_PyGC_Freeze(PyInterpreterState *interp)
|
|
{
|
|
GCState *gcstate = &interp->gc;
|
|
/* The permanent_generation has its old space bit set to zero */
|
|
if (gcstate->visited_space) {
|
|
gc_list_set_space(&gcstate->young.head, 0);
|
|
}
|
|
gc_list_merge(&gcstate->young.head, &gcstate->permanent_generation.head);
|
|
gcstate->young.count = 0;
|
|
PyGC_Head*old0 = &gcstate->old[0].head;
|
|
PyGC_Head*old1 = &gcstate->old[1].head;
|
|
gc_list_merge(old0, &gcstate->permanent_generation.head);
|
|
gcstate->old[0].count = 0;
|
|
gc_list_set_space(old1, 0);
|
|
gc_list_merge(old1, &gcstate->permanent_generation.head);
|
|
gcstate->old[1].count = 0;
|
|
validate_old(gcstate);
|
|
}
|
|
|
|
void
|
|
_PyGC_Unfreeze(PyInterpreterState *interp)
|
|
{
|
|
GCState *gcstate = &interp->gc;
|
|
gc_list_merge(&gcstate->permanent_generation.head,
|
|
&gcstate->old[0].head);
|
|
validate_old(gcstate);
|
|
}
|
|
|
|
Py_ssize_t
|
|
_PyGC_GetFreezeCount(PyInterpreterState *interp)
|
|
{
|
|
GCState *gcstate = &interp->gc;
|
|
return gc_list_size(&gcstate->permanent_generation.head);
|
|
}
|
|
|
|
/* C API for controlling the state of the garbage collector */
|
|
int
|
|
PyGC_Enable(void)
|
|
{
|
|
GCState *gcstate = get_gc_state();
|
|
int old_state = gcstate->enabled;
|
|
gcstate->enabled = 1;
|
|
return old_state;
|
|
}
|
|
|
|
int
|
|
PyGC_Disable(void)
|
|
{
|
|
GCState *gcstate = get_gc_state();
|
|
int old_state = gcstate->enabled;
|
|
gcstate->enabled = 0;
|
|
return old_state;
|
|
}
|
|
|
|
int
|
|
PyGC_IsEnabled(void)
|
|
{
|
|
GCState *gcstate = get_gc_state();
|
|
return gcstate->enabled;
|
|
}
|
|
|
|
// Show stats for objects in each generations
|
|
static void
|
|
show_stats_each_generations(GCState *gcstate)
|
|
{
|
|
char buf[100];
|
|
size_t pos = 0;
|
|
|
|
for (int i = 0; i < NUM_GENERATIONS && pos < sizeof(buf); i++) {
|
|
pos += PyOS_snprintf(buf+pos, sizeof(buf)-pos,
|
|
" %zd",
|
|
gc_list_size(GEN_HEAD(gcstate, i)));
|
|
}
|
|
PySys_FormatStderr(
|
|
"gc: objects in each generation:%s\n"
|
|
"gc: objects in permanent generation: %zd\n",
|
|
buf, gc_list_size(&gcstate->permanent_generation.head));
|
|
}
|
|
|
|
Py_ssize_t
|
|
_PyGC_Collect(PyThreadState *tstate, int generation, _PyGC_Reason reason)
|
|
{
|
|
GCState *gcstate = &tstate->interp->gc;
|
|
|
|
int expected = 0;
|
|
if (!_Py_atomic_compare_exchange_int(&gcstate->collecting, &expected, 1)) {
|
|
// Don't start a garbage collection if one is already in progress.
|
|
return 0;
|
|
}
|
|
|
|
struct gc_collection_stats stats = { 0 };
|
|
if (reason != _Py_GC_REASON_SHUTDOWN) {
|
|
invoke_gc_callback(gcstate, "start", generation, &stats);
|
|
}
|
|
if (gcstate->debug & _PyGC_DEBUG_STATS) {
|
|
PySys_WriteStderr("gc: collecting generation %d...\n", generation);
|
|
show_stats_each_generations(gcstate);
|
|
}
|
|
if (PyDTrace_GC_START_ENABLED()) {
|
|
PyDTrace_GC_START(generation);
|
|
}
|
|
PyObject *exc = _PyErr_GetRaisedException(tstate);
|
|
switch(generation) {
|
|
case 0:
|
|
gc_collect_young(tstate, &stats);
|
|
break;
|
|
case 1:
|
|
gc_collect_increment(tstate, &stats);
|
|
break;
|
|
case 2:
|
|
gc_collect_full(tstate, &stats);
|
|
break;
|
|
default:
|
|
Py_UNREACHABLE();
|
|
}
|
|
if (PyDTrace_GC_DONE_ENABLED()) {
|
|
PyDTrace_GC_DONE(stats.uncollectable + stats.collected);
|
|
}
|
|
if (reason != _Py_GC_REASON_SHUTDOWN) {
|
|
invoke_gc_callback(gcstate, "stop", generation, &stats);
|
|
}
|
|
_PyErr_SetRaisedException(tstate, exc);
|
|
GC_STAT_ADD(generation, objects_collected, stats.collected);
|
|
#ifdef Py_STATS
|
|
if (_Py_stats) {
|
|
GC_STAT_ADD(generation, object_visits,
|
|
_Py_stats->object_stats.object_visits);
|
|
_Py_stats->object_stats.object_visits = 0;
|
|
}
|
|
#endif
|
|
validate_old(gcstate);
|
|
_Py_atomic_store_int(&gcstate->collecting, 0);
|
|
return stats.uncollectable + stats.collected;
|
|
}
|
|
|
|
/* Public API to invoke gc.collect() from C */
|
|
Py_ssize_t
|
|
PyGC_Collect(void)
|
|
{
|
|
return _PyGC_Collect(_PyThreadState_GET(), 2, _Py_GC_REASON_MANUAL);
|
|
}
|
|
|
|
void
|
|
_PyGC_CollectNoFail(PyThreadState *tstate)
|
|
{
|
|
/* Ideally, this function is only called on interpreter shutdown,
|
|
and therefore not recursively. Unfortunately, when there are daemon
|
|
threads, a daemon thread can start a cyclic garbage collection
|
|
during interpreter shutdown (and then never finish it).
|
|
See http://bugs.python.org/issue8713#msg195178 for an example.
|
|
*/
|
|
_PyGC_Collect(_PyThreadState_GET(), 2, _Py_GC_REASON_SHUTDOWN);
|
|
}
|
|
|
|
void
|
|
_PyGC_DumpShutdownStats(PyInterpreterState *interp)
|
|
{
|
|
GCState *gcstate = &interp->gc;
|
|
if (!(gcstate->debug & _PyGC_DEBUG_SAVEALL)
|
|
&& gcstate->garbage != NULL && PyList_GET_SIZE(gcstate->garbage) > 0) {
|
|
const char *message;
|
|
if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
|
|
message = "gc: %zd uncollectable objects at shutdown";
|
|
}
|
|
else {
|
|
message = "gc: %zd uncollectable objects at shutdown; " \
|
|
"use gc.set_debug(gc.DEBUG_UNCOLLECTABLE) to list them";
|
|
}
|
|
/* PyErr_WarnFormat does too many things and we are at shutdown,
|
|
the warnings module's dependencies (e.g. linecache) may be gone
|
|
already. */
|
|
if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
|
|
"gc", NULL, message,
|
|
PyList_GET_SIZE(gcstate->garbage)))
|
|
{
|
|
PyErr_WriteUnraisable(NULL);
|
|
}
|
|
if (gcstate->debug & _PyGC_DEBUG_UNCOLLECTABLE) {
|
|
PyObject *repr = NULL, *bytes = NULL;
|
|
repr = PyObject_Repr(gcstate->garbage);
|
|
if (!repr || !(bytes = PyUnicode_EncodeFSDefault(repr))) {
|
|
PyErr_WriteUnraisable(gcstate->garbage);
|
|
}
|
|
else {
|
|
PySys_WriteStderr(
|
|
" %s\n",
|
|
PyBytes_AS_STRING(bytes)
|
|
);
|
|
}
|
|
Py_XDECREF(repr);
|
|
Py_XDECREF(bytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
finalize_unlink_gc_head(PyGC_Head *gc) {
|
|
PyGC_Head *prev = GC_PREV(gc);
|
|
PyGC_Head *next = GC_NEXT(gc);
|
|
_PyGCHead_SET_NEXT(prev, next);
|
|
_PyGCHead_SET_PREV(next, prev);
|
|
}
|
|
|
|
void
|
|
_PyGC_Fini(PyInterpreterState *interp)
|
|
{
|
|
GCState *gcstate = &interp->gc;
|
|
Py_CLEAR(gcstate->garbage);
|
|
Py_CLEAR(gcstate->callbacks);
|
|
|
|
/* Prevent a subtle bug that affects sub-interpreters that use basic
|
|
* single-phase init extensions (m_size == -1). Those extensions cause objects
|
|
* to be shared between interpreters, via the PyDict_Update(mdict, m_copy) call
|
|
* in import_find_extension().
|
|
*
|
|
* If they are GC objects, their GC head next or prev links could refer to
|
|
* the interpreter _gc_runtime_state PyGC_Head nodes. Those nodes go away
|
|
* when the interpreter structure is freed and so pointers to them become
|
|
* invalid. If those objects are still used by another interpreter and
|
|
* UNTRACK is called on them, a crash will happen. We untrack the nodes
|
|
* here to avoid that.
|
|
*
|
|
* This bug was originally fixed when reported as gh-90228. The bug was
|
|
* re-introduced in gh-94673.
|
|
*/
|
|
finalize_unlink_gc_head(&gcstate->young.head);
|
|
finalize_unlink_gc_head(&gcstate->old[0].head);
|
|
finalize_unlink_gc_head(&gcstate->old[1].head);
|
|
finalize_unlink_gc_head(&gcstate->permanent_generation.head);
|
|
}
|
|
|
|
/* for debugging */
|
|
void
|
|
_PyGC_Dump(PyGC_Head *g)
|
|
{
|
|
_PyObject_Dump(FROM_GC(g));
|
|
}
|
|
|
|
|
|
#ifdef Py_DEBUG
|
|
static int
|
|
visit_validate(PyObject *op, void *parent_raw)
|
|
{
|
|
PyObject *parent = _PyObject_CAST(parent_raw);
|
|
if (_PyObject_IsFreed(op)) {
|
|
_PyObject_ASSERT_FAILED_MSG(parent,
|
|
"PyObject_GC_Track() object is not valid");
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
|
|
/* extension modules might be compiled with GC support so these
|
|
functions must always be available */
|
|
|
|
void
|
|
PyObject_GC_Track(void *op_raw)
|
|
{
|
|
PyObject *op = _PyObject_CAST(op_raw);
|
|
if (_PyObject_GC_IS_TRACKED(op)) {
|
|
_PyObject_ASSERT_FAILED_MSG(op,
|
|
"object already tracked "
|
|
"by the garbage collector");
|
|
}
|
|
_PyObject_GC_TRACK(op);
|
|
|
|
#ifdef Py_DEBUG
|
|
/* Check that the object is valid: validate objects traversed
|
|
by tp_traverse() */
|
|
traverseproc traverse = Py_TYPE(op)->tp_traverse;
|
|
(void)traverse(op, visit_validate, op);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
PyObject_GC_UnTrack(void *op_raw)
|
|
{
|
|
PyObject *op = _PyObject_CAST(op_raw);
|
|
/* Obscure: the Py_TRASHCAN mechanism requires that we be able to
|
|
* call PyObject_GC_UnTrack twice on an object.
|
|
*/
|
|
if (_PyObject_GC_IS_TRACKED(op)) {
|
|
_PyObject_GC_UNTRACK(op);
|
|
}
|
|
}
|
|
|
|
int
|
|
PyObject_IS_GC(PyObject *obj)
|
|
{
|
|
return _PyObject_IS_GC(obj);
|
|
}
|
|
|
|
void
|
|
_Py_ScheduleGC(PyThreadState *tstate)
|
|
{
|
|
if (!_Py_eval_breaker_bit_is_set(tstate, _PY_GC_SCHEDULED_BIT))
|
|
{
|
|
_Py_set_eval_breaker_bit(tstate, _PY_GC_SCHEDULED_BIT);
|
|
}
|
|
}
|
|
|
|
void
|
|
_PyObject_GC_Link(PyObject *op)
|
|
{
|
|
PyGC_Head *gc = AS_GC(op);
|
|
// gc must be correctly aligned
|
|
_PyObject_ASSERT(op, ((uintptr_t)gc & (sizeof(uintptr_t)-1)) == 0);
|
|
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
GCState *gcstate = &tstate->interp->gc;
|
|
gc->_gc_next = 0;
|
|
gc->_gc_prev = 0;
|
|
gcstate->young.count++; /* number of allocated GC objects */
|
|
gcstate->heap_size++;
|
|
if (gcstate->young.count > gcstate->young.threshold &&
|
|
gcstate->enabled &&
|
|
gcstate->young.threshold &&
|
|
!_Py_atomic_load_int_relaxed(&gcstate->collecting) &&
|
|
!_PyErr_Occurred(tstate))
|
|
{
|
|
_Py_ScheduleGC(tstate);
|
|
}
|
|
}
|
|
|
|
void
|
|
_Py_RunGC(PyThreadState *tstate)
|
|
{
|
|
if (tstate->interp->gc.enabled) {
|
|
_PyGC_Collect(tstate, 1, _Py_GC_REASON_HEAP);
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
gc_alloc(PyTypeObject *tp, size_t basicsize, size_t presize)
|
|
{
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
if (basicsize > PY_SSIZE_T_MAX - presize) {
|
|
return _PyErr_NoMemory(tstate);
|
|
}
|
|
size_t size = presize + basicsize;
|
|
char *mem = _PyObject_MallocWithType(tp, size);
|
|
if (mem == NULL) {
|
|
return _PyErr_NoMemory(tstate);
|
|
}
|
|
((PyObject **)mem)[0] = NULL;
|
|
((PyObject **)mem)[1] = NULL;
|
|
PyObject *op = (PyObject *)(mem + presize);
|
|
_PyObject_GC_Link(op);
|
|
return op;
|
|
}
|
|
|
|
|
|
PyObject *
|
|
_PyObject_GC_New(PyTypeObject *tp)
|
|
{
|
|
size_t presize = _PyType_PreHeaderSize(tp);
|
|
size_t size = _PyObject_SIZE(tp);
|
|
if (_PyType_HasFeature(tp, Py_TPFLAGS_INLINE_VALUES)) {
|
|
size += _PyInlineValuesSize(tp);
|
|
}
|
|
PyObject *op = gc_alloc(tp, size, presize);
|
|
if (op == NULL) {
|
|
return NULL;
|
|
}
|
|
_PyObject_Init(op, tp);
|
|
if (tp->tp_flags & Py_TPFLAGS_INLINE_VALUES) {
|
|
_PyObject_InitInlineValues(op, tp);
|
|
}
|
|
return op;
|
|
}
|
|
|
|
PyVarObject *
|
|
_PyObject_GC_NewVar(PyTypeObject *tp, Py_ssize_t nitems)
|
|
{
|
|
PyVarObject *op;
|
|
|
|
if (nitems < 0) {
|
|
PyErr_BadInternalCall();
|
|
return NULL;
|
|
}
|
|
size_t presize = _PyType_PreHeaderSize(tp);
|
|
size_t size = _PyObject_VAR_SIZE(tp, nitems);
|
|
op = (PyVarObject *)gc_alloc(tp, size, presize);
|
|
if (op == NULL) {
|
|
return NULL;
|
|
}
|
|
_PyObject_InitVar(op, tp, nitems);
|
|
return op;
|
|
}
|
|
|
|
PyObject *
|
|
PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *tp, size_t extra_size)
|
|
{
|
|
size_t presize = _PyType_PreHeaderSize(tp);
|
|
PyObject *op = gc_alloc(tp, _PyObject_SIZE(tp) + extra_size, presize);
|
|
if (op == NULL) {
|
|
return NULL;
|
|
}
|
|
memset(op, 0, _PyObject_SIZE(tp) + extra_size);
|
|
_PyObject_Init(op, tp);
|
|
return op;
|
|
}
|
|
|
|
PyVarObject *
|
|
_PyObject_GC_Resize(PyVarObject *op, Py_ssize_t nitems)
|
|
{
|
|
const size_t basicsize = _PyObject_VAR_SIZE(Py_TYPE(op), nitems);
|
|
const size_t presize = _PyType_PreHeaderSize(Py_TYPE(op));
|
|
_PyObject_ASSERT((PyObject *)op, !_PyObject_GC_IS_TRACKED(op));
|
|
if (basicsize > (size_t)PY_SSIZE_T_MAX - presize) {
|
|
return (PyVarObject *)PyErr_NoMemory();
|
|
}
|
|
char *mem = (char *)op - presize;
|
|
mem = (char *)_PyObject_ReallocWithType(Py_TYPE(op), mem, presize + basicsize);
|
|
if (mem == NULL) {
|
|
return (PyVarObject *)PyErr_NoMemory();
|
|
}
|
|
op = (PyVarObject *) (mem + presize);
|
|
Py_SET_SIZE(op, nitems);
|
|
return op;
|
|
}
|
|
|
|
void
|
|
PyObject_GC_Del(void *op)
|
|
{
|
|
size_t presize = _PyType_PreHeaderSize(Py_TYPE(op));
|
|
PyGC_Head *g = AS_GC(op);
|
|
if (_PyObject_GC_IS_TRACKED(op)) {
|
|
gc_list_remove(g);
|
|
#ifdef Py_DEBUG
|
|
PyObject *exc = PyErr_GetRaisedException();
|
|
if (PyErr_WarnExplicitFormat(PyExc_ResourceWarning, "gc", 0,
|
|
"gc", NULL, "Object of type %s is not untracked before destruction",
|
|
Py_TYPE(op)->tp_name)) {
|
|
PyErr_WriteUnraisable(NULL);
|
|
}
|
|
PyErr_SetRaisedException(exc);
|
|
#endif
|
|
}
|
|
GCState *gcstate = get_gc_state();
|
|
if (gcstate->young.count > 0) {
|
|
gcstate->young.count--;
|
|
}
|
|
gcstate->heap_size--;
|
|
PyObject_Free(((char *)op)-presize);
|
|
}
|
|
|
|
int
|
|
PyObject_GC_IsTracked(PyObject* obj)
|
|
{
|
|
if (_PyObject_IS_GC(obj) && _PyObject_GC_IS_TRACKED(obj)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyObject_GC_IsFinalized(PyObject *obj)
|
|
{
|
|
if (_PyObject_IS_GC(obj) && _PyGC_FINALIZED(obj)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
visit_generation(gcvisitobjects_t callback, void *arg, struct gc_generation *gen)
|
|
{
|
|
PyGC_Head *gc_list, *gc;
|
|
gc_list = &gen->head;
|
|
for (gc = GC_NEXT(gc_list); gc != gc_list; gc = GC_NEXT(gc)) {
|
|
PyObject *op = FROM_GC(gc);
|
|
Py_INCREF(op);
|
|
int res = callback(op, arg);
|
|
Py_DECREF(op);
|
|
if (!res) {
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
PyUnstable_GC_VisitObjects(gcvisitobjects_t callback, void *arg)
|
|
{
|
|
GCState *gcstate = get_gc_state();
|
|
int origenstate = gcstate->enabled;
|
|
gcstate->enabled = 0;
|
|
if (visit_generation(callback, arg, &gcstate->young)) {
|
|
goto done;
|
|
}
|
|
if (visit_generation(callback, arg, &gcstate->old[0])) {
|
|
goto done;
|
|
}
|
|
visit_generation(callback, arg, &gcstate->old[1]);
|
|
done:
|
|
gcstate->enabled = origenstate;
|
|
}
|
|
|
|
#endif // Py_GIL_DISABLED
|