0
0
mirror of https://github.com/python/cpython.git synced 2024-11-24 17:47:13 +01:00
cpython/Modules/_opcode.c
mpage 2e95c5ba3b
gh-115999: Implement thread-local bytecode and enable specialization for BINARY_OP (#123926)
Each thread specializes a thread-local copy of the bytecode, created on the first RESUME, in free-threaded builds. All copies of the bytecode for a code object are stored in the co_tlbc array on the code object. Threads reserve a globally unique index identifying its copy of the bytecode in all co_tlbc arrays at thread creation and release the index at thread destruction. The first entry in every co_tlbc array always points to the "main" copy of the bytecode that is stored at the end of the code object. This ensures that no bytecode is copied for programs that do not use threads.

Thread-local bytecode can be disabled at runtime by providing either -X tlbc=0 or PYTHON_TLBC=0. Disabling thread-local bytecode also disables specialization.

Concurrent modifications to the bytecode made by the specializing interpreter and instrumentation use atomics, with specialization taking care not to overwrite an instruction that was instrumented concurrently.
2024-11-04 11:13:32 -08:00

452 lines
11 KiB
C

#ifndef Py_BUILD_CORE_BUILTIN
# define Py_BUILD_CORE_MODULE 1
#endif
#include "Python.h"
#include "compile.h"
#include "opcode.h"
#include "pycore_ceval.h"
#include "pycore_code.h"
#include "pycore_compile.h"
#include "pycore_intrinsics.h"
#include "pycore_optimizer.h" // _Py_GetExecutor()
#include "pycore_opcode_metadata.h" // IS_VALID_OPCODE, OPCODE_HAS_*, etc
#include "pycore_opcode_utils.h"
/*[clinic input]
module _opcode
[clinic start generated code]*/
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=117442e66eb376e6]*/
#include "clinic/_opcode.c.h"
/*[clinic input]
_opcode.stack_effect -> int
opcode: int
oparg: object = None
/
*
jump: object = None
Compute the stack effect of the opcode.
[clinic start generated code]*/
static int
_opcode_stack_effect_impl(PyObject *module, int opcode, PyObject *oparg,
PyObject *jump)
/*[clinic end generated code: output=64a18f2ead954dbb input=461c9d4a44851898]*/
{
int oparg_int = 0;
int jump_int;
if (oparg != Py_None) {
oparg_int = (int)PyLong_AsLong(oparg);
if ((oparg_int == -1) && PyErr_Occurred()) {
return -1;
}
}
if (jump == Py_None) {
jump_int = -1;
}
else if (jump == Py_True) {
jump_int = 1;
}
else if (jump == Py_False) {
jump_int = 0;
}
else {
PyErr_SetString(PyExc_ValueError,
"stack_effect: jump must be False, True or None");
return -1;
}
int effect = PyCompile_OpcodeStackEffectWithJump(opcode, oparg_int, jump_int);
if (effect == PY_INVALID_STACK_EFFECT) {
PyErr_SetString(PyExc_ValueError, "invalid opcode or oparg");
return -1;
}
return effect;
}
/*[clinic input]
_opcode.is_valid -> bool
opcode: int
Return True if opcode is valid, False otherwise.
[clinic start generated code]*/
static int
_opcode_is_valid_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=b0d918ea1d073f65 input=fe23e0aa194ddae0]*/
{
return IS_VALID_OPCODE(opcode);
}
/*[clinic input]
_opcode.has_arg -> bool
opcode: int
Return True if the opcode uses its oparg, False otherwise.
[clinic start generated code]*/
static int
_opcode_has_arg_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=7a062d3b2dcc0815 input=93d878ba6361db5f]*/
{
return IS_VALID_OPCODE(opcode) && OPCODE_HAS_ARG(opcode);
}
/*[clinic input]
_opcode.has_const -> bool
opcode: int
Return True if the opcode accesses a constant, False otherwise.
[clinic start generated code]*/
static int
_opcode_has_const_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=c646d5027c634120 input=a6999e4cf13f9410]*/
{
return IS_VALID_OPCODE(opcode) && OPCODE_HAS_CONST(opcode);
}
/*[clinic input]
_opcode.has_name -> bool
opcode: int
Return True if the opcode accesses an attribute by name, False otherwise.
[clinic start generated code]*/
static int
_opcode_has_name_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=b49a83555c2fa517 input=448aa5e4bcc947ba]*/
{
return IS_VALID_OPCODE(opcode) && OPCODE_HAS_NAME(opcode);
}
/*[clinic input]
_opcode.has_jump -> bool
opcode: int
Return True if the opcode has a jump target, False otherwise.
[clinic start generated code]*/
static int
_opcode_has_jump_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=e9c583c669f1c46a input=35f711274357a0c3]*/
{
return IS_VALID_OPCODE(opcode) && OPCODE_HAS_JUMP(opcode);
}
/*[clinic input]
_opcode.has_free -> bool
opcode: int
Return True if the opcode accesses a free variable, False otherwise.
Note that 'free' in this context refers to names in the current scope
that are referenced by inner scopes or names in outer scopes that are
referenced from this scope. It does not include references to global
or builtin scopes.
[clinic start generated code]*/
static int
_opcode_has_free_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=d81ae4d79af0ee26 input=117dcd5c19c1139b]*/
{
return IS_VALID_OPCODE(opcode) && OPCODE_HAS_FREE(opcode);
}
/*[clinic input]
_opcode.has_local -> bool
opcode: int
Return True if the opcode accesses a local variable, False otherwise.
[clinic start generated code]*/
static int
_opcode_has_local_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=da5a8616b7a5097b input=9a798ee24aaef49d]*/
{
return IS_VALID_OPCODE(opcode) && OPCODE_HAS_LOCAL(opcode);
}
/*[clinic input]
_opcode.has_exc -> bool
opcode: int
Return True if the opcode sets an exception handler, False otherwise.
[clinic start generated code]*/
static int
_opcode_has_exc_impl(PyObject *module, int opcode)
/*[clinic end generated code: output=41b68dff0ec82a52 input=db0e4bdb9bf13fa5]*/
{
return IS_VALID_OPCODE(opcode) && IS_BLOCK_PUSH_OPCODE(opcode);
}
/*[clinic input]
_opcode.get_specialization_stats
Return the specialization stats
[clinic start generated code]*/
static PyObject *
_opcode_get_specialization_stats_impl(PyObject *module)
/*[clinic end generated code: output=fcbc32fdfbec5c17 input=e1f60db68d8ce5f6]*/
{
#ifdef Py_STATS
return _Py_GetSpecializationStats();
#else
Py_RETURN_NONE;
#endif
}
/*[clinic input]
_opcode.get_nb_ops
Return array of symbols of binary ops.
Indexed by the BINARY_OP oparg value.
[clinic start generated code]*/
static PyObject *
_opcode_get_nb_ops_impl(PyObject *module)
/*[clinic end generated code: output=d997d306cc15426f input=9462fc544c823176]*/
{
PyObject *list = PyList_New(NB_OPARG_LAST + 1);
if (list == NULL) {
return NULL;
}
#define ADD_NB_OP(NUM, STR) \
do { \
PyObject *pair = Py_BuildValue("ss", #NUM, STR); \
if (pair == NULL) { \
Py_DECREF(list); \
return NULL; \
} \
PyList_SET_ITEM(list, (NUM), pair); \
} while(0);
ADD_NB_OP(NB_ADD, "+");
ADD_NB_OP(NB_AND, "&");
ADD_NB_OP(NB_FLOOR_DIVIDE, "//");
ADD_NB_OP(NB_LSHIFT, "<<");
ADD_NB_OP(NB_MATRIX_MULTIPLY, "@");
ADD_NB_OP(NB_MULTIPLY, "*");
ADD_NB_OP(NB_REMAINDER, "%");
ADD_NB_OP(NB_OR, "|");
ADD_NB_OP(NB_POWER, "**");
ADD_NB_OP(NB_RSHIFT, ">>");
ADD_NB_OP(NB_SUBTRACT, "-");
ADD_NB_OP(NB_TRUE_DIVIDE, "/");
ADD_NB_OP(NB_XOR, "^");
ADD_NB_OP(NB_INPLACE_ADD, "+=");
ADD_NB_OP(NB_INPLACE_AND, "&=");
ADD_NB_OP(NB_INPLACE_FLOOR_DIVIDE, "//=");
ADD_NB_OP(NB_INPLACE_LSHIFT, "<<=");
ADD_NB_OP(NB_INPLACE_MATRIX_MULTIPLY, "@=");
ADD_NB_OP(NB_INPLACE_MULTIPLY, "*=");
ADD_NB_OP(NB_INPLACE_REMAINDER, "%=");
ADD_NB_OP(NB_INPLACE_OR, "|=");
ADD_NB_OP(NB_INPLACE_POWER, "**=");
ADD_NB_OP(NB_INPLACE_RSHIFT, ">>=");
ADD_NB_OP(NB_INPLACE_SUBTRACT, "-=");
ADD_NB_OP(NB_INPLACE_TRUE_DIVIDE, "/=");
ADD_NB_OP(NB_INPLACE_XOR, "^=");
#undef ADD_NB_OP
for(int i = 0; i <= NB_OPARG_LAST; i++) {
if (PyList_GET_ITEM(list, i) == NULL) {
Py_DECREF(list);
PyErr_Format(PyExc_ValueError,
"Missing initialization for NB_OP %d",
i);
return NULL;
}
}
return list;
}
/*[clinic input]
_opcode.get_intrinsic1_descs
Return a list of names of the unary intrinsics.
[clinic start generated code]*/
static PyObject *
_opcode_get_intrinsic1_descs_impl(PyObject *module)
/*[clinic end generated code: output=bd1ddb6b4447d18b input=13b51c712618459b]*/
{
PyObject *list = PyList_New(MAX_INTRINSIC_1 + 1);
if (list == NULL) {
return NULL;
}
for (int i=0; i <= MAX_INTRINSIC_1; i++) {
PyObject *name = _PyCompile_GetUnaryIntrinsicName(i);
if (name == NULL) {
Py_DECREF(list);
return NULL;
}
PyList_SET_ITEM(list, i, name);
}
return list;
}
/*[clinic input]
_opcode.get_intrinsic2_descs
Return a list of names of the binary intrinsics.
[clinic start generated code]*/
static PyObject *
_opcode_get_intrinsic2_descs_impl(PyObject *module)
/*[clinic end generated code: output=40e62bc27584c8a0 input=e83068f249f5471b]*/
{
PyObject *list = PyList_New(MAX_INTRINSIC_2 + 1);
if (list == NULL) {
return NULL;
}
for (int i=0; i <= MAX_INTRINSIC_2; i++) {
PyObject *name = _PyCompile_GetBinaryIntrinsicName(i);
if (name == NULL) {
Py_DECREF(list);
return NULL;
}
PyList_SET_ITEM(list, i, name);
}
return list;
}
/*[clinic input]
_opcode.get_special_method_names
Return a list of special method names.
[clinic start generated code]*/
static PyObject *
_opcode_get_special_method_names_impl(PyObject *module)
/*[clinic end generated code: output=fce72614cd988d17 input=25f2115560bdf163]*/
{
PyObject *list = PyList_New(SPECIAL_MAX + 1);
if (list == NULL) {
return NULL;
}
for (int i=0; i <= SPECIAL_MAX; i++) {
PyObject *name = _Py_SpecialMethods[i].name;
if (name == NULL) {
Py_DECREF(list);
return NULL;
}
PyList_SET_ITEM(list, i, name);
}
return list;
}
/*[clinic input]
_opcode.get_executor
code: object
offset: int
Return the executor object at offset in code if exists, None otherwise.
[clinic start generated code]*/
static PyObject *
_opcode_get_executor_impl(PyObject *module, PyObject *code, int offset)
/*[clinic end generated code: output=c035c7a47b16648f input=85eff93ea7aac282]*/
{
if (!PyCode_Check(code)) {
PyErr_Format(PyExc_TypeError,
"expected a code object, not '%.100s'",
Py_TYPE(code)->tp_name);
return NULL;
}
#ifdef _Py_TIER2
return (PyObject *)_Py_GetExecutor((PyCodeObject *)code, offset);
#else
PyErr_Format(PyExc_RuntimeError,
"Executors are not available in this build");
return NULL;
#endif
}
static PyMethodDef
opcode_functions[] = {
_OPCODE_STACK_EFFECT_METHODDEF
_OPCODE_IS_VALID_METHODDEF
_OPCODE_HAS_ARG_METHODDEF
_OPCODE_HAS_CONST_METHODDEF
_OPCODE_HAS_NAME_METHODDEF
_OPCODE_HAS_JUMP_METHODDEF
_OPCODE_HAS_FREE_METHODDEF
_OPCODE_HAS_LOCAL_METHODDEF
_OPCODE_HAS_EXC_METHODDEF
_OPCODE_GET_SPECIALIZATION_STATS_METHODDEF
_OPCODE_GET_NB_OPS_METHODDEF
_OPCODE_GET_INTRINSIC1_DESCS_METHODDEF
_OPCODE_GET_INTRINSIC2_DESCS_METHODDEF
_OPCODE_GET_EXECUTOR_METHODDEF
_OPCODE_GET_SPECIAL_METHOD_NAMES_METHODDEF
{NULL, NULL, 0, NULL}
};
static int
_opcode_exec(PyObject *m) {
if (PyModule_AddIntMacro(m, ENABLE_SPECIALIZATION) < 0) {
return -1;
}
if (PyModule_AddIntMacro(m, ENABLE_SPECIALIZATION_FT) < 0) {
return -1;
}
return 0;
}
static PyModuleDef_Slot module_slots[] = {
{Py_mod_exec, _opcode_exec},
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
{Py_mod_gil, Py_MOD_GIL_NOT_USED},
{0, NULL}
};
static struct PyModuleDef opcodemodule = {
PyModuleDef_HEAD_INIT,
.m_name = "_opcode",
.m_doc = "Opcode support module.",
.m_size = 0,
.m_methods = opcode_functions,
.m_slots = module_slots,
};
PyMODINIT_FUNC
PyInit__opcode(void)
{
return PyModuleDef_Init(&opcodemodule);
}