0
0
mirror of https://github.com/python/cpython.git synced 2024-11-24 08:52:25 +01:00
cpython/Modules/_hacl/Hacl_Hash_SHA3.c
Jonathan Protzenko 872e212378
gh-99108: Refresh HACL*; update modules accordingly; fix namespacing (GH-117237)
Pulls in a new update from https://github.com/hacl-star/hacl-star and fixes our C "namespacing" done by `Modules/_hacl/refresh.sh`.
2024-03-26 00:35:26 +00:00

735 lines
21 KiB
C

/* MIT License
*
* Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation
* Copyright (c) 2022-2023 HACL* Contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "internal/Hacl_Hash_SHA3.h"
static uint32_t block_len(Spec_Hash_Definitions_hash_alg a)
{
switch (a)
{
case Spec_Hash_Definitions_SHA3_224:
{
return 144U;
}
case Spec_Hash_Definitions_SHA3_256:
{
return 136U;
}
case Spec_Hash_Definitions_SHA3_384:
{
return 104U;
}
case Spec_Hash_Definitions_SHA3_512:
{
return 72U;
}
case Spec_Hash_Definitions_Shake128:
{
return 168U;
}
case Spec_Hash_Definitions_Shake256:
{
return 136U;
}
default:
{
KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__);
KRML_HOST_EXIT(253U);
}
}
}
static uint32_t hash_len(Spec_Hash_Definitions_hash_alg a)
{
switch (a)
{
case Spec_Hash_Definitions_SHA3_224:
{
return 28U;
}
case Spec_Hash_Definitions_SHA3_256:
{
return 32U;
}
case Spec_Hash_Definitions_SHA3_384:
{
return 48U;
}
case Spec_Hash_Definitions_SHA3_512:
{
return 64U;
}
default:
{
KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__);
KRML_HOST_EXIT(253U);
}
}
}
void
Hacl_Hash_SHA3_update_multi_sha3(
Spec_Hash_Definitions_hash_alg a,
uint64_t *s,
uint8_t *blocks,
uint32_t n_blocks
)
{
for (uint32_t i = 0U; i < n_blocks; i++)
{
uint8_t *block = blocks + i * block_len(a);
Hacl_Hash_SHA3_absorb_inner(block_len(a), block, s);
}
}
void
Hacl_Hash_SHA3_update_last_sha3(
Spec_Hash_Definitions_hash_alg a,
uint64_t *s,
uint8_t *input,
uint32_t input_len
)
{
uint8_t suffix;
if (a == Spec_Hash_Definitions_Shake128 || a == Spec_Hash_Definitions_Shake256)
{
suffix = 0x1fU;
}
else
{
suffix = 0x06U;
}
uint32_t len = block_len(a);
if (input_len == len)
{
Hacl_Hash_SHA3_absorb_inner(len, input, s);
uint8_t lastBlock_[200U] = { 0U };
uint8_t *lastBlock = lastBlock_;
memcpy(lastBlock, input + input_len, 0U * sizeof (uint8_t));
lastBlock[0U] = suffix;
Hacl_Hash_SHA3_loadState(len, lastBlock, s);
if (!(((uint32_t)suffix & 0x80U) == 0U) && 0U == len - 1U)
{
Hacl_Hash_SHA3_state_permute(s);
}
uint8_t nextBlock_[200U] = { 0U };
uint8_t *nextBlock = nextBlock_;
nextBlock[len - 1U] = 0x80U;
Hacl_Hash_SHA3_loadState(len, nextBlock, s);
Hacl_Hash_SHA3_state_permute(s);
return;
}
uint8_t lastBlock_[200U] = { 0U };
uint8_t *lastBlock = lastBlock_;
memcpy(lastBlock, input, input_len * sizeof (uint8_t));
lastBlock[input_len] = suffix;
Hacl_Hash_SHA3_loadState(len, lastBlock, s);
if (!(((uint32_t)suffix & 0x80U) == 0U) && input_len == len - 1U)
{
Hacl_Hash_SHA3_state_permute(s);
}
uint8_t nextBlock_[200U] = { 0U };
uint8_t *nextBlock = nextBlock_;
nextBlock[len - 1U] = 0x80U;
Hacl_Hash_SHA3_loadState(len, nextBlock, s);
Hacl_Hash_SHA3_state_permute(s);
}
typedef struct hash_buf2_s
{
Hacl_Hash_SHA3_hash_buf fst;
Hacl_Hash_SHA3_hash_buf snd;
}
hash_buf2;
Spec_Hash_Definitions_hash_alg Hacl_Hash_SHA3_get_alg(Hacl_Hash_SHA3_state_t *s)
{
Hacl_Hash_SHA3_hash_buf block_state = (*s).block_state;
return block_state.fst;
}
Hacl_Hash_SHA3_state_t *Hacl_Hash_SHA3_malloc(Spec_Hash_Definitions_hash_alg a)
{
KRML_CHECK_SIZE(sizeof (uint8_t), block_len(a));
uint8_t *buf0 = (uint8_t *)KRML_HOST_CALLOC(block_len(a), sizeof (uint8_t));
uint64_t *buf = (uint64_t *)KRML_HOST_CALLOC(25U, sizeof (uint64_t));
Hacl_Hash_SHA3_hash_buf block_state = { .fst = a, .snd = buf };
Hacl_Hash_SHA3_state_t
s = { .block_state = block_state, .buf = buf0, .total_len = (uint64_t)0U };
Hacl_Hash_SHA3_state_t
*p = (Hacl_Hash_SHA3_state_t *)KRML_HOST_MALLOC(sizeof (Hacl_Hash_SHA3_state_t));
p[0U] = s;
uint64_t *s1 = block_state.snd;
memset(s1, 0U, 25U * sizeof (uint64_t));
return p;
}
void Hacl_Hash_SHA3_free(Hacl_Hash_SHA3_state_t *state)
{
Hacl_Hash_SHA3_state_t scrut = *state;
uint8_t *buf = scrut.buf;
Hacl_Hash_SHA3_hash_buf block_state = scrut.block_state;
uint64_t *s = block_state.snd;
KRML_HOST_FREE(s);
KRML_HOST_FREE(buf);
KRML_HOST_FREE(state);
}
Hacl_Hash_SHA3_state_t *Hacl_Hash_SHA3_copy(Hacl_Hash_SHA3_state_t *state)
{
Hacl_Hash_SHA3_state_t scrut0 = *state;
Hacl_Hash_SHA3_hash_buf block_state0 = scrut0.block_state;
uint8_t *buf0 = scrut0.buf;
uint64_t total_len0 = scrut0.total_len;
Spec_Hash_Definitions_hash_alg i = block_state0.fst;
KRML_CHECK_SIZE(sizeof (uint8_t), block_len(i));
uint8_t *buf1 = (uint8_t *)KRML_HOST_CALLOC(block_len(i), sizeof (uint8_t));
memcpy(buf1, buf0, block_len(i) * sizeof (uint8_t));
uint64_t *buf = (uint64_t *)KRML_HOST_CALLOC(25U, sizeof (uint64_t));
Hacl_Hash_SHA3_hash_buf block_state = { .fst = i, .snd = buf };
hash_buf2 scrut = { .fst = block_state0, .snd = block_state };
uint64_t *s_dst = scrut.snd.snd;
uint64_t *s_src = scrut.fst.snd;
memcpy(s_dst, s_src, 25U * sizeof (uint64_t));
Hacl_Hash_SHA3_state_t
s = { .block_state = block_state, .buf = buf1, .total_len = total_len0 };
Hacl_Hash_SHA3_state_t
*p = (Hacl_Hash_SHA3_state_t *)KRML_HOST_MALLOC(sizeof (Hacl_Hash_SHA3_state_t));
p[0U] = s;
return p;
}
void Hacl_Hash_SHA3_reset(Hacl_Hash_SHA3_state_t *state)
{
Hacl_Hash_SHA3_state_t scrut = *state;
uint8_t *buf = scrut.buf;
Hacl_Hash_SHA3_hash_buf block_state = scrut.block_state;
Spec_Hash_Definitions_hash_alg i = block_state.fst;
KRML_MAYBE_UNUSED_VAR(i);
uint64_t *s = block_state.snd;
memset(s, 0U, 25U * sizeof (uint64_t));
Hacl_Hash_SHA3_state_t
tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U };
state[0U] = tmp;
}
Hacl_Streaming_Types_error_code
Hacl_Hash_SHA3_update(Hacl_Hash_SHA3_state_t *state, uint8_t *chunk, uint32_t chunk_len)
{
Hacl_Hash_SHA3_state_t s = *state;
Hacl_Hash_SHA3_hash_buf block_state = s.block_state;
uint64_t total_len = s.total_len;
Spec_Hash_Definitions_hash_alg i = block_state.fst;
if ((uint64_t)chunk_len > 0xFFFFFFFFFFFFFFFFULL - total_len)
{
return Hacl_Streaming_Types_MaximumLengthExceeded;
}
uint32_t sz;
if (total_len % (uint64_t)block_len(i) == 0ULL && total_len > 0ULL)
{
sz = block_len(i);
}
else
{
sz = (uint32_t)(total_len % (uint64_t)block_len(i));
}
if (chunk_len <= block_len(i) - sz)
{
Hacl_Hash_SHA3_state_t s1 = *state;
Hacl_Hash_SHA3_hash_buf block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)block_len(i) == 0ULL && total_len1 > 0ULL)
{
sz1 = block_len(i);
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i));
}
uint8_t *buf2 = buf + sz1;
memcpy(buf2, chunk, chunk_len * sizeof (uint8_t));
uint64_t total_len2 = total_len1 + (uint64_t)chunk_len;
*state
=
((Hacl_Hash_SHA3_state_t){ .block_state = block_state1, .buf = buf, .total_len = total_len2 });
}
else if (sz == 0U)
{
Hacl_Hash_SHA3_state_t s1 = *state;
Hacl_Hash_SHA3_hash_buf block_state1 = s1.block_state;
uint8_t *buf = s1.buf;
uint64_t total_len1 = s1.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)block_len(i) == 0ULL && total_len1 > 0ULL)
{
sz1 = block_len(i);
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i));
}
if (!(sz1 == 0U))
{
Spec_Hash_Definitions_hash_alg a1 = block_state1.fst;
uint64_t *s2 = block_state1.snd;
Hacl_Hash_SHA3_update_multi_sha3(a1, s2, buf, block_len(i) / block_len(a1));
}
uint32_t ite;
if ((uint64_t)chunk_len % (uint64_t)block_len(i) == 0ULL && (uint64_t)chunk_len > 0ULL)
{
ite = block_len(i);
}
else
{
ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)block_len(i));
}
uint32_t n_blocks = (chunk_len - ite) / block_len(i);
uint32_t data1_len = n_blocks * block_len(i);
uint32_t data2_len = chunk_len - data1_len;
uint8_t *data1 = chunk;
uint8_t *data2 = chunk + data1_len;
Spec_Hash_Definitions_hash_alg a1 = block_state1.fst;
uint64_t *s2 = block_state1.snd;
Hacl_Hash_SHA3_update_multi_sha3(a1, s2, data1, data1_len / block_len(a1));
uint8_t *dst = buf;
memcpy(dst, data2, data2_len * sizeof (uint8_t));
*state
=
(
(Hacl_Hash_SHA3_state_t){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)chunk_len
}
);
}
else
{
uint32_t diff = block_len(i) - sz;
uint8_t *chunk1 = chunk;
uint8_t *chunk2 = chunk + diff;
Hacl_Hash_SHA3_state_t s1 = *state;
Hacl_Hash_SHA3_hash_buf block_state10 = s1.block_state;
uint8_t *buf0 = s1.buf;
uint64_t total_len10 = s1.total_len;
uint32_t sz10;
if (total_len10 % (uint64_t)block_len(i) == 0ULL && total_len10 > 0ULL)
{
sz10 = block_len(i);
}
else
{
sz10 = (uint32_t)(total_len10 % (uint64_t)block_len(i));
}
uint8_t *buf2 = buf0 + sz10;
memcpy(buf2, chunk1, diff * sizeof (uint8_t));
uint64_t total_len2 = total_len10 + (uint64_t)diff;
*state
=
(
(Hacl_Hash_SHA3_state_t){
.block_state = block_state10,
.buf = buf0,
.total_len = total_len2
}
);
Hacl_Hash_SHA3_state_t s10 = *state;
Hacl_Hash_SHA3_hash_buf block_state1 = s10.block_state;
uint8_t *buf = s10.buf;
uint64_t total_len1 = s10.total_len;
uint32_t sz1;
if (total_len1 % (uint64_t)block_len(i) == 0ULL && total_len1 > 0ULL)
{
sz1 = block_len(i);
}
else
{
sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i));
}
if (!(sz1 == 0U))
{
Spec_Hash_Definitions_hash_alg a1 = block_state1.fst;
uint64_t *s2 = block_state1.snd;
Hacl_Hash_SHA3_update_multi_sha3(a1, s2, buf, block_len(i) / block_len(a1));
}
uint32_t ite;
if
(
(uint64_t)(chunk_len - diff)
% (uint64_t)block_len(i)
== 0ULL
&& (uint64_t)(chunk_len - diff) > 0ULL
)
{
ite = block_len(i);
}
else
{
ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)block_len(i));
}
uint32_t n_blocks = (chunk_len - diff - ite) / block_len(i);
uint32_t data1_len = n_blocks * block_len(i);
uint32_t data2_len = chunk_len - diff - data1_len;
uint8_t *data1 = chunk2;
uint8_t *data2 = chunk2 + data1_len;
Spec_Hash_Definitions_hash_alg a1 = block_state1.fst;
uint64_t *s2 = block_state1.snd;
Hacl_Hash_SHA3_update_multi_sha3(a1, s2, data1, data1_len / block_len(a1));
uint8_t *dst = buf;
memcpy(dst, data2, data2_len * sizeof (uint8_t));
*state
=
(
(Hacl_Hash_SHA3_state_t){
.block_state = block_state1,
.buf = buf,
.total_len = total_len1 + (uint64_t)(chunk_len - diff)
}
);
}
return Hacl_Streaming_Types_Success;
}
static void
digest_(
Spec_Hash_Definitions_hash_alg a,
Hacl_Hash_SHA3_state_t *state,
uint8_t *output,
uint32_t l
)
{
Hacl_Hash_SHA3_state_t scrut0 = *state;
Hacl_Hash_SHA3_hash_buf block_state = scrut0.block_state;
uint8_t *buf_ = scrut0.buf;
uint64_t total_len = scrut0.total_len;
uint32_t r;
if (total_len % (uint64_t)block_len(a) == 0ULL && total_len > 0ULL)
{
r = block_len(a);
}
else
{
r = (uint32_t)(total_len % (uint64_t)block_len(a));
}
uint8_t *buf_1 = buf_;
uint64_t buf[25U] = { 0U };
Hacl_Hash_SHA3_hash_buf tmp_block_state = { .fst = a, .snd = buf };
hash_buf2 scrut = { .fst = block_state, .snd = tmp_block_state };
uint64_t *s_dst = scrut.snd.snd;
uint64_t *s_src = scrut.fst.snd;
memcpy(s_dst, s_src, 25U * sizeof (uint64_t));
uint32_t ite;
if (r % block_len(a) == 0U && r > 0U)
{
ite = block_len(a);
}
else
{
ite = r % block_len(a);
}
uint8_t *buf_last = buf_1 + r - ite;
uint8_t *buf_multi = buf_1;
Spec_Hash_Definitions_hash_alg a1 = tmp_block_state.fst;
uint64_t *s0 = tmp_block_state.snd;
Hacl_Hash_SHA3_update_multi_sha3(a1, s0, buf_multi, 0U / block_len(a1));
Spec_Hash_Definitions_hash_alg a10 = tmp_block_state.fst;
uint64_t *s1 = tmp_block_state.snd;
Hacl_Hash_SHA3_update_last_sha3(a10, s1, buf_last, r);
Spec_Hash_Definitions_hash_alg a11 = tmp_block_state.fst;
uint64_t *s = tmp_block_state.snd;
if (a11 == Spec_Hash_Definitions_Shake128 || a11 == Spec_Hash_Definitions_Shake256)
{
Hacl_Hash_SHA3_squeeze0(s, block_len(a11), l, output);
return;
}
Hacl_Hash_SHA3_squeeze0(s, block_len(a11), hash_len(a11), output);
}
Hacl_Streaming_Types_error_code
Hacl_Hash_SHA3_digest(Hacl_Hash_SHA3_state_t *state, uint8_t *output)
{
Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(state);
if (a1 == Spec_Hash_Definitions_Shake128 || a1 == Spec_Hash_Definitions_Shake256)
{
return Hacl_Streaming_Types_InvalidAlgorithm;
}
digest_(a1, state, output, hash_len(a1));
return Hacl_Streaming_Types_Success;
}
Hacl_Streaming_Types_error_code
Hacl_Hash_SHA3_squeeze(Hacl_Hash_SHA3_state_t *s, uint8_t *dst, uint32_t l)
{
Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(s);
if (!(a1 == Spec_Hash_Definitions_Shake128 || a1 == Spec_Hash_Definitions_Shake256))
{
return Hacl_Streaming_Types_InvalidAlgorithm;
}
if (l == 0U)
{
return Hacl_Streaming_Types_InvalidLength;
}
digest_(a1, s, dst, l);
return Hacl_Streaming_Types_Success;
}
uint32_t Hacl_Hash_SHA3_block_len(Hacl_Hash_SHA3_state_t *s)
{
Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(s);
return block_len(a1);
}
uint32_t Hacl_Hash_SHA3_hash_len(Hacl_Hash_SHA3_state_t *s)
{
Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(s);
return hash_len(a1);
}
bool Hacl_Hash_SHA3_is_shake(Hacl_Hash_SHA3_state_t *s)
{
Spec_Hash_Definitions_hash_alg uu____0 = Hacl_Hash_SHA3_get_alg(s);
return uu____0 == Spec_Hash_Definitions_Shake128 || uu____0 == Spec_Hash_Definitions_Shake256;
}
void
Hacl_Hash_SHA3_shake128_hacl(
uint32_t inputByteLen,
uint8_t *input,
uint32_t outputByteLen,
uint8_t *output
)
{
Hacl_Hash_SHA3_keccak(1344U, 256U, inputByteLen, input, 0x1FU, outputByteLen, output);
}
void
Hacl_Hash_SHA3_shake256_hacl(
uint32_t inputByteLen,
uint8_t *input,
uint32_t outputByteLen,
uint8_t *output
)
{
Hacl_Hash_SHA3_keccak(1088U, 512U, inputByteLen, input, 0x1FU, outputByteLen, output);
}
void Hacl_Hash_SHA3_sha3_224(uint8_t *output, uint8_t *input, uint32_t input_len)
{
Hacl_Hash_SHA3_keccak(1152U, 448U, input_len, input, 0x06U, 28U, output);
}
void Hacl_Hash_SHA3_sha3_256(uint8_t *output, uint8_t *input, uint32_t input_len)
{
Hacl_Hash_SHA3_keccak(1088U, 512U, input_len, input, 0x06U, 32U, output);
}
void Hacl_Hash_SHA3_sha3_384(uint8_t *output, uint8_t *input, uint32_t input_len)
{
Hacl_Hash_SHA3_keccak(832U, 768U, input_len, input, 0x06U, 48U, output);
}
void Hacl_Hash_SHA3_sha3_512(uint8_t *output, uint8_t *input, uint32_t input_len)
{
Hacl_Hash_SHA3_keccak(576U, 1024U, input_len, input, 0x06U, 64U, output);
}
static const
uint32_t
keccak_rotc[24U] =
{
1U, 3U, 6U, 10U, 15U, 21U, 28U, 36U, 45U, 55U, 2U, 14U, 27U, 41U, 56U, 8U, 25U, 43U, 62U, 18U,
39U, 61U, 20U, 44U
};
static const
uint32_t
keccak_piln[24U] =
{
10U, 7U, 11U, 17U, 18U, 3U, 5U, 16U, 8U, 21U, 24U, 4U, 15U, 23U, 19U, 13U, 12U, 2U, 20U, 14U,
22U, 9U, 6U, 1U
};
static const
uint64_t
keccak_rndc[24U] =
{
0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL, 0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL
};
void Hacl_Hash_SHA3_state_permute(uint64_t *s)
{
for (uint32_t i0 = 0U; i0 < 24U; i0++)
{
uint64_t _C[5U] = { 0U };
KRML_MAYBE_FOR5(i,
0U,
5U,
1U,
_C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U]))););
KRML_MAYBE_FOR5(i1,
0U,
5U,
1U,
uint64_t uu____0 = _C[(i1 + 1U) % 5U];
uint64_t _D = _C[(i1 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U);
KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i1 + 5U * i] = s[i1 + 5U * i] ^ _D;););
uint64_t x = s[1U];
uint64_t current = x;
for (uint32_t i = 0U; i < 24U; i++)
{
uint32_t _Y = keccak_piln[i];
uint32_t r = keccak_rotc[i];
uint64_t temp = s[_Y];
uint64_t uu____1 = current;
s[_Y] = uu____1 << r | uu____1 >> (64U - r);
current = temp;
}
KRML_MAYBE_FOR5(i,
0U,
5U,
1U,
uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]);
uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]);
uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]);
uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]);
uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]);
s[0U + 5U * i] = v0;
s[1U + 5U * i] = v1;
s[2U + 5U * i] = v2;
s[3U + 5U * i] = v3;
s[4U + 5U * i] = v4;);
uint64_t c = keccak_rndc[i0];
s[0U] = s[0U] ^ c;
}
}
void Hacl_Hash_SHA3_loadState(uint32_t rateInBytes, uint8_t *input, uint64_t *s)
{
uint8_t block[200U] = { 0U };
memcpy(block, input, rateInBytes * sizeof (uint8_t));
for (uint32_t i = 0U; i < 25U; i++)
{
uint64_t u = load64_le(block + i * 8U);
uint64_t x = u;
s[i] = s[i] ^ x;
}
}
static void storeState(uint32_t rateInBytes, uint64_t *s, uint8_t *res)
{
uint8_t block[200U] = { 0U };
for (uint32_t i = 0U; i < 25U; i++)
{
uint64_t sj = s[i];
store64_le(block + i * 8U, sj);
}
memcpy(res, block, rateInBytes * sizeof (uint8_t));
}
void Hacl_Hash_SHA3_absorb_inner(uint32_t rateInBytes, uint8_t *block, uint64_t *s)
{
Hacl_Hash_SHA3_loadState(rateInBytes, block, s);
Hacl_Hash_SHA3_state_permute(s);
}
static void
absorb(
uint64_t *s,
uint32_t rateInBytes,
uint32_t inputByteLen,
uint8_t *input,
uint8_t delimitedSuffix
)
{
uint32_t n_blocks = inputByteLen / rateInBytes;
uint32_t rem = inputByteLen % rateInBytes;
for (uint32_t i = 0U; i < n_blocks; i++)
{
uint8_t *block = input + i * rateInBytes;
Hacl_Hash_SHA3_absorb_inner(rateInBytes, block, s);
}
uint8_t *last = input + n_blocks * rateInBytes;
uint8_t lastBlock_[200U] = { 0U };
uint8_t *lastBlock = lastBlock_;
memcpy(lastBlock, last, rem * sizeof (uint8_t));
lastBlock[rem] = delimitedSuffix;
Hacl_Hash_SHA3_loadState(rateInBytes, lastBlock, s);
if (!(((uint32_t)delimitedSuffix & 0x80U) == 0U) && rem == rateInBytes - 1U)
{
Hacl_Hash_SHA3_state_permute(s);
}
uint8_t nextBlock_[200U] = { 0U };
uint8_t *nextBlock = nextBlock_;
nextBlock[rateInBytes - 1U] = 0x80U;
Hacl_Hash_SHA3_loadState(rateInBytes, nextBlock, s);
Hacl_Hash_SHA3_state_permute(s);
}
void
Hacl_Hash_SHA3_squeeze0(
uint64_t *s,
uint32_t rateInBytes,
uint32_t outputByteLen,
uint8_t *output
)
{
uint32_t outBlocks = outputByteLen / rateInBytes;
uint32_t remOut = outputByteLen % rateInBytes;
uint8_t *last = output + outputByteLen - remOut;
uint8_t *blocks = output;
for (uint32_t i = 0U; i < outBlocks; i++)
{
storeState(rateInBytes, s, blocks + i * rateInBytes);
Hacl_Hash_SHA3_state_permute(s);
}
storeState(remOut, s, last);
}
void
Hacl_Hash_SHA3_keccak(
uint32_t rate,
uint32_t capacity,
uint32_t inputByteLen,
uint8_t *input,
uint8_t delimitedSuffix,
uint32_t outputByteLen,
uint8_t *output
)
{
KRML_MAYBE_UNUSED_VAR(capacity);
uint32_t rateInBytes = rate / 8U;
uint64_t s[25U] = { 0U };
absorb(s, rateInBytes, inputByteLen, input, delimitedSuffix);
Hacl_Hash_SHA3_squeeze0(s, rateInBytes, outputByteLen, output);
}