mirror of
https://github.com/python/cpython.git
synced 2024-11-21 12:59:38 +01:00
ebcc578dff
Replace PyUnicode_FromStringAndSize(NULL, 0) with Py_GetConstant(Py_CONSTANT_EMPTY_STR).
7686 lines
242 KiB
C
7686 lines
242 KiB
C
/* C implementation of the datetime module */
|
|
|
|
/* bpo-35081: Defining this prevents including the C API capsule;
|
|
* internal versions of the Py*_Check macros which do not require
|
|
* the capsule are defined below */
|
|
#define _PY_DATETIME_IMPL
|
|
|
|
#ifndef Py_BUILD_CORE_BUILTIN
|
|
# define Py_BUILD_CORE_MODULE 1
|
|
#endif
|
|
|
|
#include "Python.h"
|
|
#include "pycore_long.h" // _PyLong_GetOne()
|
|
#include "pycore_object.h" // _PyObject_Init()
|
|
#include "pycore_time.h" // _PyTime_ObjectToTime_t()
|
|
|
|
#include "datetime.h"
|
|
|
|
|
|
#include <time.h>
|
|
|
|
#ifdef MS_WINDOWS
|
|
# include <winsock2.h> /* struct timeval */
|
|
#endif
|
|
|
|
|
|
/* forward declarations */
|
|
static PyTypeObject PyDateTime_DateType;
|
|
static PyTypeObject PyDateTime_DateTimeType;
|
|
static PyTypeObject PyDateTime_TimeType;
|
|
static PyTypeObject PyDateTime_DeltaType;
|
|
static PyTypeObject PyDateTime_TZInfoType;
|
|
static PyTypeObject PyDateTime_TimeZoneType;
|
|
|
|
|
|
typedef struct {
|
|
/* Module heap types. */
|
|
PyTypeObject *isocalendar_date_type;
|
|
|
|
/* Conversion factors. */
|
|
PyObject *us_per_ms; // 1_000
|
|
PyObject *us_per_second; // 1_000_000
|
|
PyObject *us_per_minute; // 1e6 * 60 as Python int
|
|
PyObject *us_per_hour; // 1e6 * 3600 as Python int
|
|
PyObject *us_per_day; // 1e6 * 3600 * 24 as Python int
|
|
PyObject *us_per_week; // 1e6 * 3600 * 24 * 7 as Python int
|
|
PyObject *seconds_per_day; // 3600 * 24 as Python int
|
|
|
|
/* The interned Unix epoch datetime instance */
|
|
PyObject *epoch;
|
|
} datetime_state;
|
|
|
|
/* The module has a fixed number of static objects, due to being exposed
|
|
* through the datetime C-API. There are five types exposed directly,
|
|
* one type exposed indirectly, and one singleton constant (UTC).
|
|
*
|
|
* Each of these objects is hidden behind a macro in the same way as
|
|
* the per-module objects stored in module state. The macros for the
|
|
* static objects don't need to be passed a state, but the consistency
|
|
* of doing so is more clear. We use a dedicated noop macro, NO_STATE,
|
|
* to make the special case obvious. */
|
|
|
|
#define NO_STATE NULL
|
|
|
|
#define DATE_TYPE(st) &PyDateTime_DateType
|
|
#define DATETIME_TYPE(st) &PyDateTime_DateTimeType
|
|
#define TIME_TYPE(st) &PyDateTime_TimeType
|
|
#define DELTA_TYPE(st) &PyDateTime_DeltaType
|
|
#define TZINFO_TYPE(st) &PyDateTime_TZInfoType
|
|
#define TIMEZONE_TYPE(st) &PyDateTime_TimeZoneType
|
|
#define ISOCALENDAR_DATE_TYPE(st) st->isocalendar_date_type
|
|
|
|
#define PyDate_Check(op) PyObject_TypeCheck(op, DATE_TYPE(NO_STATE))
|
|
#define PyDate_CheckExact(op) Py_IS_TYPE(op, DATE_TYPE(NO_STATE))
|
|
|
|
#define PyDateTime_Check(op) PyObject_TypeCheck(op, DATETIME_TYPE(NO_STATE))
|
|
#define PyDateTime_CheckExact(op) Py_IS_TYPE(op, DATETIME_TYPE(NO_STATE))
|
|
|
|
#define PyTime_Check(op) PyObject_TypeCheck(op, TIME_TYPE(NO_STATE))
|
|
#define PyTime_CheckExact(op) Py_IS_TYPE(op, TIME_TYPE(NO_STATE))
|
|
|
|
#define PyDelta_Check(op) PyObject_TypeCheck(op, DELTA_TYPE(NO_STATE))
|
|
#define PyDelta_CheckExact(op) Py_IS_TYPE(op, DELTA_TYPE(NO_STATE))
|
|
|
|
#define PyTZInfo_Check(op) PyObject_TypeCheck(op, TZINFO_TYPE(NO_STATE))
|
|
#define PyTZInfo_CheckExact(op) Py_IS_TYPE(op, TZINFO_TYPE(NO_STATE))
|
|
|
|
#define PyTimezone_Check(op) PyObject_TypeCheck(op, TIMEZONE_TYPE(NO_STATE))
|
|
|
|
#define CONST_US_PER_MS(st) st->us_per_ms
|
|
#define CONST_US_PER_SECOND(st) st->us_per_second
|
|
#define CONST_US_PER_MINUTE(st) st->us_per_minute
|
|
#define CONST_US_PER_HOUR(st) st->us_per_hour
|
|
#define CONST_US_PER_DAY(st) st->us_per_day
|
|
#define CONST_US_PER_WEEK(st) st->us_per_week
|
|
#define CONST_SEC_PER_DAY(st) st->seconds_per_day
|
|
#define CONST_EPOCH(st) st->epoch
|
|
#define CONST_UTC(st) ((PyObject *)&utc_timezone)
|
|
|
|
static datetime_state *
|
|
get_module_state(PyObject *module)
|
|
{
|
|
void *state = _PyModule_GetState(module);
|
|
assert(state != NULL);
|
|
return (datetime_state *)state;
|
|
}
|
|
|
|
|
|
#define INTERP_KEY ((PyObject *)&_Py_ID(cached_datetime_module))
|
|
|
|
static PyObject *
|
|
get_current_module(PyInterpreterState *interp, int *p_reloading)
|
|
{
|
|
PyObject *mod = NULL;
|
|
int reloading = 0;
|
|
|
|
PyObject *dict = PyInterpreterState_GetDict(interp);
|
|
if (dict == NULL) {
|
|
goto error;
|
|
}
|
|
PyObject *ref = NULL;
|
|
if (PyDict_GetItemRef(dict, INTERP_KEY, &ref) < 0) {
|
|
goto error;
|
|
}
|
|
if (ref != NULL) {
|
|
reloading = 1;
|
|
if (ref != Py_None) {
|
|
(void)PyWeakref_GetRef(ref, &mod);
|
|
if (mod == Py_None) {
|
|
Py_CLEAR(mod);
|
|
}
|
|
Py_DECREF(ref);
|
|
}
|
|
}
|
|
if (p_reloading != NULL) {
|
|
*p_reloading = reloading;
|
|
}
|
|
return mod;
|
|
|
|
error:
|
|
assert(PyErr_Occurred());
|
|
return NULL;
|
|
}
|
|
|
|
static PyModuleDef datetimemodule;
|
|
|
|
static datetime_state *
|
|
_get_current_state(PyObject **p_mod)
|
|
{
|
|
PyInterpreterState *interp = PyInterpreterState_Get();
|
|
PyObject *mod = get_current_module(interp, NULL);
|
|
if (mod == NULL) {
|
|
assert(!PyErr_Occurred());
|
|
if (PyErr_Occurred()) {
|
|
return NULL;
|
|
}
|
|
/* The static types can outlive the module,
|
|
* so we must re-import the module. */
|
|
mod = PyImport_ImportModule("_datetime");
|
|
if (mod == NULL) {
|
|
return NULL;
|
|
}
|
|
}
|
|
datetime_state *st = get_module_state(mod);
|
|
*p_mod = mod;
|
|
return st;
|
|
}
|
|
|
|
#define GET_CURRENT_STATE(MOD_VAR) \
|
|
_get_current_state(&MOD_VAR)
|
|
#define RELEASE_CURRENT_STATE(ST_VAR, MOD_VAR) \
|
|
Py_DECREF(MOD_VAR)
|
|
|
|
static int
|
|
set_current_module(PyInterpreterState *interp, PyObject *mod)
|
|
{
|
|
assert(mod != NULL);
|
|
PyObject *dict = PyInterpreterState_GetDict(interp);
|
|
if (dict == NULL) {
|
|
return -1;
|
|
}
|
|
PyObject *ref = PyWeakref_NewRef(mod, NULL);
|
|
if (ref == NULL) {
|
|
return -1;
|
|
}
|
|
int rc = PyDict_SetItem(dict, INTERP_KEY, ref);
|
|
Py_DECREF(ref);
|
|
return rc;
|
|
}
|
|
|
|
static void
|
|
clear_current_module(PyInterpreterState *interp, PyObject *expected)
|
|
{
|
|
PyObject *exc = PyErr_GetRaisedException();
|
|
|
|
PyObject *dict = PyInterpreterState_GetDict(interp);
|
|
if (dict == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
if (expected != NULL) {
|
|
PyObject *ref = NULL;
|
|
if (PyDict_GetItemRef(dict, INTERP_KEY, &ref) < 0) {
|
|
goto error;
|
|
}
|
|
if (ref != NULL) {
|
|
PyObject *current = NULL;
|
|
int rc = PyWeakref_GetRef(ref, ¤t);
|
|
/* We only need "current" for pointer comparison. */
|
|
Py_XDECREF(current);
|
|
Py_DECREF(ref);
|
|
if (rc < 0) {
|
|
goto error;
|
|
}
|
|
if (current != expected) {
|
|
goto finally;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We use None to identify that the module was previously loaded. */
|
|
if (PyDict_SetItem(dict, INTERP_KEY, Py_None) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
goto finally;
|
|
|
|
error:
|
|
PyErr_WriteUnraisable(NULL);
|
|
|
|
finally:
|
|
PyErr_SetRaisedException(exc);
|
|
}
|
|
|
|
|
|
/* We require that C int be at least 32 bits, and use int virtually
|
|
* everywhere. In just a few cases we use a temp long, where a Python
|
|
* API returns a C long. In such cases, we have to ensure that the
|
|
* final result fits in a C int (this can be an issue on 64-bit boxes).
|
|
*/
|
|
#if SIZEOF_INT < 4
|
|
# error "_datetime.c requires that C int have at least 32 bits"
|
|
#endif
|
|
|
|
#define MINYEAR 1
|
|
#define MAXYEAR 9999
|
|
#define MAXORDINAL 3652059 /* date(9999,12,31).toordinal() */
|
|
|
|
/* Nine decimal digits is easy to communicate, and leaves enough room
|
|
* so that two delta days can be added w/o fear of overflowing a signed
|
|
* 32-bit int, and with plenty of room left over to absorb any possible
|
|
* carries from adding seconds.
|
|
*/
|
|
#define MAX_DELTA_DAYS 999999999
|
|
|
|
/* Rename the long macros in datetime.h to more reasonable short names. */
|
|
#define GET_YEAR PyDateTime_GET_YEAR
|
|
#define GET_MONTH PyDateTime_GET_MONTH
|
|
#define GET_DAY PyDateTime_GET_DAY
|
|
#define DATE_GET_HOUR PyDateTime_DATE_GET_HOUR
|
|
#define DATE_GET_MINUTE PyDateTime_DATE_GET_MINUTE
|
|
#define DATE_GET_SECOND PyDateTime_DATE_GET_SECOND
|
|
#define DATE_GET_MICROSECOND PyDateTime_DATE_GET_MICROSECOND
|
|
#define DATE_GET_FOLD PyDateTime_DATE_GET_FOLD
|
|
|
|
/* Date accessors for date and datetime. */
|
|
#define SET_YEAR(o, v) (((o)->data[0] = ((v) & 0xff00) >> 8), \
|
|
((o)->data[1] = ((v) & 0x00ff)))
|
|
#define SET_MONTH(o, v) (PyDateTime_GET_MONTH(o) = (v))
|
|
#define SET_DAY(o, v) (PyDateTime_GET_DAY(o) = (v))
|
|
|
|
/* Date/Time accessors for datetime. */
|
|
#define DATE_SET_HOUR(o, v) (PyDateTime_DATE_GET_HOUR(o) = (v))
|
|
#define DATE_SET_MINUTE(o, v) (PyDateTime_DATE_GET_MINUTE(o) = (v))
|
|
#define DATE_SET_SECOND(o, v) (PyDateTime_DATE_GET_SECOND(o) = (v))
|
|
#define DATE_SET_MICROSECOND(o, v) \
|
|
(((o)->data[7] = ((v) & 0xff0000) >> 16), \
|
|
((o)->data[8] = ((v) & 0x00ff00) >> 8), \
|
|
((o)->data[9] = ((v) & 0x0000ff)))
|
|
#define DATE_SET_FOLD(o, v) (PyDateTime_DATE_GET_FOLD(o) = (v))
|
|
|
|
/* Time accessors for time. */
|
|
#define TIME_GET_HOUR PyDateTime_TIME_GET_HOUR
|
|
#define TIME_GET_MINUTE PyDateTime_TIME_GET_MINUTE
|
|
#define TIME_GET_SECOND PyDateTime_TIME_GET_SECOND
|
|
#define TIME_GET_MICROSECOND PyDateTime_TIME_GET_MICROSECOND
|
|
#define TIME_GET_FOLD PyDateTime_TIME_GET_FOLD
|
|
#define TIME_SET_HOUR(o, v) (PyDateTime_TIME_GET_HOUR(o) = (v))
|
|
#define TIME_SET_MINUTE(o, v) (PyDateTime_TIME_GET_MINUTE(o) = (v))
|
|
#define TIME_SET_SECOND(o, v) (PyDateTime_TIME_GET_SECOND(o) = (v))
|
|
#define TIME_SET_MICROSECOND(o, v) \
|
|
(((o)->data[3] = ((v) & 0xff0000) >> 16), \
|
|
((o)->data[4] = ((v) & 0x00ff00) >> 8), \
|
|
((o)->data[5] = ((v) & 0x0000ff)))
|
|
#define TIME_SET_FOLD(o, v) (PyDateTime_TIME_GET_FOLD(o) = (v))
|
|
|
|
/* Delta accessors for timedelta. */
|
|
#define GET_TD_DAYS(o) (((PyDateTime_Delta *)(o))->days)
|
|
#define GET_TD_SECONDS(o) (((PyDateTime_Delta *)(o))->seconds)
|
|
#define GET_TD_MICROSECONDS(o) (((PyDateTime_Delta *)(o))->microseconds)
|
|
|
|
#define SET_TD_DAYS(o, v) ((o)->days = (v))
|
|
#define SET_TD_SECONDS(o, v) ((o)->seconds = (v))
|
|
#define SET_TD_MICROSECONDS(o, v) ((o)->microseconds = (v))
|
|
|
|
#define HASTZINFO _PyDateTime_HAS_TZINFO
|
|
#define GET_TIME_TZINFO PyDateTime_TIME_GET_TZINFO
|
|
#define GET_DT_TZINFO PyDateTime_DATE_GET_TZINFO
|
|
/* M is a char or int claiming to be a valid month. The macro is equivalent
|
|
* to the two-sided Python test
|
|
* 1 <= M <= 12
|
|
*/
|
|
#define MONTH_IS_SANE(M) ((unsigned int)(M) - 1 < 12)
|
|
|
|
static int check_tzinfo_subclass(PyObject *p);
|
|
|
|
/*[clinic input]
|
|
module datetime
|
|
class datetime.datetime "PyDateTime_DateTime *" "get_datetime_state()->datetime_type"
|
|
class datetime.date "PyDateTime_Date *" "get_datetime_state()->date_type"
|
|
class datetime.time "PyDateTime_Time *" "get_datetime_state()->time_type"
|
|
class datetime.IsoCalendarDate "PyDateTime_IsoCalendarDate *" "get_datetime_state()->isocalendar_date_type"
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=c8f3d834a860d50a]*/
|
|
|
|
#include "clinic/_datetimemodule.c.h"
|
|
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Math utilities.
|
|
*/
|
|
|
|
/* k = i+j overflows iff k differs in sign from both inputs,
|
|
* iff k^i has sign bit set and k^j has sign bit set,
|
|
* iff (k^i)&(k^j) has sign bit set.
|
|
*/
|
|
#define SIGNED_ADD_OVERFLOWED(RESULT, I, J) \
|
|
((((RESULT) ^ (I)) & ((RESULT) ^ (J))) < 0)
|
|
|
|
/* Compute Python divmod(x, y), returning the quotient and storing the
|
|
* remainder into *r. The quotient is the floor of x/y, and that's
|
|
* the real point of this. C will probably truncate instead (C99
|
|
* requires truncation; C89 left it implementation-defined).
|
|
* Simplification: we *require* that y > 0 here. That's appropriate
|
|
* for all the uses made of it. This simplifies the code and makes
|
|
* the overflow case impossible (divmod(LONG_MIN, -1) is the only
|
|
* overflow case).
|
|
*/
|
|
static int
|
|
divmod(int x, int y, int *r)
|
|
{
|
|
int quo;
|
|
|
|
assert(y > 0);
|
|
quo = x / y;
|
|
*r = x - quo * y;
|
|
if (*r < 0) {
|
|
--quo;
|
|
*r += y;
|
|
}
|
|
assert(0 <= *r && *r < y);
|
|
return quo;
|
|
}
|
|
|
|
/* Nearest integer to m / n for integers m and n. Half-integer results
|
|
* are rounded to even.
|
|
*/
|
|
static PyObject *
|
|
divide_nearest(PyObject *m, PyObject *n)
|
|
{
|
|
PyObject *result;
|
|
PyObject *temp;
|
|
|
|
temp = _PyLong_DivmodNear(m, n);
|
|
if (temp == NULL)
|
|
return NULL;
|
|
result = Py_NewRef(PyTuple_GET_ITEM(temp, 0));
|
|
Py_DECREF(temp);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* General calendrical helper functions
|
|
*/
|
|
|
|
/* For each month ordinal in 1..12, the number of days in that month,
|
|
* and the number of days before that month in the same year. These
|
|
* are correct for non-leap years only.
|
|
*/
|
|
static const int _days_in_month[] = {
|
|
0, /* unused; this vector uses 1-based indexing */
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
static const int _days_before_month[] = {
|
|
0, /* unused; this vector uses 1-based indexing */
|
|
0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334
|
|
};
|
|
|
|
/* year -> 1 if leap year, else 0. */
|
|
static int
|
|
is_leap(int year)
|
|
{
|
|
/* Cast year to unsigned. The result is the same either way, but
|
|
* C can generate faster code for unsigned mod than for signed
|
|
* mod (especially for % 4 -- a good compiler should just grab
|
|
* the last 2 bits when the LHS is unsigned).
|
|
*/
|
|
const unsigned int ayear = (unsigned int)year;
|
|
return ayear % 4 == 0 && (ayear % 100 != 0 || ayear % 400 == 0);
|
|
}
|
|
|
|
/* year, month -> number of days in that month in that year */
|
|
static int
|
|
days_in_month(int year, int month)
|
|
{
|
|
assert(month >= 1);
|
|
assert(month <= 12);
|
|
if (month == 2 && is_leap(year))
|
|
return 29;
|
|
else
|
|
return _days_in_month[month];
|
|
}
|
|
|
|
/* year, month -> number of days in year preceding first day of month */
|
|
static int
|
|
days_before_month(int year, int month)
|
|
{
|
|
int days;
|
|
|
|
assert(month >= 1);
|
|
assert(month <= 12);
|
|
days = _days_before_month[month];
|
|
if (month > 2 && is_leap(year))
|
|
++days;
|
|
return days;
|
|
}
|
|
|
|
/* year -> number of days before January 1st of year. Remember that we
|
|
* start with year 1, so days_before_year(1) == 0.
|
|
*/
|
|
static int
|
|
days_before_year(int year)
|
|
{
|
|
int y = year - 1;
|
|
/* This is incorrect if year <= 0; we really want the floor
|
|
* here. But so long as MINYEAR is 1, the smallest year this
|
|
* can see is 1.
|
|
*/
|
|
assert (year >= 1);
|
|
return y*365 + y/4 - y/100 + y/400;
|
|
}
|
|
|
|
/* Number of days in 4, 100, and 400 year cycles. That these have
|
|
* the correct values is asserted in the module init function.
|
|
*/
|
|
#define DI4Y 1461 /* days_before_year(5); days in 4 years */
|
|
#define DI100Y 36524 /* days_before_year(101); days in 100 years */
|
|
#define DI400Y 146097 /* days_before_year(401); days in 400 years */
|
|
|
|
/* ordinal -> year, month, day, considering 01-Jan-0001 as day 1. */
|
|
static void
|
|
ord_to_ymd(int ordinal, int *year, int *month, int *day)
|
|
{
|
|
int n, n1, n4, n100, n400, leapyear, preceding;
|
|
|
|
/* ordinal is a 1-based index, starting at 1-Jan-1. The pattern of
|
|
* leap years repeats exactly every 400 years. The basic strategy is
|
|
* to find the closest 400-year boundary at or before ordinal, then
|
|
* work with the offset from that boundary to ordinal. Life is much
|
|
* clearer if we subtract 1 from ordinal first -- then the values
|
|
* of ordinal at 400-year boundaries are exactly those divisible
|
|
* by DI400Y:
|
|
*
|
|
* D M Y n n-1
|
|
* -- --- ---- ---------- ----------------
|
|
* 31 Dec -400 -DI400Y -DI400Y -1
|
|
* 1 Jan -399 -DI400Y +1 -DI400Y 400-year boundary
|
|
* ...
|
|
* 30 Dec 000 -1 -2
|
|
* 31 Dec 000 0 -1
|
|
* 1 Jan 001 1 0 400-year boundary
|
|
* 2 Jan 001 2 1
|
|
* 3 Jan 001 3 2
|
|
* ...
|
|
* 31 Dec 400 DI400Y DI400Y -1
|
|
* 1 Jan 401 DI400Y +1 DI400Y 400-year boundary
|
|
*/
|
|
assert(ordinal >= 1);
|
|
--ordinal;
|
|
n400 = ordinal / DI400Y;
|
|
n = ordinal % DI400Y;
|
|
*year = n400 * 400 + 1;
|
|
|
|
/* Now n is the (non-negative) offset, in days, from January 1 of
|
|
* year, to the desired date. Now compute how many 100-year cycles
|
|
* precede n.
|
|
* Note that it's possible for n100 to equal 4! In that case 4 full
|
|
* 100-year cycles precede the desired day, which implies the
|
|
* desired day is December 31 at the end of a 400-year cycle.
|
|
*/
|
|
n100 = n / DI100Y;
|
|
n = n % DI100Y;
|
|
|
|
/* Now compute how many 4-year cycles precede it. */
|
|
n4 = n / DI4Y;
|
|
n = n % DI4Y;
|
|
|
|
/* And now how many single years. Again n1 can be 4, and again
|
|
* meaning that the desired day is December 31 at the end of the
|
|
* 4-year cycle.
|
|
*/
|
|
n1 = n / 365;
|
|
n = n % 365;
|
|
|
|
*year += n100 * 100 + n4 * 4 + n1;
|
|
if (n1 == 4 || n100 == 4) {
|
|
assert(n == 0);
|
|
*year -= 1;
|
|
*month = 12;
|
|
*day = 31;
|
|
return;
|
|
}
|
|
|
|
/* Now the year is correct, and n is the offset from January 1. We
|
|
* find the month via an estimate that's either exact or one too
|
|
* large.
|
|
*/
|
|
leapyear = n1 == 3 && (n4 != 24 || n100 == 3);
|
|
assert(leapyear == is_leap(*year));
|
|
*month = (n + 50) >> 5;
|
|
preceding = (_days_before_month[*month] + (*month > 2 && leapyear));
|
|
if (preceding > n) {
|
|
/* estimate is too large */
|
|
*month -= 1;
|
|
preceding -= days_in_month(*year, *month);
|
|
}
|
|
n -= preceding;
|
|
assert(0 <= n);
|
|
assert(n < days_in_month(*year, *month));
|
|
|
|
*day = n + 1;
|
|
}
|
|
|
|
/* year, month, day -> ordinal, considering 01-Jan-0001 as day 1. */
|
|
static int
|
|
ymd_to_ord(int year, int month, int day)
|
|
{
|
|
return days_before_year(year) + days_before_month(year, month) + day;
|
|
}
|
|
|
|
/* Day of week, where Monday==0, ..., Sunday==6. 1/1/1 was a Monday. */
|
|
static int
|
|
weekday(int year, int month, int day)
|
|
{
|
|
return (ymd_to_ord(year, month, day) + 6) % 7;
|
|
}
|
|
|
|
/* Ordinal of the Monday starting week 1 of the ISO year. Week 1 is the
|
|
* first calendar week containing a Thursday.
|
|
*/
|
|
static int
|
|
iso_week1_monday(int year)
|
|
{
|
|
int first_day = ymd_to_ord(year, 1, 1); /* ord of 1/1 */
|
|
/* 0 if 1/1 is a Monday, 1 if a Tue, etc. */
|
|
int first_weekday = (first_day + 6) % 7;
|
|
/* ordinal of closest Monday at or before 1/1 */
|
|
int week1_monday = first_day - first_weekday;
|
|
|
|
if (first_weekday > 3) /* if 1/1 was Fri, Sat, Sun */
|
|
week1_monday += 7;
|
|
return week1_monday;
|
|
}
|
|
|
|
static int
|
|
iso_to_ymd(const int iso_year, const int iso_week, const int iso_day,
|
|
int *year, int *month, int *day) {
|
|
// Year is bounded to 0 < year < 10000 because 9999-12-31 is (9999, 52, 5)
|
|
if (iso_year < MINYEAR || iso_year > MAXYEAR) {
|
|
return -4;
|
|
}
|
|
if (iso_week <= 0 || iso_week >= 53) {
|
|
int out_of_range = 1;
|
|
if (iso_week == 53) {
|
|
// ISO years have 53 weeks in it on years starting with a Thursday
|
|
// and on leap years starting on Wednesday
|
|
int first_weekday = weekday(iso_year, 1, 1);
|
|
if (first_weekday == 3 || (first_weekday == 2 && is_leap(iso_year))) {
|
|
out_of_range = 0;
|
|
}
|
|
}
|
|
|
|
if (out_of_range) {
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
if (iso_day <= 0 || iso_day >= 8) {
|
|
return -3;
|
|
}
|
|
|
|
// Convert (Y, W, D) to (Y, M, D) in-place
|
|
int day_1 = iso_week1_monday(iso_year);
|
|
|
|
int day_offset = (iso_week - 1)*7 + iso_day - 1;
|
|
|
|
ord_to_ymd(day_1 + day_offset, year, month, day);
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Range checkers.
|
|
*/
|
|
|
|
/* Check that -MAX_DELTA_DAYS <= days <= MAX_DELTA_DAYS. If so, return 0.
|
|
* If not, raise OverflowError and return -1.
|
|
*/
|
|
static int
|
|
check_delta_day_range(int days)
|
|
{
|
|
if (-MAX_DELTA_DAYS <= days && days <= MAX_DELTA_DAYS)
|
|
return 0;
|
|
PyErr_Format(PyExc_OverflowError,
|
|
"days=%d; must have magnitude <= %d",
|
|
days, MAX_DELTA_DAYS);
|
|
return -1;
|
|
}
|
|
|
|
/* Check that date arguments are in range. Return 0 if they are. If they
|
|
* aren't, raise ValueError and return -1.
|
|
*/
|
|
static int
|
|
check_date_args(int year, int month, int day)
|
|
{
|
|
|
|
if (year < MINYEAR || year > MAXYEAR) {
|
|
PyErr_Format(PyExc_ValueError, "year %i is out of range", year);
|
|
return -1;
|
|
}
|
|
if (month < 1 || month > 12) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"month must be in 1..12");
|
|
return -1;
|
|
}
|
|
if (day < 1 || day > days_in_month(year, month)) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"day is out of range for month");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Check that time arguments are in range. Return 0 if they are. If they
|
|
* aren't, raise ValueError and return -1.
|
|
*/
|
|
static int
|
|
check_time_args(int h, int m, int s, int us, int fold)
|
|
{
|
|
if (h < 0 || h > 23) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"hour must be in 0..23");
|
|
return -1;
|
|
}
|
|
if (m < 0 || m > 59) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"minute must be in 0..59");
|
|
return -1;
|
|
}
|
|
if (s < 0 || s > 59) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"second must be in 0..59");
|
|
return -1;
|
|
}
|
|
if (us < 0 || us > 999999) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"microsecond must be in 0..999999");
|
|
return -1;
|
|
}
|
|
if (fold != 0 && fold != 1) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"fold must be either 0 or 1");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Normalization utilities.
|
|
*/
|
|
|
|
/* One step of a mixed-radix conversion. A "hi" unit is equivalent to
|
|
* factor "lo" units. factor must be > 0. If *lo is less than 0, or
|
|
* at least factor, enough of *lo is converted into "hi" units so that
|
|
* 0 <= *lo < factor. The input values must be such that int overflow
|
|
* is impossible.
|
|
*/
|
|
static void
|
|
normalize_pair(int *hi, int *lo, int factor)
|
|
{
|
|
assert(factor > 0);
|
|
assert(lo != hi);
|
|
if (*lo < 0 || *lo >= factor) {
|
|
const int num_hi = divmod(*lo, factor, lo);
|
|
const int new_hi = *hi + num_hi;
|
|
assert(! SIGNED_ADD_OVERFLOWED(new_hi, *hi, num_hi));
|
|
*hi = new_hi;
|
|
}
|
|
assert(0 <= *lo && *lo < factor);
|
|
}
|
|
|
|
/* Fiddle days (d), seconds (s), and microseconds (us) so that
|
|
* 0 <= *s < 24*3600
|
|
* 0 <= *us < 1000000
|
|
* The input values must be such that the internals don't overflow.
|
|
* The way this routine is used, we don't get close.
|
|
*/
|
|
static void
|
|
normalize_d_s_us(int *d, int *s, int *us)
|
|
{
|
|
if (*us < 0 || *us >= 1000000) {
|
|
normalize_pair(s, us, 1000000);
|
|
/* |s| can't be bigger than about
|
|
* |original s| + |original us|/1000000 now.
|
|
*/
|
|
|
|
}
|
|
if (*s < 0 || *s >= 24*3600) {
|
|
normalize_pair(d, s, 24*3600);
|
|
/* |d| can't be bigger than about
|
|
* |original d| +
|
|
* (|original s| + |original us|/1000000) / (24*3600) now.
|
|
*/
|
|
}
|
|
assert(0 <= *s && *s < 24*3600);
|
|
assert(0 <= *us && *us < 1000000);
|
|
}
|
|
|
|
/* Fiddle years (y), months (m), and days (d) so that
|
|
* 1 <= *m <= 12
|
|
* 1 <= *d <= days_in_month(*y, *m)
|
|
* The input values must be such that the internals don't overflow.
|
|
* The way this routine is used, we don't get close.
|
|
*/
|
|
static int
|
|
normalize_y_m_d(int *y, int *m, int *d)
|
|
{
|
|
int dim; /* # of days in month */
|
|
|
|
/* In actual use, m is always the month component extracted from a
|
|
* date/datetime object. Therefore it is always in [1, 12] range.
|
|
*/
|
|
|
|
assert(1 <= *m && *m <= 12);
|
|
|
|
/* Now only day can be out of bounds (year may also be out of bounds
|
|
* for a datetime object, but we don't care about that here).
|
|
* If day is out of bounds, what to do is arguable, but at least the
|
|
* method here is principled and explainable.
|
|
*/
|
|
dim = days_in_month(*y, *m);
|
|
if (*d < 1 || *d > dim) {
|
|
/* Move day-1 days from the first of the month. First try to
|
|
* get off cheap if we're only one day out of range
|
|
* (adjustments for timezone alone can't be worse than that).
|
|
*/
|
|
if (*d == 0) {
|
|
--*m;
|
|
if (*m > 0)
|
|
*d = days_in_month(*y, *m);
|
|
else {
|
|
--*y;
|
|
*m = 12;
|
|
*d = 31;
|
|
}
|
|
}
|
|
else if (*d == dim + 1) {
|
|
/* move forward a day */
|
|
++*m;
|
|
*d = 1;
|
|
if (*m > 12) {
|
|
*m = 1;
|
|
++*y;
|
|
}
|
|
}
|
|
else {
|
|
int ordinal = ymd_to_ord(*y, *m, 1) +
|
|
*d - 1;
|
|
if (ordinal < 1 || ordinal > MAXORDINAL) {
|
|
goto error;
|
|
} else {
|
|
ord_to_ymd(ordinal, y, m, d);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
assert(*m > 0);
|
|
assert(*d > 0);
|
|
if (MINYEAR <= *y && *y <= MAXYEAR)
|
|
return 0;
|
|
error:
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"date value out of range");
|
|
return -1;
|
|
|
|
}
|
|
|
|
/* Fiddle out-of-bounds months and days so that the result makes some kind
|
|
* of sense. The parameters are both inputs and outputs. Returns < 0 on
|
|
* failure, where failure means the adjusted year is out of bounds.
|
|
*/
|
|
static int
|
|
normalize_date(int *year, int *month, int *day)
|
|
{
|
|
return normalize_y_m_d(year, month, day);
|
|
}
|
|
|
|
/* Force all the datetime fields into range. The parameters are both
|
|
* inputs and outputs. Returns < 0 on error.
|
|
*/
|
|
static int
|
|
normalize_datetime(int *year, int *month, int *day,
|
|
int *hour, int *minute, int *second,
|
|
int *microsecond)
|
|
{
|
|
normalize_pair(second, microsecond, 1000000);
|
|
normalize_pair(minute, second, 60);
|
|
normalize_pair(hour, minute, 60);
|
|
normalize_pair(day, hour, 24);
|
|
return normalize_date(year, month, day);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Basic object allocation: tp_alloc implementations. These allocate
|
|
* Python objects of the right size and type, and do the Python object-
|
|
* initialization bit. If there's not enough memory, they return NULL after
|
|
* setting MemoryError. All data members remain uninitialized trash.
|
|
*
|
|
* We abuse the tp_alloc "nitems" argument to communicate whether a tzinfo
|
|
* member is needed. This is ugly, imprecise, and possibly insecure.
|
|
* tp_basicsize for the time and datetime types is set to the size of the
|
|
* struct that has room for the tzinfo member, so subclasses in Python will
|
|
* allocate enough space for a tzinfo member whether or not one is actually
|
|
* needed. That's the "ugly and imprecise" parts. The "possibly insecure"
|
|
* part is that PyType_GenericAlloc() (which subclasses in Python end up
|
|
* using) just happens today to effectively ignore the nitems argument
|
|
* when tp_itemsize is 0, which it is for these type objects. If that
|
|
* changes, perhaps the callers of tp_alloc slots in this file should
|
|
* be changed to force a 0 nitems argument unless the type being allocated
|
|
* is a base type implemented in this file (so that tp_alloc is time_alloc
|
|
* or datetime_alloc below, which know about the nitems abuse).
|
|
*/
|
|
|
|
static PyObject *
|
|
time_alloc(PyTypeObject *type, Py_ssize_t aware)
|
|
{
|
|
size_t size = aware ? sizeof(PyDateTime_Time) : sizeof(_PyDateTime_BaseTime);
|
|
PyObject *self = (PyObject *)PyObject_Malloc(size);
|
|
if (self == NULL) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
_PyObject_Init(self, type);
|
|
return self;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_alloc(PyTypeObject *type, Py_ssize_t aware)
|
|
{
|
|
size_t size = aware ? sizeof(PyDateTime_DateTime) : sizeof(_PyDateTime_BaseDateTime);
|
|
PyObject *self = (PyObject *)PyObject_Malloc(size);
|
|
if (self == NULL) {
|
|
return PyErr_NoMemory();
|
|
}
|
|
_PyObject_Init(self, type);
|
|
return self;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Helpers for setting object fields. These work on pointers to the
|
|
* appropriate base class.
|
|
*/
|
|
|
|
/* For date and datetime. */
|
|
static void
|
|
set_date_fields(PyDateTime_Date *self, int y, int m, int d)
|
|
{
|
|
self->hashcode = -1;
|
|
SET_YEAR(self, y);
|
|
SET_MONTH(self, m);
|
|
SET_DAY(self, d);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* String parsing utilities and helper functions
|
|
*/
|
|
|
|
static unsigned char
|
|
is_digit(const char c) {
|
|
return ((unsigned int)(c - '0')) < 10;
|
|
}
|
|
|
|
static const char *
|
|
parse_digits(const char *ptr, int *var, size_t num_digits)
|
|
{
|
|
for (size_t i = 0; i < num_digits; ++i) {
|
|
unsigned int tmp = (unsigned int)(*(ptr++) - '0');
|
|
if (tmp > 9) {
|
|
return NULL;
|
|
}
|
|
*var *= 10;
|
|
*var += (signed int)tmp;
|
|
}
|
|
|
|
return ptr;
|
|
}
|
|
|
|
static int
|
|
parse_isoformat_date(const char *dtstr, const size_t len, int *year, int *month, int *day)
|
|
{
|
|
/* Parse the date components of the result of date.isoformat()
|
|
*
|
|
* Return codes:
|
|
* 0: Success
|
|
* -1: Failed to parse date component
|
|
* -2: Inconsistent date separator usage
|
|
* -3: Failed to parse ISO week.
|
|
* -4: Failed to parse ISO day.
|
|
* -5, -6, -7: Failure in iso_to_ymd
|
|
*/
|
|
const char *p = dtstr;
|
|
p = parse_digits(p, year, 4);
|
|
if (NULL == p) {
|
|
return -1;
|
|
}
|
|
|
|
const unsigned char uses_separator = (*p == '-');
|
|
if (uses_separator) {
|
|
++p;
|
|
}
|
|
|
|
if(*p == 'W') {
|
|
// This is an isocalendar-style date string
|
|
p++;
|
|
int iso_week = 0;
|
|
int iso_day = 0;
|
|
|
|
p = parse_digits(p, &iso_week, 2);
|
|
if (NULL == p) {
|
|
return -3;
|
|
}
|
|
|
|
assert(p > dtstr);
|
|
if ((size_t)(p - dtstr) < len) {
|
|
if (uses_separator && *(p++) != '-') {
|
|
return -2;
|
|
}
|
|
|
|
p = parse_digits(p, &iso_day, 1);
|
|
if (NULL == p) {
|
|
return -4;
|
|
}
|
|
} else {
|
|
iso_day = 1;
|
|
}
|
|
|
|
int rv = iso_to_ymd(*year, iso_week, iso_day, year, month, day);
|
|
if (rv) {
|
|
return -3 + rv;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
p = parse_digits(p, month, 2);
|
|
if (NULL == p) {
|
|
return -1;
|
|
}
|
|
|
|
if (uses_separator && *(p++) != '-') {
|
|
return -2;
|
|
}
|
|
p = parse_digits(p, day, 2);
|
|
if (p == NULL) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
parse_hh_mm_ss_ff(const char *tstr, const char *tstr_end, int *hour,
|
|
int *minute, int *second, int *microsecond)
|
|
{
|
|
*hour = *minute = *second = *microsecond = 0;
|
|
const char *p = tstr;
|
|
const char *p_end = tstr_end;
|
|
int *vals[3] = {hour, minute, second};
|
|
// This is initialized to satisfy an erroneous compiler warning.
|
|
unsigned char has_separator = 1;
|
|
|
|
// Parse [HH[:?MM[:?SS]]]
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
p = parse_digits(p, vals[i], 2);
|
|
if (NULL == p) {
|
|
return -3;
|
|
}
|
|
|
|
char c = *(p++);
|
|
if (i == 0) {
|
|
has_separator = (c == ':');
|
|
}
|
|
|
|
if (p >= p_end) {
|
|
return c != '\0';
|
|
}
|
|
else if (has_separator && (c == ':')) {
|
|
continue;
|
|
}
|
|
else if (c == '.' || c == ',') {
|
|
if (i < 2) {
|
|
return -3; // Decimal mark on hour or minute
|
|
}
|
|
break;
|
|
} else if (!has_separator) {
|
|
--p;
|
|
} else {
|
|
return -4; // Malformed time separator
|
|
}
|
|
}
|
|
|
|
// Parse fractional components
|
|
size_t len_remains = p_end - p;
|
|
size_t to_parse = len_remains;
|
|
if (len_remains >= 6) {
|
|
to_parse = 6;
|
|
}
|
|
|
|
p = parse_digits(p, microsecond, to_parse);
|
|
if (NULL == p) {
|
|
return -3;
|
|
}
|
|
|
|
static int correction[] = {
|
|
100000, 10000, 1000, 100, 10
|
|
};
|
|
|
|
if (to_parse < 6) {
|
|
*microsecond *= correction[to_parse-1];
|
|
}
|
|
|
|
while (is_digit(*p)){
|
|
++p; // skip truncated digits
|
|
}
|
|
|
|
// Return 1 if it's not the end of the string
|
|
return *p != '\0';
|
|
}
|
|
|
|
static int
|
|
parse_isoformat_time(const char *dtstr, size_t dtlen, int *hour, int *minute,
|
|
int *second, int *microsecond, int *tzoffset,
|
|
int *tzmicrosecond)
|
|
{
|
|
// Parse the time portion of a datetime.isoformat() string
|
|
//
|
|
// Return codes:
|
|
// 0: Success (no tzoffset)
|
|
// 1: Success (with tzoffset)
|
|
// -3: Failed to parse time component
|
|
// -4: Failed to parse time separator
|
|
// -5: Malformed timezone string
|
|
|
|
const char *p = dtstr;
|
|
const char *p_end = dtstr + dtlen;
|
|
|
|
const char *tzinfo_pos = p;
|
|
do {
|
|
if (*tzinfo_pos == 'Z' || *tzinfo_pos == '+' || *tzinfo_pos == '-') {
|
|
break;
|
|
}
|
|
} while (++tzinfo_pos < p_end);
|
|
|
|
int rv = parse_hh_mm_ss_ff(dtstr, tzinfo_pos, hour, minute, second,
|
|
microsecond);
|
|
|
|
if (rv < 0) {
|
|
return rv;
|
|
}
|
|
else if (tzinfo_pos == p_end) {
|
|
// We know that there's no time zone, so if there's stuff at the
|
|
// end of the string it's an error.
|
|
if (rv == 1) {
|
|
return -5;
|
|
}
|
|
else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Special case UTC / Zulu time.
|
|
if (*tzinfo_pos == 'Z') {
|
|
*tzoffset = 0;
|
|
*tzmicrosecond = 0;
|
|
|
|
if (*(tzinfo_pos + 1) != '\0') {
|
|
return -5;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
int tzsign = (*tzinfo_pos == '-') ? -1 : 1;
|
|
tzinfo_pos++;
|
|
int tzhour = 0, tzminute = 0, tzsecond = 0;
|
|
rv = parse_hh_mm_ss_ff(tzinfo_pos, p_end, &tzhour, &tzminute, &tzsecond,
|
|
tzmicrosecond);
|
|
|
|
*tzoffset = tzsign * ((tzhour * 3600) + (tzminute * 60) + tzsecond);
|
|
*tzmicrosecond *= tzsign;
|
|
|
|
return rv ? -5 : 1;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Create various objects, mostly without range checking.
|
|
*/
|
|
|
|
/* Create a date instance with no range checking. */
|
|
static PyObject *
|
|
new_date_ex(int year, int month, int day, PyTypeObject *type)
|
|
{
|
|
PyDateTime_Date *self;
|
|
|
|
if (check_date_args(year, month, day) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
self = (PyDateTime_Date *)(type->tp_alloc(type, 0));
|
|
if (self != NULL)
|
|
set_date_fields(self, year, month, day);
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
#define new_date(year, month, day) \
|
|
new_date_ex(year, month, day, DATE_TYPE(NO_STATE))
|
|
|
|
// Forward declaration
|
|
static PyObject *
|
|
new_datetime_ex(int, int, int, int, int, int, int, PyObject *, PyTypeObject *);
|
|
|
|
/* Create date instance with no range checking, or call subclass constructor */
|
|
static PyObject *
|
|
new_date_subclass_ex(int year, int month, int day, PyObject *cls)
|
|
{
|
|
PyObject *result;
|
|
// We have "fast path" constructors for two subclasses: date and datetime
|
|
if ((PyTypeObject *)cls == DATE_TYPE(NO_STATE)) {
|
|
result = new_date_ex(year, month, day, (PyTypeObject *)cls);
|
|
}
|
|
else if ((PyTypeObject *)cls == DATETIME_TYPE(NO_STATE)) {
|
|
result = new_datetime_ex(year, month, day, 0, 0, 0, 0, Py_None,
|
|
(PyTypeObject *)cls);
|
|
}
|
|
else {
|
|
result = PyObject_CallFunction(cls, "iii", year, month, day);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Create a datetime instance with no range checking. */
|
|
static PyObject *
|
|
new_datetime_ex2(int year, int month, int day, int hour, int minute,
|
|
int second, int usecond, PyObject *tzinfo, int fold, PyTypeObject *type)
|
|
{
|
|
PyDateTime_DateTime *self;
|
|
char aware = tzinfo != Py_None;
|
|
|
|
if (check_date_args(year, month, day) < 0) {
|
|
return NULL;
|
|
}
|
|
if (check_time_args(hour, minute, second, usecond, fold) < 0) {
|
|
return NULL;
|
|
}
|
|
if (check_tzinfo_subclass(tzinfo) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
self = (PyDateTime_DateTime *) (type->tp_alloc(type, aware));
|
|
if (self != NULL) {
|
|
self->hastzinfo = aware;
|
|
set_date_fields((PyDateTime_Date *)self, year, month, day);
|
|
DATE_SET_HOUR(self, hour);
|
|
DATE_SET_MINUTE(self, minute);
|
|
DATE_SET_SECOND(self, second);
|
|
DATE_SET_MICROSECOND(self, usecond);
|
|
if (aware) {
|
|
self->tzinfo = Py_NewRef(tzinfo);
|
|
}
|
|
DATE_SET_FOLD(self, fold);
|
|
}
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
static PyObject *
|
|
new_datetime_ex(int year, int month, int day, int hour, int minute,
|
|
int second, int usecond, PyObject *tzinfo, PyTypeObject *type)
|
|
{
|
|
return new_datetime_ex2(year, month, day, hour, minute, second, usecond,
|
|
tzinfo, 0, type);
|
|
}
|
|
|
|
#define new_datetime(y, m, d, hh, mm, ss, us, tzinfo, fold) \
|
|
new_datetime_ex2(y, m, d, hh, mm, ss, us, tzinfo, fold, DATETIME_TYPE(NO_STATE))
|
|
|
|
static PyObject *
|
|
call_subclass_fold(PyObject *cls, int fold, const char *format, ...)
|
|
{
|
|
PyObject *kwargs = NULL, *res = NULL;
|
|
va_list va;
|
|
|
|
va_start(va, format);
|
|
PyObject *args = Py_VaBuildValue(format, va);
|
|
va_end(va);
|
|
if (args == NULL) {
|
|
return NULL;
|
|
}
|
|
if (fold) {
|
|
kwargs = PyDict_New();
|
|
if (kwargs == NULL) {
|
|
goto Done;
|
|
}
|
|
PyObject *obj = PyLong_FromLong(fold);
|
|
if (obj == NULL) {
|
|
goto Done;
|
|
}
|
|
int err = PyDict_SetItemString(kwargs, "fold", obj);
|
|
Py_DECREF(obj);
|
|
if (err < 0) {
|
|
goto Done;
|
|
}
|
|
}
|
|
res = PyObject_Call(cls, args, kwargs);
|
|
Done:
|
|
Py_DECREF(args);
|
|
Py_XDECREF(kwargs);
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
new_datetime_subclass_fold_ex(int year, int month, int day, int hour, int minute,
|
|
int second, int usecond, PyObject *tzinfo,
|
|
int fold, PyObject *cls)
|
|
{
|
|
PyObject* dt;
|
|
if ((PyTypeObject*)cls == DATETIME_TYPE(NO_STATE)) {
|
|
// Use the fast path constructor
|
|
dt = new_datetime(year, month, day, hour, minute, second, usecond,
|
|
tzinfo, fold);
|
|
}
|
|
else {
|
|
// Subclass
|
|
dt = call_subclass_fold(cls, fold, "iiiiiiiO", year, month, day,
|
|
hour, minute, second, usecond, tzinfo);
|
|
}
|
|
|
|
return dt;
|
|
}
|
|
|
|
static PyObject *
|
|
new_datetime_subclass_ex(int year, int month, int day, int hour, int minute,
|
|
int second, int usecond, PyObject *tzinfo,
|
|
PyObject *cls) {
|
|
return new_datetime_subclass_fold_ex(year, month, day, hour, minute,
|
|
second, usecond, tzinfo, 0,
|
|
cls);
|
|
}
|
|
|
|
/* Create a time instance with no range checking. */
|
|
static PyObject *
|
|
new_time_ex2(int hour, int minute, int second, int usecond,
|
|
PyObject *tzinfo, int fold, PyTypeObject *type)
|
|
{
|
|
PyDateTime_Time *self;
|
|
char aware = tzinfo != Py_None;
|
|
|
|
if (check_time_args(hour, minute, second, usecond, fold) < 0) {
|
|
return NULL;
|
|
}
|
|
if (check_tzinfo_subclass(tzinfo) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
self = (PyDateTime_Time *) (type->tp_alloc(type, aware));
|
|
if (self != NULL) {
|
|
self->hastzinfo = aware;
|
|
self->hashcode = -1;
|
|
TIME_SET_HOUR(self, hour);
|
|
TIME_SET_MINUTE(self, minute);
|
|
TIME_SET_SECOND(self, second);
|
|
TIME_SET_MICROSECOND(self, usecond);
|
|
if (aware) {
|
|
self->tzinfo = Py_NewRef(tzinfo);
|
|
}
|
|
TIME_SET_FOLD(self, fold);
|
|
}
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
static PyObject *
|
|
new_time_ex(int hour, int minute, int second, int usecond,
|
|
PyObject *tzinfo, PyTypeObject *type)
|
|
{
|
|
return new_time_ex2(hour, minute, second, usecond, tzinfo, 0, type);
|
|
}
|
|
|
|
#define new_time(hh, mm, ss, us, tzinfo, fold) \
|
|
new_time_ex2(hh, mm, ss, us, tzinfo, fold, TIME_TYPE(NO_STATE))
|
|
|
|
static PyObject *
|
|
new_time_subclass_fold_ex(int hour, int minute, int second, int usecond,
|
|
PyObject *tzinfo, int fold, PyObject *cls)
|
|
{
|
|
PyObject *t;
|
|
if ((PyTypeObject*)cls == TIME_TYPE(NO_STATE)) {
|
|
// Use the fast path constructor
|
|
t = new_time(hour, minute, second, usecond, tzinfo, fold);
|
|
}
|
|
else {
|
|
// Subclass
|
|
t = call_subclass_fold(cls, fold, "iiiiO", hour, minute, second,
|
|
usecond, tzinfo);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
static PyDateTime_Delta * look_up_delta(int, int, int, PyTypeObject *);
|
|
|
|
/* Create a timedelta instance. Normalize the members iff normalize is
|
|
* true. Passing false is a speed optimization, if you know for sure
|
|
* that seconds and microseconds are already in their proper ranges. In any
|
|
* case, raises OverflowError and returns NULL if the normalized days is out
|
|
* of range.
|
|
*/
|
|
static PyObject *
|
|
new_delta_ex(int days, int seconds, int microseconds, int normalize,
|
|
PyTypeObject *type)
|
|
{
|
|
PyDateTime_Delta *self;
|
|
|
|
if (normalize)
|
|
normalize_d_s_us(&days, &seconds, µseconds);
|
|
assert(0 <= seconds && seconds < 24*3600);
|
|
assert(0 <= microseconds && microseconds < 1000000);
|
|
|
|
if (check_delta_day_range(days) < 0)
|
|
return NULL;
|
|
|
|
self = look_up_delta(days, seconds, microseconds, type);
|
|
if (self != NULL) {
|
|
return (PyObject *)self;
|
|
}
|
|
assert(!PyErr_Occurred());
|
|
|
|
self = (PyDateTime_Delta *) (type->tp_alloc(type, 0));
|
|
if (self != NULL) {
|
|
self->hashcode = -1;
|
|
SET_TD_DAYS(self, days);
|
|
SET_TD_SECONDS(self, seconds);
|
|
SET_TD_MICROSECONDS(self, microseconds);
|
|
}
|
|
return (PyObject *) self;
|
|
}
|
|
|
|
#define new_delta(d, s, us, normalize) \
|
|
new_delta_ex(d, s, us, normalize, DELTA_TYPE(NO_STATE))
|
|
|
|
|
|
typedef struct
|
|
{
|
|
PyObject_HEAD
|
|
PyObject *offset;
|
|
PyObject *name;
|
|
} PyDateTime_TimeZone;
|
|
|
|
static PyDateTime_TimeZone * look_up_timezone(PyObject *offset, PyObject *name);
|
|
|
|
/* Create new timezone instance checking offset range. This
|
|
function does not check the name argument. Caller must assure
|
|
that offset is a timedelta instance and name is either NULL
|
|
or a unicode object. */
|
|
static PyObject *
|
|
create_timezone(PyObject *offset, PyObject *name)
|
|
{
|
|
PyDateTime_TimeZone *self;
|
|
PyTypeObject *type = TIMEZONE_TYPE(NO_STATE);
|
|
|
|
assert(offset != NULL);
|
|
assert(PyDelta_Check(offset));
|
|
assert(name == NULL || PyUnicode_Check(name));
|
|
|
|
self = look_up_timezone(offset, name);
|
|
if (self != NULL) {
|
|
return (PyObject *)self;
|
|
}
|
|
assert(!PyErr_Occurred());
|
|
|
|
self = (PyDateTime_TimeZone *)(type->tp_alloc(type, 0));
|
|
if (self == NULL) {
|
|
return NULL;
|
|
}
|
|
self->offset = Py_NewRef(offset);
|
|
self->name = Py_XNewRef(name);
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
static int delta_bool(PyDateTime_Delta *self);
|
|
static PyDateTime_TimeZone utc_timezone;
|
|
|
|
static PyObject *
|
|
new_timezone(PyObject *offset, PyObject *name)
|
|
{
|
|
assert(offset != NULL);
|
|
assert(PyDelta_Check(offset));
|
|
assert(name == NULL || PyUnicode_Check(name));
|
|
|
|
if (name == NULL && delta_bool((PyDateTime_Delta *)offset) == 0) {
|
|
return Py_NewRef(CONST_UTC(NO_STATE));
|
|
}
|
|
if ((GET_TD_DAYS(offset) == -1 &&
|
|
GET_TD_SECONDS(offset) == 0 &&
|
|
GET_TD_MICROSECONDS(offset) < 1) ||
|
|
GET_TD_DAYS(offset) < -1 || GET_TD_DAYS(offset) >= 1) {
|
|
PyErr_Format(PyExc_ValueError, "offset must be a timedelta"
|
|
" strictly between -timedelta(hours=24) and"
|
|
" timedelta(hours=24),"
|
|
" not %R.", offset);
|
|
return NULL;
|
|
}
|
|
|
|
return create_timezone(offset, name);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* tzinfo helpers.
|
|
*/
|
|
|
|
/* Ensure that p is None or of a tzinfo subclass. Return 0 if OK; if not
|
|
* raise TypeError and return -1.
|
|
*/
|
|
static int
|
|
check_tzinfo_subclass(PyObject *p)
|
|
{
|
|
if (p == Py_None || PyTZInfo_Check(p))
|
|
return 0;
|
|
PyErr_Format(PyExc_TypeError,
|
|
"tzinfo argument must be None or of a tzinfo subclass, "
|
|
"not type '%s'",
|
|
Py_TYPE(p)->tp_name);
|
|
return -1;
|
|
}
|
|
|
|
/* If self has a tzinfo member, return a BORROWED reference to it. Else
|
|
* return NULL, which is NOT AN ERROR. There are no error returns here,
|
|
* and the caller must not decref the result.
|
|
*/
|
|
static PyObject *
|
|
get_tzinfo_member(PyObject *self)
|
|
{
|
|
PyObject *tzinfo = NULL;
|
|
|
|
if (PyDateTime_Check(self) && HASTZINFO(self))
|
|
tzinfo = ((PyDateTime_DateTime *)self)->tzinfo;
|
|
else if (PyTime_Check(self) && HASTZINFO(self))
|
|
tzinfo = ((PyDateTime_Time *)self)->tzinfo;
|
|
|
|
return tzinfo;
|
|
}
|
|
|
|
/* Call getattr(tzinfo, name)(tzinfoarg), and check the result. tzinfo must
|
|
* be an instance of the tzinfo class. If the method returns None, this
|
|
* returns None. If the method doesn't return None or timedelta, TypeError is
|
|
* raised and this returns NULL. If it returns a timedelta and the value is
|
|
* out of range or isn't a whole number of minutes, ValueError is raised and
|
|
* this returns NULL. Else result is returned.
|
|
*/
|
|
static PyObject *
|
|
call_tzinfo_method(PyObject *tzinfo, const char *name, PyObject *tzinfoarg)
|
|
{
|
|
PyObject *offset;
|
|
|
|
assert(tzinfo != NULL);
|
|
assert(PyTZInfo_Check(tzinfo) || tzinfo == Py_None);
|
|
assert(tzinfoarg != NULL);
|
|
|
|
if (tzinfo == Py_None)
|
|
Py_RETURN_NONE;
|
|
offset = PyObject_CallMethod(tzinfo, name, "O", tzinfoarg);
|
|
if (offset == Py_None || offset == NULL)
|
|
return offset;
|
|
if (PyDelta_Check(offset)) {
|
|
if ((GET_TD_DAYS(offset) == -1 &&
|
|
GET_TD_SECONDS(offset) == 0 &&
|
|
GET_TD_MICROSECONDS(offset) < 1) ||
|
|
GET_TD_DAYS(offset) < -1 || GET_TD_DAYS(offset) >= 1) {
|
|
Py_DECREF(offset);
|
|
PyErr_Format(PyExc_ValueError, "offset must be a timedelta"
|
|
" strictly between -timedelta(hours=24) and"
|
|
" timedelta(hours=24).");
|
|
return NULL;
|
|
}
|
|
}
|
|
else {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"tzinfo.%s() must return None or "
|
|
"timedelta, not '%.200s'",
|
|
name, Py_TYPE(offset)->tp_name);
|
|
Py_DECREF(offset);
|
|
return NULL;
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
/* Call tzinfo.utcoffset(tzinfoarg), and extract an integer from the
|
|
* result. tzinfo must be an instance of the tzinfo class. If utcoffset()
|
|
* returns None, call_utcoffset returns 0 and sets *none to 1. If uctoffset()
|
|
* doesn't return None or timedelta, TypeError is raised and this returns -1.
|
|
* If utcoffset() returns an out of range timedelta,
|
|
* ValueError is raised and this returns -1. Else *none is
|
|
* set to 0 and the offset is returned (as timedelta, positive east of UTC).
|
|
*/
|
|
static PyObject *
|
|
call_utcoffset(PyObject *tzinfo, PyObject *tzinfoarg)
|
|
{
|
|
return call_tzinfo_method(tzinfo, "utcoffset", tzinfoarg);
|
|
}
|
|
|
|
/* Call tzinfo.dst(tzinfoarg), and extract an integer from the
|
|
* result. tzinfo must be an instance of the tzinfo class. If dst()
|
|
* returns None, call_dst returns 0 and sets *none to 1. If dst()
|
|
* doesn't return None or timedelta, TypeError is raised and this
|
|
* returns -1. If dst() returns an invalid timedelta for a UTC offset,
|
|
* ValueError is raised and this returns -1. Else *none is set to 0 and
|
|
* the offset is returned (as timedelta, positive east of UTC).
|
|
*/
|
|
static PyObject *
|
|
call_dst(PyObject *tzinfo, PyObject *tzinfoarg)
|
|
{
|
|
return call_tzinfo_method(tzinfo, "dst", tzinfoarg);
|
|
}
|
|
|
|
/* Call tzinfo.tzname(tzinfoarg), and return the result. tzinfo must be
|
|
* an instance of the tzinfo class or None. If tzinfo isn't None, and
|
|
* tzname() doesn't return None or a string, TypeError is raised and this
|
|
* returns NULL. If the result is a string, we ensure it is a Unicode
|
|
* string.
|
|
*/
|
|
static PyObject *
|
|
call_tzname(PyObject *tzinfo, PyObject *tzinfoarg)
|
|
{
|
|
PyObject *result;
|
|
assert(tzinfo != NULL);
|
|
assert(check_tzinfo_subclass(tzinfo) >= 0);
|
|
assert(tzinfoarg != NULL);
|
|
|
|
if (tzinfo == Py_None)
|
|
Py_RETURN_NONE;
|
|
|
|
result = PyObject_CallMethodOneArg(tzinfo, &_Py_ID(tzname), tzinfoarg);
|
|
|
|
if (result == NULL || result == Py_None)
|
|
return result;
|
|
|
|
if (!PyUnicode_Check(result)) {
|
|
PyErr_Format(PyExc_TypeError, "tzinfo.tzname() must "
|
|
"return None or a string, not '%s'",
|
|
Py_TYPE(result)->tp_name);
|
|
Py_SETREF(result, NULL);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* repr is like "someclass(arg1, arg2)". If tzinfo isn't None,
|
|
* stuff
|
|
* ", tzinfo=" + repr(tzinfo)
|
|
* before the closing ")".
|
|
*/
|
|
static PyObject *
|
|
append_keyword_tzinfo(PyObject *repr, PyObject *tzinfo)
|
|
{
|
|
PyObject *temp;
|
|
|
|
assert(PyUnicode_Check(repr));
|
|
assert(tzinfo);
|
|
if (tzinfo == Py_None)
|
|
return repr;
|
|
/* Get rid of the trailing ')'. */
|
|
assert(PyUnicode_READ_CHAR(repr, PyUnicode_GET_LENGTH(repr)-1) == ')');
|
|
temp = PyUnicode_Substring(repr, 0, PyUnicode_GET_LENGTH(repr) - 1);
|
|
Py_DECREF(repr);
|
|
if (temp == NULL)
|
|
return NULL;
|
|
repr = PyUnicode_FromFormat("%U, tzinfo=%R)", temp, tzinfo);
|
|
Py_DECREF(temp);
|
|
return repr;
|
|
}
|
|
|
|
/* repr is like "someclass(arg1, arg2)". If fold isn't 0,
|
|
* stuff
|
|
* ", fold=" + repr(tzinfo)
|
|
* before the closing ")".
|
|
*/
|
|
static PyObject *
|
|
append_keyword_fold(PyObject *repr, int fold)
|
|
{
|
|
PyObject *temp;
|
|
|
|
assert(PyUnicode_Check(repr));
|
|
if (fold == 0)
|
|
return repr;
|
|
/* Get rid of the trailing ')'. */
|
|
assert(PyUnicode_READ_CHAR(repr, PyUnicode_GET_LENGTH(repr)-1) == ')');
|
|
temp = PyUnicode_Substring(repr, 0, PyUnicode_GET_LENGTH(repr) - 1);
|
|
Py_DECREF(repr);
|
|
if (temp == NULL)
|
|
return NULL;
|
|
repr = PyUnicode_FromFormat("%U, fold=%d)", temp, fold);
|
|
Py_DECREF(temp);
|
|
return repr;
|
|
}
|
|
|
|
static inline PyObject *
|
|
tzinfo_from_isoformat_results(int rv, int tzoffset, int tz_useconds)
|
|
{
|
|
PyObject *tzinfo;
|
|
if (rv == 1) {
|
|
// Create a timezone from offset in seconds (0 returns UTC)
|
|
if (tzoffset == 0) {
|
|
return Py_NewRef(CONST_UTC(NO_STATE));
|
|
}
|
|
|
|
PyObject *delta = new_delta(0, tzoffset, tz_useconds, 1);
|
|
if (delta == NULL) {
|
|
return NULL;
|
|
}
|
|
tzinfo = new_timezone(delta, NULL);
|
|
Py_DECREF(delta);
|
|
}
|
|
else {
|
|
tzinfo = Py_NewRef(Py_None);
|
|
}
|
|
|
|
return tzinfo;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* String format helpers.
|
|
*/
|
|
|
|
static PyObject *
|
|
format_ctime(PyDateTime_Date *date, int hours, int minutes, int seconds)
|
|
{
|
|
static const char * const DayNames[] = {
|
|
"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"
|
|
};
|
|
static const char * const MonthNames[] = {
|
|
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
|
|
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"
|
|
};
|
|
|
|
int wday = weekday(GET_YEAR(date), GET_MONTH(date), GET_DAY(date));
|
|
|
|
return PyUnicode_FromFormat("%s %s %2d %02d:%02d:%02d %04d",
|
|
DayNames[wday], MonthNames[GET_MONTH(date)-1],
|
|
GET_DAY(date), hours, minutes, seconds,
|
|
GET_YEAR(date));
|
|
}
|
|
|
|
static PyObject *delta_negative(PyDateTime_Delta *self);
|
|
|
|
/* Add formatted UTC offset string to buf. buf has no more than
|
|
* buflen bytes remaining. The UTC offset is gotten by calling
|
|
* tzinfo.uctoffset(tzinfoarg). If that returns None, \0 is stored into
|
|
* *buf, and that's all. Else the returned value is checked for sanity (an
|
|
* integer in range), and if that's OK it's converted to an hours & minutes
|
|
* string of the form
|
|
* sign HH sep MM [sep SS [. UUUUUU]]
|
|
* Returns 0 if everything is OK. If the return value from utcoffset() is
|
|
* bogus, an appropriate exception is set and -1 is returned.
|
|
*/
|
|
static int
|
|
format_utcoffset(char *buf, size_t buflen, const char *sep,
|
|
PyObject *tzinfo, PyObject *tzinfoarg)
|
|
{
|
|
PyObject *offset;
|
|
int hours, minutes, seconds, microseconds;
|
|
char sign;
|
|
|
|
assert(buflen >= 1);
|
|
|
|
offset = call_utcoffset(tzinfo, tzinfoarg);
|
|
if (offset == NULL)
|
|
return -1;
|
|
if (offset == Py_None) {
|
|
Py_DECREF(offset);
|
|
*buf = '\0';
|
|
return 0;
|
|
}
|
|
/* Offset is normalized, so it is negative if days < 0 */
|
|
if (GET_TD_DAYS(offset) < 0) {
|
|
sign = '-';
|
|
Py_SETREF(offset, delta_negative((PyDateTime_Delta *)offset));
|
|
if (offset == NULL)
|
|
return -1;
|
|
}
|
|
else {
|
|
sign = '+';
|
|
}
|
|
/* Offset is not negative here. */
|
|
microseconds = GET_TD_MICROSECONDS(offset);
|
|
seconds = GET_TD_SECONDS(offset);
|
|
Py_DECREF(offset);
|
|
minutes = divmod(seconds, 60, &seconds);
|
|
hours = divmod(minutes, 60, &minutes);
|
|
if (microseconds) {
|
|
PyOS_snprintf(buf, buflen, "%c%02d%s%02d%s%02d.%06d", sign,
|
|
hours, sep, minutes, sep, seconds, microseconds);
|
|
return 0;
|
|
}
|
|
if (seconds) {
|
|
PyOS_snprintf(buf, buflen, "%c%02d%s%02d%s%02d", sign, hours,
|
|
sep, minutes, sep, seconds);
|
|
return 0;
|
|
}
|
|
PyOS_snprintf(buf, buflen, "%c%02d%s%02d", sign, hours, sep, minutes);
|
|
return 0;
|
|
}
|
|
|
|
static PyObject *
|
|
make_somezreplacement(PyObject *object, char *sep, PyObject *tzinfoarg)
|
|
{
|
|
char buf[100];
|
|
PyObject *tzinfo = get_tzinfo_member(object);
|
|
|
|
if (tzinfo == Py_None || tzinfo == NULL) {
|
|
return PyUnicode_FromStringAndSize(NULL, 0);
|
|
}
|
|
|
|
assert(tzinfoarg != NULL);
|
|
if (format_utcoffset(buf,
|
|
sizeof(buf),
|
|
sep,
|
|
tzinfo,
|
|
tzinfoarg) < 0)
|
|
return NULL;
|
|
|
|
return PyUnicode_FromString(buf);
|
|
}
|
|
|
|
static PyObject *
|
|
make_Zreplacement(PyObject *object, PyObject *tzinfoarg)
|
|
{
|
|
PyObject *temp;
|
|
PyObject *tzinfo = get_tzinfo_member(object);
|
|
PyObject *Zreplacement = Py_GetConstant(Py_CONSTANT_EMPTY_STR);
|
|
|
|
if (Zreplacement == NULL)
|
|
return NULL;
|
|
if (tzinfo == Py_None || tzinfo == NULL)
|
|
return Zreplacement;
|
|
|
|
assert(tzinfoarg != NULL);
|
|
temp = call_tzname(tzinfo, tzinfoarg);
|
|
if (temp == NULL)
|
|
goto Error;
|
|
if (temp == Py_None) {
|
|
Py_DECREF(temp);
|
|
return Zreplacement;
|
|
}
|
|
|
|
assert(PyUnicode_Check(temp));
|
|
/* Since the tzname is getting stuffed into the
|
|
* format, we have to double any % signs so that
|
|
* strftime doesn't treat them as format codes.
|
|
*/
|
|
Py_DECREF(Zreplacement);
|
|
Zreplacement = PyObject_CallMethod(temp, "replace", "ss", "%", "%%");
|
|
Py_DECREF(temp);
|
|
if (Zreplacement == NULL)
|
|
return NULL;
|
|
if (!PyUnicode_Check(Zreplacement)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"tzname.replace() did not return a string");
|
|
goto Error;
|
|
}
|
|
return Zreplacement;
|
|
|
|
Error:
|
|
Py_DECREF(Zreplacement);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
make_freplacement(PyObject *object)
|
|
{
|
|
char freplacement[64];
|
|
if (PyTime_Check(object))
|
|
sprintf(freplacement, "%06d", TIME_GET_MICROSECOND(object));
|
|
else if (PyDateTime_Check(object))
|
|
sprintf(freplacement, "%06d", DATE_GET_MICROSECOND(object));
|
|
else
|
|
sprintf(freplacement, "%06d", 0);
|
|
|
|
return PyUnicode_FromString(freplacement);
|
|
}
|
|
|
|
/* I sure don't want to reproduce the strftime code from the time module,
|
|
* so this imports the module and calls it. All the hair is due to
|
|
* giving special meanings to the %z, %:z, %Z and %f format codes via a
|
|
* preprocessing step on the format string.
|
|
* tzinfoarg is the argument to pass to the object's tzinfo method, if
|
|
* needed.
|
|
*/
|
|
static PyObject *
|
|
wrap_strftime(PyObject *object, PyObject *format, PyObject *timetuple,
|
|
PyObject *tzinfoarg)
|
|
{
|
|
PyObject *result = NULL; /* guilty until proved innocent */
|
|
|
|
PyObject *zreplacement = NULL; /* py string, replacement for %z */
|
|
PyObject *colonzreplacement = NULL; /* py string, replacement for %:z */
|
|
PyObject *Zreplacement = NULL; /* py string, replacement for %Z */
|
|
PyObject *freplacement = NULL; /* py string, replacement for %f */
|
|
|
|
assert(object && format && timetuple);
|
|
assert(PyUnicode_Check(format));
|
|
|
|
PyObject *strftime = _PyImport_GetModuleAttrString("time", "strftime");
|
|
if (strftime == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Scan the input format, looking for %z/%Z/%f escapes, building
|
|
* a new format. Since computing the replacements for those codes
|
|
* is expensive, don't unless they're actually used.
|
|
*/
|
|
|
|
_PyUnicodeWriter writer;
|
|
_PyUnicodeWriter_Init(&writer);
|
|
writer.overallocate = 1;
|
|
|
|
Py_ssize_t flen = PyUnicode_GET_LENGTH(format);
|
|
Py_ssize_t i = 0;
|
|
Py_ssize_t start = 0;
|
|
Py_ssize_t end = 0;
|
|
while (i != flen) {
|
|
i = PyUnicode_FindChar(format, '%', i, flen, 1);
|
|
if (i < 0) {
|
|
assert(!PyErr_Occurred());
|
|
break;
|
|
}
|
|
end = i;
|
|
i++;
|
|
if (i == flen) {
|
|
break;
|
|
}
|
|
Py_UCS4 ch = PyUnicode_READ_CHAR(format, i);
|
|
i++;
|
|
/* A % has been seen and ch is the character after it. */
|
|
PyObject *replacement = NULL;
|
|
if (ch == 'z') {
|
|
/* %z -> +HHMM */
|
|
if (zreplacement == NULL) {
|
|
zreplacement = make_somezreplacement(object, "", tzinfoarg);
|
|
if (zreplacement == NULL)
|
|
goto Error;
|
|
}
|
|
replacement = zreplacement;
|
|
}
|
|
else if (ch == ':' && i < flen && PyUnicode_READ_CHAR(format, i) == 'z') {
|
|
/* %:z -> +HH:MM */
|
|
i++;
|
|
if (colonzreplacement == NULL) {
|
|
colonzreplacement = make_somezreplacement(object, ":", tzinfoarg);
|
|
if (colonzreplacement == NULL)
|
|
goto Error;
|
|
}
|
|
replacement = colonzreplacement;
|
|
}
|
|
else if (ch == 'Z') {
|
|
/* format tzname */
|
|
if (Zreplacement == NULL) {
|
|
Zreplacement = make_Zreplacement(object,
|
|
tzinfoarg);
|
|
if (Zreplacement == NULL)
|
|
goto Error;
|
|
}
|
|
replacement = Zreplacement;
|
|
}
|
|
else if (ch == 'f') {
|
|
/* format microseconds */
|
|
if (freplacement == NULL) {
|
|
freplacement = make_freplacement(object);
|
|
if (freplacement == NULL)
|
|
goto Error;
|
|
}
|
|
replacement = freplacement;
|
|
}
|
|
#ifdef Py_NORMALIZE_CENTURY
|
|
else if (ch == 'Y' || ch == 'G'
|
|
#ifdef Py_STRFTIME_C99_SUPPORT
|
|
|| ch == 'F' || ch == 'C'
|
|
#endif
|
|
) {
|
|
/* 0-pad year with century as necessary */
|
|
PyObject *item = PySequence_GetItem(timetuple, 0);
|
|
if (item == NULL) {
|
|
goto Error;
|
|
}
|
|
long year_long = PyLong_AsLong(item);
|
|
Py_DECREF(item);
|
|
if (year_long == -1 && PyErr_Occurred()) {
|
|
goto Error;
|
|
}
|
|
/* Note that datetime(1000, 1, 1).strftime('%G') == '1000' so year
|
|
1000 for %G can go on the fast path. */
|
|
if (year_long >= 1000) {
|
|
continue;
|
|
}
|
|
if (ch == 'G') {
|
|
PyObject *year_str = PyObject_CallFunction(strftime, "sO",
|
|
"%G", timetuple);
|
|
if (year_str == NULL) {
|
|
goto Error;
|
|
}
|
|
PyObject *year = PyNumber_Long(year_str);
|
|
Py_DECREF(year_str);
|
|
if (year == NULL) {
|
|
goto Error;
|
|
}
|
|
year_long = PyLong_AsLong(year);
|
|
Py_DECREF(year);
|
|
if (year_long == -1 && PyErr_Occurred()) {
|
|
goto Error;
|
|
}
|
|
}
|
|
/* Buffer of maximum size of formatted year permitted by long.
|
|
* +6 to accommodate dashes, 2-digit month and day for %F. */
|
|
char buf[SIZEOF_LONG * 5 / 2 + 2 + 6];
|
|
Py_ssize_t n = PyOS_snprintf(buf, sizeof(buf),
|
|
#ifdef Py_STRFTIME_C99_SUPPORT
|
|
ch == 'F' ? "%04ld-%%m-%%d" :
|
|
#endif
|
|
"%04ld", year_long);
|
|
#ifdef Py_STRFTIME_C99_SUPPORT
|
|
if (ch == 'C') {
|
|
n -= 2;
|
|
}
|
|
#endif
|
|
if (_PyUnicodeWriter_WriteSubstring(&writer, format, start, end) < 0) {
|
|
goto Error;
|
|
}
|
|
start = i;
|
|
if (_PyUnicodeWriter_WriteASCIIString(&writer, buf, n) < 0) {
|
|
goto Error;
|
|
}
|
|
continue;
|
|
}
|
|
#endif
|
|
else {
|
|
/* percent followed by something else */
|
|
continue;
|
|
}
|
|
assert(replacement != NULL);
|
|
assert(PyUnicode_Check(replacement));
|
|
if (_PyUnicodeWriter_WriteSubstring(&writer, format, start, end) < 0) {
|
|
goto Error;
|
|
}
|
|
start = i;
|
|
if (_PyUnicodeWriter_WriteStr(&writer, replacement) < 0) {
|
|
goto Error;
|
|
}
|
|
} /* end while() */
|
|
|
|
PyObject *newformat;
|
|
if (start == 0) {
|
|
_PyUnicodeWriter_Dealloc(&writer);
|
|
newformat = Py_NewRef(format);
|
|
}
|
|
else {
|
|
if (_PyUnicodeWriter_WriteSubstring(&writer, format, start, flen) < 0) {
|
|
goto Error;
|
|
}
|
|
newformat = _PyUnicodeWriter_Finish(&writer);
|
|
if (newformat == NULL) {
|
|
goto Done;
|
|
}
|
|
}
|
|
result = PyObject_CallFunctionObjArgs(strftime,
|
|
newformat, timetuple, NULL);
|
|
Py_DECREF(newformat);
|
|
|
|
Done:
|
|
Py_XDECREF(freplacement);
|
|
Py_XDECREF(zreplacement);
|
|
Py_XDECREF(colonzreplacement);
|
|
Py_XDECREF(Zreplacement);
|
|
Py_XDECREF(strftime);
|
|
return result;
|
|
|
|
Error:
|
|
_PyUnicodeWriter_Dealloc(&writer);
|
|
goto Done;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Wrap functions from the time module. These aren't directly available
|
|
* from C. Perhaps they should be.
|
|
*/
|
|
|
|
/* Call time.time() and return its result (a Python float). */
|
|
static PyObject *
|
|
time_time(void)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *time = _PyImport_GetModuleAttrString("time", "time");
|
|
|
|
if (time != NULL) {
|
|
result = PyObject_CallNoArgs(time);
|
|
Py_DECREF(time);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Build a time.struct_time. The weekday and day number are automatically
|
|
* computed from the y,m,d args.
|
|
*/
|
|
static PyObject *
|
|
build_struct_time(int y, int m, int d, int hh, int mm, int ss, int dstflag)
|
|
{
|
|
PyObject *struct_time;
|
|
PyObject *result;
|
|
|
|
struct_time = _PyImport_GetModuleAttrString("time", "struct_time");
|
|
if (struct_time == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
result = PyObject_CallFunction(struct_time, "((iiiiiiiii))",
|
|
y, m, d,
|
|
hh, mm, ss,
|
|
weekday(y, m, d),
|
|
days_before_month(y, m) + d,
|
|
dstflag);
|
|
Py_DECREF(struct_time);
|
|
return result;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Miscellaneous helpers.
|
|
*/
|
|
|
|
/* The comparisons here all most naturally compute a cmp()-like result.
|
|
* This little helper turns that into a bool result for rich comparisons.
|
|
*/
|
|
static PyObject *
|
|
diff_to_bool(int diff, int op)
|
|
{
|
|
Py_RETURN_RICHCOMPARE(diff, 0, op);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Class implementations.
|
|
*/
|
|
|
|
/*
|
|
* PyDateTime_Delta implementation.
|
|
*/
|
|
|
|
/* Convert a timedelta to a number of us,
|
|
* (24*3600*self.days + self.seconds)*1000000 + self.microseconds
|
|
* as a Python int.
|
|
* Doing mixed-radix arithmetic by hand instead is excruciating in C,
|
|
* due to ubiquitous overflow possibilities.
|
|
*/
|
|
static PyObject *
|
|
delta_to_microseconds(PyDateTime_Delta *self)
|
|
{
|
|
PyObject *x1 = NULL;
|
|
PyObject *x2 = NULL;
|
|
PyObject *x3 = NULL;
|
|
PyObject *result = NULL;
|
|
|
|
PyObject *current_mod = NULL;
|
|
datetime_state *st = GET_CURRENT_STATE(current_mod);
|
|
|
|
x1 = PyLong_FromLong(GET_TD_DAYS(self));
|
|
if (x1 == NULL)
|
|
goto Done;
|
|
x2 = PyNumber_Multiply(x1, CONST_SEC_PER_DAY(st)); /* days in seconds */
|
|
if (x2 == NULL)
|
|
goto Done;
|
|
Py_SETREF(x1, NULL);
|
|
|
|
/* x2 has days in seconds */
|
|
x1 = PyLong_FromLong(GET_TD_SECONDS(self)); /* seconds */
|
|
if (x1 == NULL)
|
|
goto Done;
|
|
x3 = PyNumber_Add(x1, x2); /* days and seconds in seconds */
|
|
if (x3 == NULL)
|
|
goto Done;
|
|
Py_DECREF(x1);
|
|
Py_DECREF(x2);
|
|
/* x1 = */ x2 = NULL;
|
|
|
|
/* x3 has days+seconds in seconds */
|
|
x1 = PyNumber_Multiply(x3, CONST_US_PER_SECOND(st)); /* us */
|
|
if (x1 == NULL)
|
|
goto Done;
|
|
Py_SETREF(x3, NULL);
|
|
|
|
/* x1 has days+seconds in us */
|
|
x2 = PyLong_FromLong(GET_TD_MICROSECONDS(self));
|
|
if (x2 == NULL)
|
|
goto Done;
|
|
result = PyNumber_Add(x1, x2);
|
|
assert(result == NULL || PyLong_CheckExact(result));
|
|
|
|
Done:
|
|
Py_XDECREF(x1);
|
|
Py_XDECREF(x2);
|
|
Py_XDECREF(x3);
|
|
RELEASE_CURRENT_STATE(st, current_mod);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
checked_divmod(PyObject *a, PyObject *b)
|
|
{
|
|
PyObject *result = PyNumber_Divmod(a, b);
|
|
if (result != NULL) {
|
|
if (!PyTuple_Check(result)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"divmod() returned non-tuple (type %.200s)",
|
|
Py_TYPE(result)->tp_name);
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
if (PyTuple_GET_SIZE(result) != 2) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"divmod() returned a tuple of size %zd",
|
|
PyTuple_GET_SIZE(result));
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Convert a number of us (as a Python int) to a timedelta.
|
|
*/
|
|
static PyObject *
|
|
microseconds_to_delta_ex(PyObject *pyus, PyTypeObject *type)
|
|
{
|
|
int us;
|
|
int s;
|
|
int d;
|
|
|
|
PyObject *tuple = NULL;
|
|
PyObject *num = NULL;
|
|
PyObject *result = NULL;
|
|
|
|
PyObject *current_mod = NULL;
|
|
datetime_state *st = GET_CURRENT_STATE(current_mod);
|
|
|
|
tuple = checked_divmod(pyus, CONST_US_PER_SECOND(st));
|
|
if (tuple == NULL) {
|
|
goto Done;
|
|
}
|
|
|
|
num = PyTuple_GET_ITEM(tuple, 1); /* us */
|
|
us = PyLong_AsInt(num);
|
|
num = NULL;
|
|
if (us == -1 && PyErr_Occurred()) {
|
|
goto Done;
|
|
}
|
|
if (!(0 <= us && us < 1000000)) {
|
|
goto BadDivmod;
|
|
}
|
|
|
|
num = Py_NewRef(PyTuple_GET_ITEM(tuple, 0)); /* leftover seconds */
|
|
Py_DECREF(tuple);
|
|
|
|
tuple = checked_divmod(num, CONST_SEC_PER_DAY(st));
|
|
if (tuple == NULL)
|
|
goto Done;
|
|
Py_DECREF(num);
|
|
|
|
num = PyTuple_GET_ITEM(tuple, 1); /* seconds */
|
|
s = PyLong_AsInt(num);
|
|
num = NULL;
|
|
if (s == -1 && PyErr_Occurred()) {
|
|
goto Done;
|
|
}
|
|
if (!(0 <= s && s < 24*3600)) {
|
|
goto BadDivmod;
|
|
}
|
|
|
|
num = Py_NewRef(PyTuple_GET_ITEM(tuple, 0)); /* leftover days */
|
|
d = PyLong_AsInt(num);
|
|
if (d == -1 && PyErr_Occurred()) {
|
|
goto Done;
|
|
}
|
|
result = new_delta_ex(d, s, us, 0, type);
|
|
|
|
Done:
|
|
Py_XDECREF(tuple);
|
|
Py_XDECREF(num);
|
|
RELEASE_CURRENT_STATE(st, current_mod);
|
|
return result;
|
|
|
|
BadDivmod:
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"divmod() returned a value out of range");
|
|
goto Done;
|
|
}
|
|
|
|
#define microseconds_to_delta(pymicros) \
|
|
microseconds_to_delta_ex(pymicros, DELTA_TYPE(NO_STATE))
|
|
|
|
static PyObject *
|
|
multiply_int_timedelta(PyObject *intobj, PyDateTime_Delta *delta)
|
|
{
|
|
PyObject *pyus_in;
|
|
PyObject *pyus_out;
|
|
PyObject *result;
|
|
|
|
pyus_in = delta_to_microseconds(delta);
|
|
if (pyus_in == NULL)
|
|
return NULL;
|
|
|
|
pyus_out = PyNumber_Multiply(intobj, pyus_in);
|
|
Py_DECREF(pyus_in);
|
|
if (pyus_out == NULL)
|
|
return NULL;
|
|
|
|
result = microseconds_to_delta(pyus_out);
|
|
Py_DECREF(pyus_out);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
get_float_as_integer_ratio(PyObject *floatobj)
|
|
{
|
|
PyObject *ratio;
|
|
|
|
assert(floatobj && PyFloat_Check(floatobj));
|
|
ratio = PyObject_CallMethodNoArgs(floatobj, &_Py_ID(as_integer_ratio));
|
|
if (ratio == NULL) {
|
|
return NULL;
|
|
}
|
|
if (!PyTuple_Check(ratio)) {
|
|
PyErr_Format(PyExc_TypeError,
|
|
"unexpected return type from as_integer_ratio(): "
|
|
"expected tuple, got '%.200s'",
|
|
Py_TYPE(ratio)->tp_name);
|
|
Py_DECREF(ratio);
|
|
return NULL;
|
|
}
|
|
if (PyTuple_Size(ratio) != 2) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"as_integer_ratio() must return a 2-tuple");
|
|
Py_DECREF(ratio);
|
|
return NULL;
|
|
}
|
|
return ratio;
|
|
}
|
|
|
|
/* op is 0 for multiplication, 1 for division */
|
|
static PyObject *
|
|
multiply_truedivide_timedelta_float(PyDateTime_Delta *delta, PyObject *floatobj, int op)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *pyus_in = NULL, *temp, *pyus_out;
|
|
PyObject *ratio = NULL;
|
|
|
|
pyus_in = delta_to_microseconds(delta);
|
|
if (pyus_in == NULL)
|
|
return NULL;
|
|
ratio = get_float_as_integer_ratio(floatobj);
|
|
if (ratio == NULL) {
|
|
goto error;
|
|
}
|
|
temp = PyNumber_Multiply(pyus_in, PyTuple_GET_ITEM(ratio, op));
|
|
Py_SETREF(pyus_in, NULL);
|
|
if (temp == NULL)
|
|
goto error;
|
|
pyus_out = divide_nearest(temp, PyTuple_GET_ITEM(ratio, !op));
|
|
Py_DECREF(temp);
|
|
if (pyus_out == NULL)
|
|
goto error;
|
|
result = microseconds_to_delta(pyus_out);
|
|
Py_DECREF(pyus_out);
|
|
error:
|
|
Py_XDECREF(pyus_in);
|
|
Py_XDECREF(ratio);
|
|
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
divide_timedelta_int(PyDateTime_Delta *delta, PyObject *intobj)
|
|
{
|
|
PyObject *pyus_in;
|
|
PyObject *pyus_out;
|
|
PyObject *result;
|
|
|
|
pyus_in = delta_to_microseconds(delta);
|
|
if (pyus_in == NULL)
|
|
return NULL;
|
|
|
|
pyus_out = PyNumber_FloorDivide(pyus_in, intobj);
|
|
Py_DECREF(pyus_in);
|
|
if (pyus_out == NULL)
|
|
return NULL;
|
|
|
|
result = microseconds_to_delta(pyus_out);
|
|
Py_DECREF(pyus_out);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
divide_timedelta_timedelta(PyDateTime_Delta *left, PyDateTime_Delta *right)
|
|
{
|
|
PyObject *pyus_left;
|
|
PyObject *pyus_right;
|
|
PyObject *result;
|
|
|
|
pyus_left = delta_to_microseconds(left);
|
|
if (pyus_left == NULL)
|
|
return NULL;
|
|
|
|
pyus_right = delta_to_microseconds(right);
|
|
if (pyus_right == NULL) {
|
|
Py_DECREF(pyus_left);
|
|
return NULL;
|
|
}
|
|
|
|
result = PyNumber_FloorDivide(pyus_left, pyus_right);
|
|
Py_DECREF(pyus_left);
|
|
Py_DECREF(pyus_right);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
truedivide_timedelta_timedelta(PyDateTime_Delta *left, PyDateTime_Delta *right)
|
|
{
|
|
PyObject *pyus_left;
|
|
PyObject *pyus_right;
|
|
PyObject *result;
|
|
|
|
pyus_left = delta_to_microseconds(left);
|
|
if (pyus_left == NULL)
|
|
return NULL;
|
|
|
|
pyus_right = delta_to_microseconds(right);
|
|
if (pyus_right == NULL) {
|
|
Py_DECREF(pyus_left);
|
|
return NULL;
|
|
}
|
|
|
|
result = PyNumber_TrueDivide(pyus_left, pyus_right);
|
|
Py_DECREF(pyus_left);
|
|
Py_DECREF(pyus_right);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
truedivide_timedelta_int(PyDateTime_Delta *delta, PyObject *i)
|
|
{
|
|
PyObject *result;
|
|
PyObject *pyus_in, *pyus_out;
|
|
pyus_in = delta_to_microseconds(delta);
|
|
if (pyus_in == NULL)
|
|
return NULL;
|
|
pyus_out = divide_nearest(pyus_in, i);
|
|
Py_DECREF(pyus_in);
|
|
if (pyus_out == NULL)
|
|
return NULL;
|
|
result = microseconds_to_delta(pyus_out);
|
|
Py_DECREF(pyus_out);
|
|
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_add(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left) && PyDelta_Check(right)) {
|
|
/* delta + delta */
|
|
/* The C-level additions can't overflow because of the
|
|
* invariant bounds.
|
|
*/
|
|
int days = GET_TD_DAYS(left) + GET_TD_DAYS(right);
|
|
int seconds = GET_TD_SECONDS(left) + GET_TD_SECONDS(right);
|
|
int microseconds = GET_TD_MICROSECONDS(left) +
|
|
GET_TD_MICROSECONDS(right);
|
|
result = new_delta(days, seconds, microseconds, 1);
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_negative(PyDateTime_Delta *self)
|
|
{
|
|
return new_delta(-GET_TD_DAYS(self),
|
|
-GET_TD_SECONDS(self),
|
|
-GET_TD_MICROSECONDS(self),
|
|
1);
|
|
}
|
|
|
|
static PyObject *
|
|
delta_positive(PyDateTime_Delta *self)
|
|
{
|
|
/* Could optimize this (by returning self) if this isn't a
|
|
* subclass -- but who uses unary + ? Approximately nobody.
|
|
*/
|
|
return new_delta(GET_TD_DAYS(self),
|
|
GET_TD_SECONDS(self),
|
|
GET_TD_MICROSECONDS(self),
|
|
0);
|
|
}
|
|
|
|
static PyObject *
|
|
delta_abs(PyDateTime_Delta *self)
|
|
{
|
|
PyObject *result;
|
|
|
|
assert(GET_TD_MICROSECONDS(self) >= 0);
|
|
assert(GET_TD_SECONDS(self) >= 0);
|
|
|
|
if (GET_TD_DAYS(self) < 0)
|
|
result = delta_negative(self);
|
|
else
|
|
result = delta_positive(self);
|
|
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_subtract(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left) && PyDelta_Check(right)) {
|
|
/* delta - delta */
|
|
/* The C-level additions can't overflow because of the
|
|
* invariant bounds.
|
|
*/
|
|
int days = GET_TD_DAYS(left) - GET_TD_DAYS(right);
|
|
int seconds = GET_TD_SECONDS(left) - GET_TD_SECONDS(right);
|
|
int microseconds = GET_TD_MICROSECONDS(left) -
|
|
GET_TD_MICROSECONDS(right);
|
|
result = new_delta(days, seconds, microseconds, 1);
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static int
|
|
delta_cmp(PyObject *self, PyObject *other)
|
|
{
|
|
int diff = GET_TD_DAYS(self) - GET_TD_DAYS(other);
|
|
if (diff == 0) {
|
|
diff = GET_TD_SECONDS(self) - GET_TD_SECONDS(other);
|
|
if (diff == 0)
|
|
diff = GET_TD_MICROSECONDS(self) -
|
|
GET_TD_MICROSECONDS(other);
|
|
}
|
|
return diff;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
if (PyDelta_Check(other)) {
|
|
int diff = delta_cmp(self, other);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
else {
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
}
|
|
|
|
static PyObject *delta_getstate(PyDateTime_Delta *self);
|
|
|
|
static Py_hash_t
|
|
delta_hash(PyDateTime_Delta *self)
|
|
{
|
|
if (self->hashcode == -1) {
|
|
PyObject *temp = delta_getstate(self);
|
|
if (temp != NULL) {
|
|
self->hashcode = PyObject_Hash(temp);
|
|
Py_DECREF(temp);
|
|
}
|
|
}
|
|
return self->hashcode;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_multiply(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left)) {
|
|
/* delta * ??? */
|
|
if (PyLong_Check(right))
|
|
result = multiply_int_timedelta(right,
|
|
(PyDateTime_Delta *) left);
|
|
else if (PyFloat_Check(right))
|
|
result = multiply_truedivide_timedelta_float(
|
|
(PyDateTime_Delta *) left, right, 0);
|
|
}
|
|
else if (PyLong_Check(left))
|
|
result = multiply_int_timedelta(left,
|
|
(PyDateTime_Delta *) right);
|
|
else if (PyFloat_Check(left))
|
|
result = multiply_truedivide_timedelta_float(
|
|
(PyDateTime_Delta *) right, left, 0);
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_divide(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left)) {
|
|
/* delta * ??? */
|
|
if (PyLong_Check(right))
|
|
result = divide_timedelta_int(
|
|
(PyDateTime_Delta *)left,
|
|
right);
|
|
else if (PyDelta_Check(right))
|
|
result = divide_timedelta_timedelta(
|
|
(PyDateTime_Delta *)left,
|
|
(PyDateTime_Delta *)right);
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_truedivide(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDelta_Check(left)) {
|
|
if (PyDelta_Check(right))
|
|
result = truedivide_timedelta_timedelta(
|
|
(PyDateTime_Delta *)left,
|
|
(PyDateTime_Delta *)right);
|
|
else if (PyFloat_Check(right))
|
|
result = multiply_truedivide_timedelta_float(
|
|
(PyDateTime_Delta *)left, right, 1);
|
|
else if (PyLong_Check(right))
|
|
result = truedivide_timedelta_int(
|
|
(PyDateTime_Delta *)left, right);
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_remainder(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *pyus_left;
|
|
PyObject *pyus_right;
|
|
PyObject *pyus_remainder;
|
|
PyObject *remainder;
|
|
|
|
if (!PyDelta_Check(left) || !PyDelta_Check(right))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
pyus_left = delta_to_microseconds((PyDateTime_Delta *)left);
|
|
if (pyus_left == NULL)
|
|
return NULL;
|
|
|
|
pyus_right = delta_to_microseconds((PyDateTime_Delta *)right);
|
|
if (pyus_right == NULL) {
|
|
Py_DECREF(pyus_left);
|
|
return NULL;
|
|
}
|
|
|
|
pyus_remainder = PyNumber_Remainder(pyus_left, pyus_right);
|
|
Py_DECREF(pyus_left);
|
|
Py_DECREF(pyus_right);
|
|
if (pyus_remainder == NULL)
|
|
return NULL;
|
|
|
|
remainder = microseconds_to_delta(pyus_remainder);
|
|
Py_DECREF(pyus_remainder);
|
|
if (remainder == NULL)
|
|
return NULL;
|
|
|
|
return remainder;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_divmod(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *pyus_left;
|
|
PyObject *pyus_right;
|
|
PyObject *divmod;
|
|
PyObject *delta;
|
|
PyObject *result;
|
|
|
|
if (!PyDelta_Check(left) || !PyDelta_Check(right))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
pyus_left = delta_to_microseconds((PyDateTime_Delta *)left);
|
|
if (pyus_left == NULL)
|
|
return NULL;
|
|
|
|
pyus_right = delta_to_microseconds((PyDateTime_Delta *)right);
|
|
if (pyus_right == NULL) {
|
|
Py_DECREF(pyus_left);
|
|
return NULL;
|
|
}
|
|
|
|
divmod = checked_divmod(pyus_left, pyus_right);
|
|
Py_DECREF(pyus_left);
|
|
Py_DECREF(pyus_right);
|
|
if (divmod == NULL)
|
|
return NULL;
|
|
|
|
delta = microseconds_to_delta(PyTuple_GET_ITEM(divmod, 1));
|
|
if (delta == NULL) {
|
|
Py_DECREF(divmod);
|
|
return NULL;
|
|
}
|
|
result = PyTuple_Pack(2, PyTuple_GET_ITEM(divmod, 0), delta);
|
|
Py_DECREF(delta);
|
|
Py_DECREF(divmod);
|
|
return result;
|
|
}
|
|
|
|
/* Fold in the value of the tag ("seconds", "weeks", etc) component of a
|
|
* timedelta constructor. sofar is the # of microseconds accounted for
|
|
* so far, and there are factor microseconds per current unit, the number
|
|
* of which is given by num. num * factor is added to sofar in a
|
|
* numerically careful way, and that's the result. Any fractional
|
|
* microseconds left over (this can happen if num is a float type) are
|
|
* added into *leftover.
|
|
* Note that there are many ways this can give an error (NULL) return.
|
|
*/
|
|
static PyObject *
|
|
accum(const char* tag, PyObject *sofar, PyObject *num, PyObject *factor,
|
|
double *leftover)
|
|
{
|
|
PyObject *prod;
|
|
PyObject *sum;
|
|
|
|
assert(num != NULL);
|
|
|
|
if (PyLong_Check(num)) {
|
|
prod = PyNumber_Multiply(num, factor);
|
|
if (prod == NULL)
|
|
return NULL;
|
|
sum = PyNumber_Add(sofar, prod);
|
|
Py_DECREF(prod);
|
|
return sum;
|
|
}
|
|
|
|
if (PyFloat_Check(num)) {
|
|
double dnum;
|
|
double fracpart;
|
|
double intpart;
|
|
PyObject *x;
|
|
PyObject *y;
|
|
|
|
/* The Plan: decompose num into an integer part and a
|
|
* fractional part, num = intpart + fracpart.
|
|
* Then num * factor ==
|
|
* intpart * factor + fracpart * factor
|
|
* and the LHS can be computed exactly in long arithmetic.
|
|
* The RHS is again broken into an int part and frac part.
|
|
* and the frac part is added into *leftover.
|
|
*/
|
|
dnum = PyFloat_AsDouble(num);
|
|
if (dnum == -1.0 && PyErr_Occurred())
|
|
return NULL;
|
|
fracpart = modf(dnum, &intpart);
|
|
x = PyLong_FromDouble(intpart);
|
|
if (x == NULL)
|
|
return NULL;
|
|
|
|
prod = PyNumber_Multiply(x, factor);
|
|
Py_DECREF(x);
|
|
if (prod == NULL)
|
|
return NULL;
|
|
|
|
sum = PyNumber_Add(sofar, prod);
|
|
Py_DECREF(prod);
|
|
if (sum == NULL)
|
|
return NULL;
|
|
|
|
if (fracpart == 0.0)
|
|
return sum;
|
|
/* So far we've lost no information. Dealing with the
|
|
* fractional part requires float arithmetic, and may
|
|
* lose a little info.
|
|
*/
|
|
assert(PyLong_CheckExact(factor));
|
|
dnum = PyLong_AsDouble(factor);
|
|
|
|
dnum *= fracpart;
|
|
fracpart = modf(dnum, &intpart);
|
|
x = PyLong_FromDouble(intpart);
|
|
if (x == NULL) {
|
|
Py_DECREF(sum);
|
|
return NULL;
|
|
}
|
|
|
|
y = PyNumber_Add(sum, x);
|
|
Py_DECREF(sum);
|
|
Py_DECREF(x);
|
|
*leftover += fracpart;
|
|
return y;
|
|
}
|
|
|
|
PyErr_Format(PyExc_TypeError,
|
|
"unsupported type for timedelta %s component: %s",
|
|
tag, Py_TYPE(num)->tp_name);
|
|
return NULL;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
|
|
PyObject *current_mod = NULL;
|
|
datetime_state *st = GET_CURRENT_STATE(current_mod);
|
|
|
|
/* Argument objects. */
|
|
PyObject *day = NULL;
|
|
PyObject *second = NULL;
|
|
PyObject *us = NULL;
|
|
PyObject *ms = NULL;
|
|
PyObject *minute = NULL;
|
|
PyObject *hour = NULL;
|
|
PyObject *week = NULL;
|
|
|
|
PyObject *x = NULL; /* running sum of microseconds */
|
|
PyObject *y = NULL; /* temp sum of microseconds */
|
|
double leftover_us = 0.0;
|
|
|
|
static char *keywords[] = {
|
|
"days", "seconds", "microseconds", "milliseconds",
|
|
"minutes", "hours", "weeks", NULL
|
|
};
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "|OOOOOOO:__new__",
|
|
keywords,
|
|
&day, &second, &us,
|
|
&ms, &minute, &hour, &week) == 0)
|
|
goto Done;
|
|
|
|
x = PyLong_FromLong(0);
|
|
if (x == NULL)
|
|
goto Done;
|
|
|
|
#define CLEANUP \
|
|
Py_DECREF(x); \
|
|
x = y; \
|
|
if (x == NULL) \
|
|
goto Done
|
|
|
|
if (us) {
|
|
y = accum("microseconds", x, us, _PyLong_GetOne(), &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (ms) {
|
|
y = accum("milliseconds", x, ms, CONST_US_PER_MS(st), &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (second) {
|
|
y = accum("seconds", x, second, CONST_US_PER_SECOND(st), &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (minute) {
|
|
y = accum("minutes", x, minute, CONST_US_PER_MINUTE(st), &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (hour) {
|
|
y = accum("hours", x, hour, CONST_US_PER_HOUR(st), &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (day) {
|
|
y = accum("days", x, day, CONST_US_PER_DAY(st), &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (week) {
|
|
y = accum("weeks", x, week, CONST_US_PER_WEEK(st), &leftover_us);
|
|
CLEANUP;
|
|
}
|
|
if (leftover_us) {
|
|
/* Round to nearest whole # of us, and add into x. */
|
|
double whole_us = round(leftover_us);
|
|
int x_is_odd;
|
|
PyObject *temp;
|
|
|
|
if (fabs(whole_us - leftover_us) == 0.5) {
|
|
/* We're exactly halfway between two integers. In order
|
|
* to do round-half-to-even, we must determine whether x
|
|
* is odd. Note that x is odd when it's last bit is 1. The
|
|
* code below uses bitwise and operation to check the last
|
|
* bit. */
|
|
temp = PyNumber_And(x, _PyLong_GetOne()); /* temp <- x & 1 */
|
|
if (temp == NULL) {
|
|
Py_DECREF(x);
|
|
goto Done;
|
|
}
|
|
x_is_odd = PyObject_IsTrue(temp);
|
|
Py_DECREF(temp);
|
|
if (x_is_odd == -1) {
|
|
Py_DECREF(x);
|
|
goto Done;
|
|
}
|
|
whole_us = 2.0 * round((leftover_us + x_is_odd) * 0.5) - x_is_odd;
|
|
}
|
|
|
|
temp = PyLong_FromLong((long)whole_us);
|
|
|
|
if (temp == NULL) {
|
|
Py_DECREF(x);
|
|
goto Done;
|
|
}
|
|
y = PyNumber_Add(x, temp);
|
|
Py_DECREF(temp);
|
|
CLEANUP;
|
|
}
|
|
|
|
self = microseconds_to_delta_ex(x, type);
|
|
Py_DECREF(x);
|
|
|
|
Done:
|
|
RELEASE_CURRENT_STATE(st, current_mod);
|
|
return self;
|
|
|
|
#undef CLEANUP
|
|
}
|
|
|
|
static int
|
|
delta_bool(PyDateTime_Delta *self)
|
|
{
|
|
return (GET_TD_DAYS(self) != 0
|
|
|| GET_TD_SECONDS(self) != 0
|
|
|| GET_TD_MICROSECONDS(self) != 0);
|
|
}
|
|
|
|
static PyObject *
|
|
delta_repr(PyDateTime_Delta *self)
|
|
{
|
|
PyObject *args = Py_GetConstant(Py_CONSTANT_EMPTY_STR);
|
|
|
|
if (args == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
const char *sep = "";
|
|
|
|
if (GET_TD_DAYS(self) != 0) {
|
|
Py_SETREF(args, PyUnicode_FromFormat("days=%d", GET_TD_DAYS(self)));
|
|
if (args == NULL) {
|
|
return NULL;
|
|
}
|
|
sep = ", ";
|
|
}
|
|
|
|
if (GET_TD_SECONDS(self) != 0) {
|
|
Py_SETREF(args, PyUnicode_FromFormat("%U%sseconds=%d", args, sep,
|
|
GET_TD_SECONDS(self)));
|
|
if (args == NULL) {
|
|
return NULL;
|
|
}
|
|
sep = ", ";
|
|
}
|
|
|
|
if (GET_TD_MICROSECONDS(self) != 0) {
|
|
Py_SETREF(args, PyUnicode_FromFormat("%U%smicroseconds=%d", args, sep,
|
|
GET_TD_MICROSECONDS(self)));
|
|
if (args == NULL) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (PyUnicode_GET_LENGTH(args) == 0) {
|
|
Py_SETREF(args, PyUnicode_FromString("0"));
|
|
if (args == NULL) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
PyObject *repr = PyUnicode_FromFormat("%s(%S)", Py_TYPE(self)->tp_name,
|
|
args);
|
|
Py_DECREF(args);
|
|
return repr;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_str(PyDateTime_Delta *self)
|
|
{
|
|
int us = GET_TD_MICROSECONDS(self);
|
|
int seconds = GET_TD_SECONDS(self);
|
|
int minutes = divmod(seconds, 60, &seconds);
|
|
int hours = divmod(minutes, 60, &minutes);
|
|
int days = GET_TD_DAYS(self);
|
|
|
|
if (days) {
|
|
if (us)
|
|
return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d.%06d",
|
|
days, (days == 1 || days == -1) ? "" : "s",
|
|
hours, minutes, seconds, us);
|
|
else
|
|
return PyUnicode_FromFormat("%d day%s, %d:%02d:%02d",
|
|
days, (days == 1 || days == -1) ? "" : "s",
|
|
hours, minutes, seconds);
|
|
} else {
|
|
if (us)
|
|
return PyUnicode_FromFormat("%d:%02d:%02d.%06d",
|
|
hours, minutes, seconds, us);
|
|
else
|
|
return PyUnicode_FromFormat("%d:%02d:%02d",
|
|
hours, minutes, seconds);
|
|
}
|
|
|
|
}
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* __getstate__ isn't exposed */
|
|
static PyObject *
|
|
delta_getstate(PyDateTime_Delta *self)
|
|
{
|
|
return Py_BuildValue("iii", GET_TD_DAYS(self),
|
|
GET_TD_SECONDS(self),
|
|
GET_TD_MICROSECONDS(self));
|
|
}
|
|
|
|
static PyObject *
|
|
delta_total_seconds(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
PyObject *total_seconds;
|
|
PyObject *total_microseconds;
|
|
|
|
total_microseconds = delta_to_microseconds((PyDateTime_Delta *)self);
|
|
if (total_microseconds == NULL)
|
|
return NULL;
|
|
|
|
PyObject *current_mod = NULL;
|
|
datetime_state *st = GET_CURRENT_STATE(current_mod);
|
|
|
|
total_seconds = PyNumber_TrueDivide(total_microseconds, CONST_US_PER_SECOND(st));
|
|
|
|
RELEASE_CURRENT_STATE(st, current_mod);
|
|
Py_DECREF(total_microseconds);
|
|
return total_seconds;
|
|
}
|
|
|
|
static PyObject *
|
|
delta_reduce(PyDateTime_Delta* self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return Py_BuildValue("ON", Py_TYPE(self), delta_getstate(self));
|
|
}
|
|
|
|
#define OFFSET(field) offsetof(PyDateTime_Delta, field)
|
|
|
|
static PyMemberDef delta_members[] = {
|
|
|
|
{"days", Py_T_INT, OFFSET(days), Py_READONLY,
|
|
PyDoc_STR("Number of days.")},
|
|
|
|
{"seconds", Py_T_INT, OFFSET(seconds), Py_READONLY,
|
|
PyDoc_STR("Number of seconds (>= 0 and less than 1 day).")},
|
|
|
|
{"microseconds", Py_T_INT, OFFSET(microseconds), Py_READONLY,
|
|
PyDoc_STR("Number of microseconds (>= 0 and less than 1 second).")},
|
|
{NULL}
|
|
};
|
|
|
|
static PyMethodDef delta_methods[] = {
|
|
{"total_seconds", delta_total_seconds, METH_NOARGS,
|
|
PyDoc_STR("Total seconds in the duration.")},
|
|
|
|
{"__reduce__", (PyCFunction)delta_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL},
|
|
};
|
|
|
|
static const char delta_doc[] =
|
|
PyDoc_STR("Difference between two datetime values.\n\n"
|
|
"timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, "
|
|
"minutes=0, hours=0, weeks=0)\n\n"
|
|
"All arguments are optional and default to 0.\n"
|
|
"Arguments may be integers or floats, and may be positive or negative.");
|
|
|
|
static PyNumberMethods delta_as_number = {
|
|
delta_add, /* nb_add */
|
|
delta_subtract, /* nb_subtract */
|
|
delta_multiply, /* nb_multiply */
|
|
delta_remainder, /* nb_remainder */
|
|
delta_divmod, /* nb_divmod */
|
|
0, /* nb_power */
|
|
(unaryfunc)delta_negative, /* nb_negative */
|
|
(unaryfunc)delta_positive, /* nb_positive */
|
|
(unaryfunc)delta_abs, /* nb_absolute */
|
|
(inquiry)delta_bool, /* nb_bool */
|
|
0, /*nb_invert*/
|
|
0, /*nb_lshift*/
|
|
0, /*nb_rshift*/
|
|
0, /*nb_and*/
|
|
0, /*nb_xor*/
|
|
0, /*nb_or*/
|
|
0, /*nb_int*/
|
|
0, /*nb_reserved*/
|
|
0, /*nb_float*/
|
|
0, /*nb_inplace_add*/
|
|
0, /*nb_inplace_subtract*/
|
|
0, /*nb_inplace_multiply*/
|
|
0, /*nb_inplace_remainder*/
|
|
0, /*nb_inplace_power*/
|
|
0, /*nb_inplace_lshift*/
|
|
0, /*nb_inplace_rshift*/
|
|
0, /*nb_inplace_and*/
|
|
0, /*nb_inplace_xor*/
|
|
0, /*nb_inplace_or*/
|
|
delta_divide, /* nb_floor_divide */
|
|
delta_truedivide, /* nb_true_divide */
|
|
0, /* nb_inplace_floor_divide */
|
|
0, /* nb_inplace_true_divide */
|
|
};
|
|
|
|
static PyTypeObject PyDateTime_DeltaType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.timedelta", /* tp_name */
|
|
sizeof(PyDateTime_Delta), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
(reprfunc)delta_repr, /* tp_repr */
|
|
&delta_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)delta_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)delta_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
delta_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
delta_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
delta_methods, /* tp_methods */
|
|
delta_members, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
delta_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
// XXX Can we make this const?
|
|
static PyDateTime_Delta zero_delta = {
|
|
PyObject_HEAD_INIT(&PyDateTime_DeltaType)
|
|
/* Letting this be set lazily is a benign race. */
|
|
.hashcode = -1,
|
|
};
|
|
|
|
static PyDateTime_Delta *
|
|
look_up_delta(int days, int seconds, int microseconds, PyTypeObject *type)
|
|
{
|
|
if (days == 0 && seconds == 0 && microseconds == 0
|
|
&& type == Py_TYPE(&zero_delta))
|
|
{
|
|
return &zero_delta;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* PyDateTime_Date implementation.
|
|
*/
|
|
|
|
/* Accessor properties. */
|
|
|
|
static PyObject *
|
|
date_year(PyDateTime_Date *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(GET_YEAR(self));
|
|
}
|
|
|
|
static PyObject *
|
|
date_month(PyDateTime_Date *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(GET_MONTH(self));
|
|
}
|
|
|
|
static PyObject *
|
|
date_day(PyDateTime_Date *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(GET_DAY(self));
|
|
}
|
|
|
|
static PyGetSetDef date_getset[] = {
|
|
{"year", (getter)date_year},
|
|
{"month", (getter)date_month},
|
|
{"day", (getter)date_day},
|
|
{NULL}
|
|
};
|
|
|
|
/* Constructors. */
|
|
|
|
static char *date_kws[] = {"year", "month", "day", NULL};
|
|
|
|
static PyObject *
|
|
date_from_pickle(PyTypeObject *type, PyObject *state)
|
|
{
|
|
PyDateTime_Date *me;
|
|
|
|
me = (PyDateTime_Date *) (type->tp_alloc(type, 0));
|
|
if (me != NULL) {
|
|
const char *pdata = PyBytes_AS_STRING(state);
|
|
memcpy(me->data, pdata, _PyDateTime_DATE_DATASIZE);
|
|
me->hashcode = -1;
|
|
}
|
|
return (PyObject *)me;
|
|
}
|
|
|
|
static PyObject *
|
|
date_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
int year;
|
|
int month;
|
|
int day;
|
|
|
|
/* Check for invocation from pickle with __getstate__ state */
|
|
if (PyTuple_GET_SIZE(args) == 1) {
|
|
PyObject *state = PyTuple_GET_ITEM(args, 0);
|
|
if (PyBytes_Check(state)) {
|
|
if (PyBytes_GET_SIZE(state) == _PyDateTime_DATE_DATASIZE &&
|
|
MONTH_IS_SANE(PyBytes_AS_STRING(state)[2]))
|
|
{
|
|
return date_from_pickle(type, state);
|
|
}
|
|
}
|
|
else if (PyUnicode_Check(state)) {
|
|
if (PyUnicode_GET_LENGTH(state) == _PyDateTime_DATE_DATASIZE &&
|
|
MONTH_IS_SANE(PyUnicode_READ_CHAR(state, 2)))
|
|
{
|
|
state = PyUnicode_AsLatin1String(state);
|
|
if (state == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_UnicodeEncodeError)) {
|
|
/* More informative error message. */
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Failed to encode latin1 string when unpickling "
|
|
"a date object. "
|
|
"pickle.load(data, encoding='latin1') is assumed.");
|
|
}
|
|
return NULL;
|
|
}
|
|
self = date_from_pickle(type, state);
|
|
Py_DECREF(state);
|
|
return self;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "iii", date_kws,
|
|
&year, &month, &day)) {
|
|
self = new_date_ex(year, month, day, type);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
static PyObject *
|
|
date_fromtimestamp(PyObject *cls, PyObject *obj)
|
|
{
|
|
struct tm tm;
|
|
time_t t;
|
|
|
|
if (_PyTime_ObjectToTime_t(obj, &t, _PyTime_ROUND_FLOOR) == -1)
|
|
return NULL;
|
|
|
|
if (_PyTime_localtime(t, &tm) != 0)
|
|
return NULL;
|
|
|
|
return new_date_subclass_ex(tm.tm_year + 1900,
|
|
tm.tm_mon + 1,
|
|
tm.tm_mday,
|
|
cls);
|
|
}
|
|
|
|
/* Return new date from current time.
|
|
* We say this is equivalent to fromtimestamp(time.time()), and the
|
|
* only way to be sure of that is to *call* time.time(). That's not
|
|
* generally the same as calling C's time.
|
|
*/
|
|
static PyObject *
|
|
date_today(PyObject *cls, PyObject *dummy)
|
|
{
|
|
PyObject *time;
|
|
PyObject *result;
|
|
time = time_time();
|
|
if (time == NULL)
|
|
return NULL;
|
|
|
|
/* Note well: today() is a class method, so this may not call
|
|
* date.fromtimestamp. For example, it may call
|
|
* datetime.fromtimestamp. That's why we need all the accuracy
|
|
* time.time() delivers; if someone were gonzo about optimization,
|
|
* date.today() could get away with plain C time().
|
|
*/
|
|
result = PyObject_CallMethodOneArg(cls, &_Py_ID(fromtimestamp), time);
|
|
Py_DECREF(time);
|
|
return result;
|
|
}
|
|
|
|
/*[clinic input]
|
|
@classmethod
|
|
datetime.date.fromtimestamp
|
|
|
|
timestamp: object
|
|
/
|
|
|
|
Create a date from a POSIX timestamp.
|
|
|
|
The timestamp is a number, e.g. created via time.time(), that is interpreted
|
|
as local time.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
datetime_date_fromtimestamp(PyTypeObject *type, PyObject *timestamp)
|
|
/*[clinic end generated code: output=fd045fda58168869 input=eabb3fe7f40491fe]*/
|
|
{
|
|
return date_fromtimestamp((PyObject *) type, timestamp);
|
|
}
|
|
|
|
/* bpo-36025: This is a wrapper for API compatibility with the public C API,
|
|
* which expects a function that takes an *args tuple, whereas the argument
|
|
* clinic generates code that takes METH_O.
|
|
*/
|
|
static PyObject *
|
|
datetime_date_fromtimestamp_capi(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *timestamp;
|
|
PyObject *result = NULL;
|
|
|
|
if (PyArg_UnpackTuple(args, "fromtimestamp", 1, 1, ×tamp)) {
|
|
result = date_fromtimestamp(cls, timestamp);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Return new date from proleptic Gregorian ordinal. Raises ValueError if
|
|
* the ordinal is out of range.
|
|
*/
|
|
static PyObject *
|
|
date_fromordinal(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *result = NULL;
|
|
int ordinal;
|
|
|
|
if (PyArg_ParseTuple(args, "i:fromordinal", &ordinal)) {
|
|
int year;
|
|
int month;
|
|
int day;
|
|
|
|
if (ordinal < 1)
|
|
PyErr_SetString(PyExc_ValueError, "ordinal must be "
|
|
">= 1");
|
|
else {
|
|
ord_to_ymd(ordinal, &year, &month, &day);
|
|
result = new_date_subclass_ex(year, month, day, cls);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* Return the new date from a string as generated by date.isoformat() */
|
|
static PyObject *
|
|
date_fromisoformat(PyObject *cls, PyObject *dtstr)
|
|
{
|
|
assert(dtstr != NULL);
|
|
|
|
if (!PyUnicode_Check(dtstr)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"fromisoformat: argument must be str");
|
|
return NULL;
|
|
}
|
|
|
|
Py_ssize_t len;
|
|
|
|
const char *dt_ptr = PyUnicode_AsUTF8AndSize(dtstr, &len);
|
|
if (dt_ptr == NULL) {
|
|
goto invalid_string_error;
|
|
}
|
|
|
|
int year = 0, month = 0, day = 0;
|
|
|
|
int rv;
|
|
if (len == 7 || len == 8 || len == 10) {
|
|
rv = parse_isoformat_date(dt_ptr, len, &year, &month, &day);
|
|
}
|
|
else {
|
|
rv = -1;
|
|
}
|
|
|
|
if (rv < 0) {
|
|
goto invalid_string_error;
|
|
}
|
|
|
|
return new_date_subclass_ex(year, month, day, cls);
|
|
|
|
invalid_string_error:
|
|
PyErr_Format(PyExc_ValueError, "Invalid isoformat string: %R", dtstr);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
date_fromisocalendar(PyObject *cls, PyObject *args, PyObject *kw)
|
|
{
|
|
static char *keywords[] = {
|
|
"year", "week", "day", NULL
|
|
};
|
|
|
|
int year, week, day;
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "iii:fromisocalendar",
|
|
keywords,
|
|
&year, &week, &day) == 0) {
|
|
if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
|
|
PyErr_Format(PyExc_ValueError,
|
|
"ISO calendar component out of range");
|
|
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int month;
|
|
int rv = iso_to_ymd(year, week, day, &year, &month, &day);
|
|
|
|
if (rv == -4) {
|
|
PyErr_Format(PyExc_ValueError, "Year is out of range: %d", year);
|
|
return NULL;
|
|
}
|
|
|
|
if (rv == -2) {
|
|
PyErr_Format(PyExc_ValueError, "Invalid week: %d", week);
|
|
return NULL;
|
|
}
|
|
|
|
if (rv == -3) {
|
|
PyErr_Format(PyExc_ValueError, "Invalid day: %d (range is [1, 7])",
|
|
day);
|
|
return NULL;
|
|
}
|
|
|
|
return new_date_subclass_ex(year, month, day, cls);
|
|
}
|
|
|
|
/* Return new date from _strptime.strptime_datetime_date(). */
|
|
static PyObject *
|
|
date_strptime(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *string, *format, *result;
|
|
|
|
if (!PyArg_ParseTuple(args, "UU:strptime", &string, &format)) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *module = PyImport_Import(&_Py_ID(_strptime));
|
|
if (module == NULL) {
|
|
return NULL;
|
|
}
|
|
result = PyObject_CallMethodObjArgs(module,
|
|
&_Py_ID(_strptime_datetime_date), cls,
|
|
string, format, NULL);
|
|
Py_DECREF(module);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* Date arithmetic.
|
|
*/
|
|
|
|
/* date + timedelta -> date. If arg negate is true, subtract the timedelta
|
|
* instead.
|
|
*/
|
|
static PyObject *
|
|
add_date_timedelta(PyDateTime_Date *date, PyDateTime_Delta *delta, int negate)
|
|
{
|
|
PyObject *result = NULL;
|
|
int year = GET_YEAR(date);
|
|
int month = GET_MONTH(date);
|
|
int deltadays = GET_TD_DAYS(delta);
|
|
/* C-level overflow is impossible because |deltadays| < 1e9. */
|
|
int day = GET_DAY(date) + (negate ? -deltadays : deltadays);
|
|
|
|
if (normalize_date(&year, &month, &day) >= 0)
|
|
result = new_date_subclass_ex(year, month, day,
|
|
(PyObject* )Py_TYPE(date));
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
date_add(PyObject *left, PyObject *right)
|
|
{
|
|
if (PyDateTime_Check(left) || PyDateTime_Check(right))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
if (PyDate_Check(left)) {
|
|
/* date + ??? */
|
|
if (PyDelta_Check(right))
|
|
/* date + delta */
|
|
return add_date_timedelta((PyDateTime_Date *) left,
|
|
(PyDateTime_Delta *) right,
|
|
0);
|
|
}
|
|
else {
|
|
/* ??? + date
|
|
* 'right' must be one of us, or we wouldn't have been called
|
|
*/
|
|
if (PyDelta_Check(left))
|
|
/* delta + date */
|
|
return add_date_timedelta((PyDateTime_Date *) right,
|
|
(PyDateTime_Delta *) left,
|
|
0);
|
|
}
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
|
|
static PyObject *
|
|
date_subtract(PyObject *left, PyObject *right)
|
|
{
|
|
if (PyDateTime_Check(left) || PyDateTime_Check(right))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
if (PyDate_Check(left)) {
|
|
if (PyDate_Check(right)) {
|
|
/* date - date */
|
|
int left_ord = ymd_to_ord(GET_YEAR(left),
|
|
GET_MONTH(left),
|
|
GET_DAY(left));
|
|
int right_ord = ymd_to_ord(GET_YEAR(right),
|
|
GET_MONTH(right),
|
|
GET_DAY(right));
|
|
return new_delta(left_ord - right_ord, 0, 0, 0);
|
|
}
|
|
if (PyDelta_Check(right)) {
|
|
/* date - delta */
|
|
return add_date_timedelta((PyDateTime_Date *) left,
|
|
(PyDateTime_Delta *) right,
|
|
1);
|
|
}
|
|
}
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
|
|
|
|
/* Various ways to turn a date into a string. */
|
|
|
|
static PyObject *
|
|
date_repr(PyDateTime_Date *self)
|
|
{
|
|
return PyUnicode_FromFormat("%s(%d, %d, %d)",
|
|
Py_TYPE(self)->tp_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
}
|
|
|
|
static PyObject *
|
|
date_isoformat(PyDateTime_Date *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return PyUnicode_FromFormat("%04d-%02d-%02d",
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
}
|
|
|
|
/* str() calls the appropriate isoformat() method. */
|
|
static PyObject *
|
|
date_str(PyDateTime_Date *self)
|
|
{
|
|
return PyObject_CallMethodNoArgs((PyObject *)self, &_Py_ID(isoformat));
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
date_ctime(PyDateTime_Date *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return format_ctime(self, 0, 0, 0);
|
|
}
|
|
|
|
static PyObject *
|
|
date_strftime(PyDateTime_Date *self, PyObject *args, PyObject *kw)
|
|
{
|
|
/* This method can be inherited, and needs to call the
|
|
* timetuple() method appropriate to self's class.
|
|
*/
|
|
PyObject *result;
|
|
PyObject *tuple;
|
|
PyObject *format;
|
|
static char *keywords[] = {"format", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
|
|
&format))
|
|
return NULL;
|
|
|
|
tuple = PyObject_CallMethodNoArgs((PyObject *)self, &_Py_ID(timetuple));
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
result = wrap_strftime((PyObject *)self, format, tuple,
|
|
(PyObject *)self);
|
|
Py_DECREF(tuple);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
date_format(PyDateTime_Date *self, PyObject *args)
|
|
{
|
|
PyObject *format;
|
|
|
|
if (!PyArg_ParseTuple(args, "U:__format__", &format))
|
|
return NULL;
|
|
|
|
/* if the format is zero length, return str(self) */
|
|
if (PyUnicode_GetLength(format) == 0)
|
|
return PyObject_Str((PyObject *)self);
|
|
|
|
return PyObject_CallMethodOneArg((PyObject *)self, &_Py_ID(strftime),
|
|
format);
|
|
}
|
|
|
|
/* ISO methods. */
|
|
|
|
static PyObject *
|
|
date_isoweekday(PyDateTime_Date *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
|
|
return PyLong_FromLong(dow + 1);
|
|
}
|
|
|
|
PyDoc_STRVAR(iso_calendar_date__doc__,
|
|
"The result of date.isocalendar() or datetime.isocalendar()\n\n\
|
|
This object may be accessed either as a tuple of\n\
|
|
((year, week, weekday)\n\
|
|
or via the object attributes as named in the above tuple.");
|
|
|
|
typedef struct {
|
|
PyTupleObject tuple;
|
|
} PyDateTime_IsoCalendarDate;
|
|
|
|
static PyObject *
|
|
iso_calendar_date_repr(PyDateTime_IsoCalendarDate *self)
|
|
{
|
|
PyObject* year = PyTuple_GetItem((PyObject *)self, 0);
|
|
if (year == NULL) {
|
|
return NULL;
|
|
}
|
|
PyObject* week = PyTuple_GetItem((PyObject *)self, 1);
|
|
if (week == NULL) {
|
|
return NULL;
|
|
}
|
|
PyObject* weekday = PyTuple_GetItem((PyObject *)self, 2);
|
|
if (weekday == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return PyUnicode_FromFormat("%.200s(year=%S, week=%S, weekday=%S)",
|
|
Py_TYPE(self)->tp_name, year, week, weekday);
|
|
}
|
|
|
|
static PyObject *
|
|
iso_calendar_date_reduce(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
// Construct the tuple that this reduces to
|
|
PyObject * reduce_tuple = Py_BuildValue(
|
|
"O((OOO))", &PyTuple_Type,
|
|
PyTuple_GET_ITEM(self, 0),
|
|
PyTuple_GET_ITEM(self, 1),
|
|
PyTuple_GET_ITEM(self, 2)
|
|
);
|
|
|
|
return reduce_tuple;
|
|
}
|
|
|
|
static PyObject *
|
|
iso_calendar_date_year(PyDateTime_IsoCalendarDate *self, void *unused)
|
|
{
|
|
PyObject *year = PyTuple_GetItem((PyObject *)self, 0);
|
|
if (year == NULL) {
|
|
return NULL;
|
|
}
|
|
return Py_NewRef(year);
|
|
}
|
|
|
|
static PyObject *
|
|
iso_calendar_date_week(PyDateTime_IsoCalendarDate *self, void *unused)
|
|
{
|
|
PyObject *week = PyTuple_GetItem((PyObject *)self, 1);
|
|
if (week == NULL) {
|
|
return NULL;
|
|
}
|
|
return Py_NewRef(week);
|
|
}
|
|
|
|
static PyObject *
|
|
iso_calendar_date_weekday(PyDateTime_IsoCalendarDate *self, void *unused)
|
|
{
|
|
PyObject *weekday = PyTuple_GetItem((PyObject *)self, 2);
|
|
if (weekday == NULL) {
|
|
return NULL;
|
|
}
|
|
return Py_NewRef(weekday);
|
|
}
|
|
|
|
static PyGetSetDef iso_calendar_date_getset[] = {
|
|
{"year", (getter)iso_calendar_date_year},
|
|
{"week", (getter)iso_calendar_date_week},
|
|
{"weekday", (getter)iso_calendar_date_weekday},
|
|
{NULL}
|
|
};
|
|
|
|
static PyMethodDef iso_calendar_date_methods[] = {
|
|
{"__reduce__", (PyCFunction)iso_calendar_date_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
{NULL, NULL},
|
|
};
|
|
|
|
static int
|
|
iso_calendar_date_traverse(PyDateTime_IsoCalendarDate *self, visitproc visit,
|
|
void *arg)
|
|
{
|
|
Py_VISIT(Py_TYPE(self));
|
|
return PyTuple_Type.tp_traverse((PyObject *)self, visit, arg);
|
|
}
|
|
|
|
static void
|
|
iso_calendar_date_dealloc(PyDateTime_IsoCalendarDate *self)
|
|
{
|
|
PyTypeObject *tp = Py_TYPE(self);
|
|
PyTuple_Type.tp_dealloc((PyObject *)self); // delegate GC-untrack as well
|
|
Py_DECREF(tp);
|
|
}
|
|
|
|
static PyType_Slot isocal_slots[] = {
|
|
{Py_tp_repr, iso_calendar_date_repr},
|
|
{Py_tp_doc, (void *)iso_calendar_date__doc__},
|
|
{Py_tp_methods, iso_calendar_date_methods},
|
|
{Py_tp_getset, iso_calendar_date_getset},
|
|
{Py_tp_new, iso_calendar_date_new},
|
|
{Py_tp_dealloc, iso_calendar_date_dealloc},
|
|
{Py_tp_traverse, iso_calendar_date_traverse},
|
|
{0, NULL},
|
|
};
|
|
|
|
static PyType_Spec isocal_spec = {
|
|
.name = "datetime.IsoCalendarDate",
|
|
.basicsize = sizeof(PyDateTime_IsoCalendarDate),
|
|
.flags = (Py_TPFLAGS_DEFAULT |
|
|
Py_TPFLAGS_HAVE_GC |
|
|
Py_TPFLAGS_IMMUTABLETYPE),
|
|
.slots = isocal_slots,
|
|
};
|
|
|
|
/*[clinic input]
|
|
@classmethod
|
|
datetime.IsoCalendarDate.__new__ as iso_calendar_date_new
|
|
year: int
|
|
week: int
|
|
weekday: int
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
iso_calendar_date_new_impl(PyTypeObject *type, int year, int week,
|
|
int weekday)
|
|
/*[clinic end generated code: output=383d33d8dc7183a2 input=4f2c663c9d19c4ee]*/
|
|
|
|
{
|
|
PyDateTime_IsoCalendarDate *self;
|
|
self = (PyDateTime_IsoCalendarDate *) type->tp_alloc(type, 3);
|
|
if (self == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PyTuple_SET_ITEM(self, 0, PyLong_FromLong(year));
|
|
PyTuple_SET_ITEM(self, 1, PyLong_FromLong(week));
|
|
PyTuple_SET_ITEM(self, 2, PyLong_FromLong(weekday));
|
|
|
|
return (PyObject *)self;
|
|
}
|
|
|
|
static PyObject *
|
|
date_isocalendar(PyDateTime_Date *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
int year = GET_YEAR(self);
|
|
int week1_monday = iso_week1_monday(year);
|
|
int today = ymd_to_ord(year, GET_MONTH(self), GET_DAY(self));
|
|
int week;
|
|
int day;
|
|
|
|
week = divmod(today - week1_monday, 7, &day);
|
|
if (week < 0) {
|
|
--year;
|
|
week1_monday = iso_week1_monday(year);
|
|
week = divmod(today - week1_monday, 7, &day);
|
|
}
|
|
else if (week >= 52 && today >= iso_week1_monday(year + 1)) {
|
|
++year;
|
|
week = 0;
|
|
}
|
|
|
|
PyObject *current_mod = NULL;
|
|
datetime_state *st = GET_CURRENT_STATE(current_mod);
|
|
|
|
PyObject *v = iso_calendar_date_new_impl(ISOCALENDAR_DATE_TYPE(st),
|
|
year, week + 1, day + 1);
|
|
RELEASE_CURRENT_STATE(st, current_mod);
|
|
if (v == NULL) {
|
|
return NULL;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/* Miscellaneous methods. */
|
|
|
|
static PyObject *
|
|
date_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
/* Since DateTime is a subclass of Date, if the other object is
|
|
* a DateTime, it would compute an equality testing or an ordering
|
|
* based on the date part alone, and we don't want that.
|
|
* So return NotImplemented here in that case.
|
|
* If a subclass wants to change this, it's up to the subclass to do so.
|
|
* The behavior is the same as if Date and DateTime were independent
|
|
* classes.
|
|
*/
|
|
if (PyDate_Check(other) && !PyDateTime_Check(other)) {
|
|
int diff = memcmp(((PyDateTime_Date *)self)->data,
|
|
((PyDateTime_Date *)other)->data,
|
|
_PyDateTime_DATE_DATASIZE);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
else
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
|
|
static PyObject *
|
|
date_timetuple(PyDateTime_Date *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return build_struct_time(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self),
|
|
0, 0, 0, -1);
|
|
}
|
|
|
|
/*[clinic input]
|
|
datetime.date.replace
|
|
|
|
year: int(c_default="GET_YEAR(self)") = unchanged
|
|
month: int(c_default="GET_MONTH(self)") = unchanged
|
|
day: int(c_default="GET_DAY(self)") = unchanged
|
|
|
|
Return date with new specified fields.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
datetime_date_replace_impl(PyDateTime_Date *self, int year, int month,
|
|
int day)
|
|
/*[clinic end generated code: output=2a9430d1e6318aeb input=0d1f02685b3e90f6]*/
|
|
{
|
|
return new_date_subclass_ex(year, month, day, (PyObject *)Py_TYPE(self));
|
|
}
|
|
|
|
static Py_hash_t
|
|
generic_hash(unsigned char *data, int len)
|
|
{
|
|
return Py_HashBuffer(data, len);
|
|
}
|
|
|
|
|
|
static PyObject *date_getstate(PyDateTime_Date *self);
|
|
|
|
static Py_hash_t
|
|
date_hash(PyDateTime_Date *self)
|
|
{
|
|
if (self->hashcode == -1) {
|
|
self->hashcode = generic_hash(
|
|
(unsigned char *)self->data, _PyDateTime_DATE_DATASIZE);
|
|
}
|
|
|
|
return self->hashcode;
|
|
}
|
|
|
|
static PyObject *
|
|
date_toordinal(PyDateTime_Date *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return PyLong_FromLong(ymd_to_ord(GET_YEAR(self), GET_MONTH(self),
|
|
GET_DAY(self)));
|
|
}
|
|
|
|
static PyObject *
|
|
date_weekday(PyDateTime_Date *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
int dow = weekday(GET_YEAR(self), GET_MONTH(self), GET_DAY(self));
|
|
|
|
return PyLong_FromLong(dow);
|
|
}
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* __getstate__ isn't exposed */
|
|
static PyObject *
|
|
date_getstate(PyDateTime_Date *self)
|
|
{
|
|
PyObject* field;
|
|
field = PyBytes_FromStringAndSize((char*)self->data,
|
|
_PyDateTime_DATE_DATASIZE);
|
|
return Py_BuildValue("(N)", field);
|
|
}
|
|
|
|
static PyObject *
|
|
date_reduce(PyDateTime_Date *self, PyObject *arg)
|
|
{
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), date_getstate(self));
|
|
}
|
|
|
|
static PyMethodDef date_methods[] = {
|
|
|
|
/* Class methods: */
|
|
DATETIME_DATE_FROMTIMESTAMP_METHODDEF
|
|
|
|
{"fromordinal", (PyCFunction)date_fromordinal, METH_VARARGS |
|
|
METH_CLASS,
|
|
PyDoc_STR("int -> date corresponding to a proleptic Gregorian "
|
|
"ordinal.")},
|
|
|
|
{"fromisoformat", (PyCFunction)date_fromisoformat, METH_O |
|
|
METH_CLASS,
|
|
PyDoc_STR("str -> Construct a date from a string in ISO 8601 format.")},
|
|
|
|
{"fromisocalendar", _PyCFunction_CAST(date_fromisocalendar),
|
|
METH_VARARGS | METH_KEYWORDS | METH_CLASS,
|
|
PyDoc_STR("int, int, int -> Construct a date from the ISO year, week "
|
|
"number and weekday.\n\n"
|
|
"This is the inverse of the date.isocalendar() function")},
|
|
|
|
{"strptime", (PyCFunction)date_strptime,
|
|
METH_VARARGS | METH_CLASS,
|
|
PyDoc_STR("string, format -> new date parsed from a string "
|
|
"(like time.strptime()).")},
|
|
|
|
{"today", (PyCFunction)date_today, METH_NOARGS | METH_CLASS,
|
|
PyDoc_STR("Current date or datetime: same as "
|
|
"self.__class__.fromtimestamp(time.time()).")},
|
|
|
|
/* Instance methods: */
|
|
|
|
{"ctime", (PyCFunction)date_ctime, METH_NOARGS,
|
|
PyDoc_STR("Return ctime() style string.")},
|
|
|
|
{"strftime", _PyCFunction_CAST(date_strftime), METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("format -> strftime() style string.")},
|
|
|
|
{"__format__", (PyCFunction)date_format, METH_VARARGS,
|
|
PyDoc_STR("Formats self with strftime.")},
|
|
|
|
{"timetuple", (PyCFunction)date_timetuple, METH_NOARGS,
|
|
PyDoc_STR("Return time tuple, compatible with time.localtime().")},
|
|
|
|
{"isocalendar", (PyCFunction)date_isocalendar, METH_NOARGS,
|
|
PyDoc_STR("Return a named tuple containing ISO year, week number, and "
|
|
"weekday.")},
|
|
|
|
{"isoformat", (PyCFunction)date_isoformat, METH_NOARGS,
|
|
PyDoc_STR("Return string in ISO 8601 format, YYYY-MM-DD.")},
|
|
|
|
{"isoweekday", (PyCFunction)date_isoweekday, METH_NOARGS,
|
|
PyDoc_STR("Return the day of the week represented by the date.\n"
|
|
"Monday == 1 ... Sunday == 7")},
|
|
|
|
{"toordinal", (PyCFunction)date_toordinal, METH_NOARGS,
|
|
PyDoc_STR("Return proleptic Gregorian ordinal. January 1 of year "
|
|
"1 is day 1.")},
|
|
|
|
{"weekday", (PyCFunction)date_weekday, METH_NOARGS,
|
|
PyDoc_STR("Return the day of the week represented by the date.\n"
|
|
"Monday == 0 ... Sunday == 6")},
|
|
|
|
DATETIME_DATE_REPLACE_METHODDEF
|
|
|
|
{"__replace__", _PyCFunction_CAST(datetime_date_replace), METH_FASTCALL | METH_KEYWORDS,
|
|
PyDoc_STR("__replace__($self, /, **changes)\n--\n\nThe same as replace().")},
|
|
|
|
{"__reduce__", (PyCFunction)date_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static const char date_doc[] =
|
|
PyDoc_STR("date(year, month, day) --> date object");
|
|
|
|
static PyNumberMethods date_as_number = {
|
|
date_add, /* nb_add */
|
|
date_subtract, /* nb_subtract */
|
|
0, /* nb_multiply */
|
|
0, /* nb_remainder */
|
|
0, /* nb_divmod */
|
|
0, /* nb_power */
|
|
0, /* nb_negative */
|
|
0, /* nb_positive */
|
|
0, /* nb_absolute */
|
|
0, /* nb_bool */
|
|
};
|
|
|
|
static PyTypeObject PyDateTime_DateType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.date", /* tp_name */
|
|
sizeof(PyDateTime_Date), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
(reprfunc)date_repr, /* tp_repr */
|
|
&date_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)date_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)date_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
date_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
date_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
date_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
date_getset, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
date_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/*
|
|
* PyDateTime_TZInfo implementation.
|
|
*/
|
|
|
|
/* This is a pure abstract base class, so doesn't do anything beyond
|
|
* raising NotImplemented exceptions. Real tzinfo classes need
|
|
* to derive from this. This is mostly for clarity, and for efficiency in
|
|
* datetime and time constructors (their tzinfo arguments need to
|
|
* be subclasses of this tzinfo class, which is easy and quick to check).
|
|
*
|
|
* Note: For reasons having to do with pickling of subclasses, we have
|
|
* to allow tzinfo objects to be instantiated. This wasn't an issue
|
|
* in the Python implementation (__init__() could raise NotImplementedError
|
|
* there without ill effect), but doing so in the C implementation hit a
|
|
* brick wall.
|
|
*/
|
|
|
|
static PyObject *
|
|
tzinfo_nogo(const char* methodname)
|
|
{
|
|
PyErr_Format(PyExc_NotImplementedError,
|
|
"a tzinfo subclass must implement %s()",
|
|
methodname);
|
|
return NULL;
|
|
}
|
|
|
|
/* Methods. A subclass must implement these. */
|
|
|
|
static PyObject *
|
|
tzinfo_tzname(PyDateTime_TZInfo *self, PyObject *dt)
|
|
{
|
|
return tzinfo_nogo("tzname");
|
|
}
|
|
|
|
static PyObject *
|
|
tzinfo_utcoffset(PyDateTime_TZInfo *self, PyObject *dt)
|
|
{
|
|
return tzinfo_nogo("utcoffset");
|
|
}
|
|
|
|
static PyObject *
|
|
tzinfo_dst(PyDateTime_TZInfo *self, PyObject *dt)
|
|
{
|
|
return tzinfo_nogo("dst");
|
|
}
|
|
|
|
|
|
static PyObject *add_datetime_timedelta(PyDateTime_DateTime *date,
|
|
PyDateTime_Delta *delta,
|
|
int factor);
|
|
static PyObject *datetime_utcoffset(PyObject *self, PyObject *);
|
|
static PyObject *datetime_dst(PyObject *self, PyObject *);
|
|
|
|
static PyObject *
|
|
tzinfo_fromutc(PyDateTime_TZInfo *self, PyObject *dt)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *off = NULL, *dst = NULL;
|
|
PyDateTime_Delta *delta = NULL;
|
|
|
|
if (!PyDateTime_Check(dt)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"fromutc: argument must be a datetime");
|
|
return NULL;
|
|
}
|
|
if (GET_DT_TZINFO(dt) != (PyObject *)self) {
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
|
|
"is not self");
|
|
return NULL;
|
|
}
|
|
|
|
off = datetime_utcoffset(dt, NULL);
|
|
if (off == NULL)
|
|
return NULL;
|
|
if (off == Py_None) {
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
|
|
"utcoffset() result required");
|
|
goto Fail;
|
|
}
|
|
|
|
dst = datetime_dst(dt, NULL);
|
|
if (dst == NULL)
|
|
goto Fail;
|
|
if (dst == Py_None) {
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: non-None "
|
|
"dst() result required");
|
|
goto Fail;
|
|
}
|
|
|
|
delta = (PyDateTime_Delta *)delta_subtract(off, dst);
|
|
if (delta == NULL)
|
|
goto Fail;
|
|
result = add_datetime_timedelta((PyDateTime_DateTime *)dt, delta, 1);
|
|
if (result == NULL)
|
|
goto Fail;
|
|
|
|
Py_DECREF(dst);
|
|
dst = call_dst(GET_DT_TZINFO(dt), result);
|
|
if (dst == NULL)
|
|
goto Fail;
|
|
if (dst == Py_None)
|
|
goto Inconsistent;
|
|
if (delta_bool((PyDateTime_Delta *)dst) != 0) {
|
|
Py_SETREF(result, add_datetime_timedelta((PyDateTime_DateTime *)result,
|
|
(PyDateTime_Delta *)dst, 1));
|
|
if (result == NULL)
|
|
goto Fail;
|
|
}
|
|
Py_DECREF(delta);
|
|
Py_DECREF(dst);
|
|
Py_DECREF(off);
|
|
return result;
|
|
|
|
Inconsistent:
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: tz.dst() gave "
|
|
"inconsistent results; cannot convert");
|
|
|
|
/* fall through to failure */
|
|
Fail:
|
|
Py_XDECREF(off);
|
|
Py_XDECREF(dst);
|
|
Py_XDECREF(delta);
|
|
Py_XDECREF(result);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Pickle support. This is solely so that tzinfo subclasses can use
|
|
* pickling -- tzinfo itself is supposed to be uninstantiable.
|
|
*/
|
|
|
|
static PyObject *
|
|
tzinfo_reduce(PyObject *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
PyObject *args, *state;
|
|
PyObject *getinitargs;
|
|
|
|
if (PyObject_GetOptionalAttr(self, &_Py_ID(__getinitargs__), &getinitargs) < 0) {
|
|
return NULL;
|
|
}
|
|
if (getinitargs != NULL) {
|
|
args = PyObject_CallNoArgs(getinitargs);
|
|
Py_DECREF(getinitargs);
|
|
}
|
|
else {
|
|
args = PyTuple_New(0);
|
|
}
|
|
if (args == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
state = _PyObject_GetState(self);
|
|
if (state == NULL) {
|
|
Py_DECREF(args);
|
|
return NULL;
|
|
}
|
|
|
|
return Py_BuildValue("(ONN)", Py_TYPE(self), args, state);
|
|
}
|
|
|
|
static PyMethodDef tzinfo_methods[] = {
|
|
|
|
{"tzname", (PyCFunction)tzinfo_tzname, METH_O,
|
|
PyDoc_STR("datetime -> string name of time zone.")},
|
|
|
|
{"utcoffset", (PyCFunction)tzinfo_utcoffset, METH_O,
|
|
PyDoc_STR("datetime -> timedelta showing offset from UTC, negative "
|
|
"values indicating West of UTC")},
|
|
|
|
{"dst", (PyCFunction)tzinfo_dst, METH_O,
|
|
PyDoc_STR("datetime -> DST offset as timedelta positive east of UTC.")},
|
|
|
|
{"fromutc", (PyCFunction)tzinfo_fromutc, METH_O,
|
|
PyDoc_STR("datetime in UTC -> datetime in local time.")},
|
|
|
|
{"__reduce__", tzinfo_reduce, METH_NOARGS,
|
|
PyDoc_STR("-> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static const char tzinfo_doc[] =
|
|
PyDoc_STR("Abstract base class for time zone info objects.");
|
|
|
|
static PyTypeObject PyDateTime_TZInfoType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.tzinfo", /* tp_name */
|
|
sizeof(PyDateTime_TZInfo), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
0, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
0, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
0, /* tp_hash */
|
|
0, /* tp_call */
|
|
0, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
tzinfo_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
0, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
tzinfo_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
PyType_GenericNew, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
static char *timezone_kws[] = {"offset", "name", NULL};
|
|
|
|
static PyObject *
|
|
timezone_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *offset;
|
|
PyObject *name = NULL;
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "O!|U:timezone", timezone_kws,
|
|
DELTA_TYPE(NO_STATE), &offset, &name))
|
|
return new_timezone(offset, name);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
timezone_dealloc(PyDateTime_TimeZone *self)
|
|
{
|
|
Py_CLEAR(self->offset);
|
|
Py_CLEAR(self->name);
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
}
|
|
|
|
static PyObject *
|
|
timezone_richcompare(PyDateTime_TimeZone *self,
|
|
PyDateTime_TimeZone *other, int op)
|
|
{
|
|
if (op != Py_EQ && op != Py_NE)
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
if (!PyTimezone_Check(other)) {
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
return delta_richcompare(self->offset, other->offset, op);
|
|
}
|
|
|
|
static Py_hash_t
|
|
timezone_hash(PyDateTime_TimeZone *self)
|
|
{
|
|
return delta_hash((PyDateTime_Delta *)self->offset);
|
|
}
|
|
|
|
/* Check argument type passed to tzname, utcoffset, or dst methods.
|
|
Returns 0 for good argument. Returns -1 and sets exception info
|
|
otherwise.
|
|
*/
|
|
static int
|
|
_timezone_check_argument(PyObject *dt, const char *meth)
|
|
{
|
|
if (dt == Py_None || PyDateTime_Check(dt))
|
|
return 0;
|
|
PyErr_Format(PyExc_TypeError, "%s(dt) argument must be a datetime instance"
|
|
" or None, not %.200s", meth, Py_TYPE(dt)->tp_name);
|
|
return -1;
|
|
}
|
|
|
|
static PyObject *
|
|
timezone_repr(PyDateTime_TimeZone *self)
|
|
{
|
|
/* Note that although timezone is not subclassable, it is convenient
|
|
to use Py_TYPE(self)->tp_name here. */
|
|
const char *type_name = Py_TYPE(self)->tp_name;
|
|
|
|
if ((PyObject *)self == CONST_UTC(NO_STATE)) {
|
|
return PyUnicode_FromFormat("%s.utc", type_name);
|
|
}
|
|
|
|
if (self->name == NULL)
|
|
return PyUnicode_FromFormat("%s(%R)", type_name, self->offset);
|
|
|
|
return PyUnicode_FromFormat("%s(%R, %R)", type_name, self->offset,
|
|
self->name);
|
|
}
|
|
|
|
|
|
static PyObject *
|
|
timezone_str(PyDateTime_TimeZone *self)
|
|
{
|
|
int hours, minutes, seconds, microseconds;
|
|
PyObject *offset;
|
|
char sign;
|
|
|
|
if (self->name != NULL) {
|
|
return Py_NewRef(self->name);
|
|
}
|
|
if ((PyObject *)self == CONST_UTC(NO_STATE) ||
|
|
(GET_TD_DAYS(self->offset) == 0 &&
|
|
GET_TD_SECONDS(self->offset) == 0 &&
|
|
GET_TD_MICROSECONDS(self->offset) == 0))
|
|
{
|
|
return PyUnicode_FromString("UTC");
|
|
}
|
|
/* Offset is normalized, so it is negative if days < 0 */
|
|
if (GET_TD_DAYS(self->offset) < 0) {
|
|
sign = '-';
|
|
offset = delta_negative((PyDateTime_Delta *)self->offset);
|
|
if (offset == NULL)
|
|
return NULL;
|
|
}
|
|
else {
|
|
sign = '+';
|
|
offset = Py_NewRef(self->offset);
|
|
}
|
|
/* Offset is not negative here. */
|
|
microseconds = GET_TD_MICROSECONDS(offset);
|
|
seconds = GET_TD_SECONDS(offset);
|
|
Py_DECREF(offset);
|
|
minutes = divmod(seconds, 60, &seconds);
|
|
hours = divmod(minutes, 60, &minutes);
|
|
if (microseconds != 0) {
|
|
return PyUnicode_FromFormat("UTC%c%02d:%02d:%02d.%06d",
|
|
sign, hours, minutes,
|
|
seconds, microseconds);
|
|
}
|
|
if (seconds != 0) {
|
|
return PyUnicode_FromFormat("UTC%c%02d:%02d:%02d",
|
|
sign, hours, minutes, seconds);
|
|
}
|
|
return PyUnicode_FromFormat("UTC%c%02d:%02d", sign, hours, minutes);
|
|
}
|
|
|
|
static PyObject *
|
|
timezone_tzname(PyDateTime_TimeZone *self, PyObject *dt)
|
|
{
|
|
if (_timezone_check_argument(dt, "tzname") == -1)
|
|
return NULL;
|
|
|
|
return timezone_str(self);
|
|
}
|
|
|
|
static PyObject *
|
|
timezone_utcoffset(PyDateTime_TimeZone *self, PyObject *dt)
|
|
{
|
|
if (_timezone_check_argument(dt, "utcoffset") == -1)
|
|
return NULL;
|
|
|
|
return Py_NewRef(self->offset);
|
|
}
|
|
|
|
static PyObject *
|
|
timezone_dst(PyObject *self, PyObject *dt)
|
|
{
|
|
if (_timezone_check_argument(dt, "dst") == -1)
|
|
return NULL;
|
|
|
|
Py_RETURN_NONE;
|
|
}
|
|
|
|
static PyObject *
|
|
timezone_fromutc(PyDateTime_TimeZone *self, PyDateTime_DateTime *dt)
|
|
{
|
|
if (!PyDateTime_Check(dt)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"fromutc: argument must be a datetime");
|
|
return NULL;
|
|
}
|
|
if (!HASTZINFO(dt) || dt->tzinfo != (PyObject *)self) {
|
|
PyErr_SetString(PyExc_ValueError, "fromutc: dt.tzinfo "
|
|
"is not self");
|
|
return NULL;
|
|
}
|
|
|
|
return add_datetime_timedelta(dt, (PyDateTime_Delta *)self->offset, 1);
|
|
}
|
|
|
|
static PyObject *
|
|
timezone_getinitargs(PyDateTime_TimeZone *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
if (self->name == NULL)
|
|
return PyTuple_Pack(1, self->offset);
|
|
return PyTuple_Pack(2, self->offset, self->name);
|
|
}
|
|
|
|
static PyMethodDef timezone_methods[] = {
|
|
{"tzname", (PyCFunction)timezone_tzname, METH_O,
|
|
PyDoc_STR("If name is specified when timezone is created, returns the name."
|
|
" Otherwise returns offset as 'UTC(+|-)HH:MM'.")},
|
|
|
|
{"utcoffset", (PyCFunction)timezone_utcoffset, METH_O,
|
|
PyDoc_STR("Return fixed offset.")},
|
|
|
|
{"dst", (PyCFunction)timezone_dst, METH_O,
|
|
PyDoc_STR("Return None.")},
|
|
|
|
{"fromutc", (PyCFunction)timezone_fromutc, METH_O,
|
|
PyDoc_STR("datetime in UTC -> datetime in local time.")},
|
|
|
|
{"__getinitargs__", (PyCFunction)timezone_getinitargs, METH_NOARGS,
|
|
PyDoc_STR("pickle support")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static const char timezone_doc[] =
|
|
PyDoc_STR("Fixed offset from UTC implementation of tzinfo.");
|
|
|
|
static PyTypeObject PyDateTime_TimeZoneType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.timezone", /* tp_name */
|
|
sizeof(PyDateTime_TimeZone), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)timezone_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
(reprfunc)timezone_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)timezone_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)timezone_str, /* tp_str */
|
|
0, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT, /* tp_flags */
|
|
timezone_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
(richcmpfunc)timezone_richcompare,/* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
timezone_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
0, /* tp_getset */
|
|
0, /* tp_base; filled in PyInit__datetime */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
0, /* tp_alloc */
|
|
timezone_new, /* tp_new */
|
|
};
|
|
|
|
// XXX Can we make this const?
|
|
static PyDateTime_TimeZone utc_timezone = {
|
|
PyObject_HEAD_INIT(&PyDateTime_TimeZoneType)
|
|
.offset = (PyObject *)&zero_delta,
|
|
.name = NULL,
|
|
};
|
|
|
|
static PyDateTime_TimeZone *
|
|
look_up_timezone(PyObject *offset, PyObject *name)
|
|
{
|
|
if (offset == utc_timezone.offset && name == NULL) {
|
|
return (PyDateTime_TimeZone *)CONST_UTC(NO_STATE);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* PyDateTime_Time implementation.
|
|
*/
|
|
|
|
/* Accessor properties.
|
|
*/
|
|
|
|
static PyObject *
|
|
time_hour(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_HOUR(self));
|
|
}
|
|
|
|
static PyObject *
|
|
time_minute(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_MINUTE(self));
|
|
}
|
|
|
|
/* The name time_second conflicted with some platform header file. */
|
|
static PyObject *
|
|
py_time_second(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_SECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
time_microsecond(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_MICROSECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
time_tzinfo(PyDateTime_Time *self, void *unused)
|
|
{
|
|
PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
|
|
return Py_NewRef(result);
|
|
}
|
|
|
|
static PyObject *
|
|
time_fold(PyDateTime_Time *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(TIME_GET_FOLD(self));
|
|
}
|
|
|
|
static PyGetSetDef time_getset[] = {
|
|
{"hour", (getter)time_hour},
|
|
{"minute", (getter)time_minute},
|
|
{"second", (getter)py_time_second},
|
|
{"microsecond", (getter)time_microsecond},
|
|
{"tzinfo", (getter)time_tzinfo},
|
|
{"fold", (getter)time_fold},
|
|
{NULL}
|
|
};
|
|
|
|
/*
|
|
* Constructors.
|
|
*/
|
|
|
|
static char *time_kws[] = {"hour", "minute", "second", "microsecond",
|
|
"tzinfo", "fold", NULL};
|
|
|
|
static PyObject *
|
|
time_from_pickle(PyTypeObject *type, PyObject *state, PyObject *tzinfo)
|
|
{
|
|
PyDateTime_Time *me;
|
|
char aware = (char)(tzinfo != Py_None);
|
|
|
|
if (aware && check_tzinfo_subclass(tzinfo) < 0) {
|
|
PyErr_SetString(PyExc_TypeError, "bad tzinfo state arg");
|
|
return NULL;
|
|
}
|
|
|
|
me = (PyDateTime_Time *) (type->tp_alloc(type, aware));
|
|
if (me != NULL) {
|
|
const char *pdata = PyBytes_AS_STRING(state);
|
|
|
|
memcpy(me->data, pdata, _PyDateTime_TIME_DATASIZE);
|
|
me->hashcode = -1;
|
|
me->hastzinfo = aware;
|
|
if (aware) {
|
|
me->tzinfo = Py_NewRef(tzinfo);
|
|
}
|
|
if (pdata[0] & (1 << 7)) {
|
|
me->data[0] -= 128;
|
|
me->fold = 1;
|
|
}
|
|
else {
|
|
me->fold = 0;
|
|
}
|
|
}
|
|
return (PyObject *)me;
|
|
}
|
|
|
|
static PyObject *
|
|
time_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
int hour = 0;
|
|
int minute = 0;
|
|
int second = 0;
|
|
int usecond = 0;
|
|
PyObject *tzinfo = Py_None;
|
|
int fold = 0;
|
|
|
|
/* Check for invocation from pickle with __getstate__ state */
|
|
if (PyTuple_GET_SIZE(args) >= 1 && PyTuple_GET_SIZE(args) <= 2) {
|
|
PyObject *state = PyTuple_GET_ITEM(args, 0);
|
|
if (PyTuple_GET_SIZE(args) == 2) {
|
|
tzinfo = PyTuple_GET_ITEM(args, 1);
|
|
}
|
|
if (PyBytes_Check(state)) {
|
|
if (PyBytes_GET_SIZE(state) == _PyDateTime_TIME_DATASIZE &&
|
|
(0x7F & ((unsigned char) (PyBytes_AS_STRING(state)[0]))) < 24)
|
|
{
|
|
return time_from_pickle(type, state, tzinfo);
|
|
}
|
|
}
|
|
else if (PyUnicode_Check(state)) {
|
|
if (PyUnicode_GET_LENGTH(state) == _PyDateTime_TIME_DATASIZE &&
|
|
(0x7F & PyUnicode_READ_CHAR(state, 0)) < 24)
|
|
{
|
|
state = PyUnicode_AsLatin1String(state);
|
|
if (state == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_UnicodeEncodeError)) {
|
|
/* More informative error message. */
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Failed to encode latin1 string when unpickling "
|
|
"a time object. "
|
|
"pickle.load(data, encoding='latin1') is assumed.");
|
|
}
|
|
return NULL;
|
|
}
|
|
self = time_from_pickle(type, state, tzinfo);
|
|
Py_DECREF(state);
|
|
return self;
|
|
}
|
|
}
|
|
tzinfo = Py_None;
|
|
}
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "|iiiiO$i", time_kws,
|
|
&hour, &minute, &second, &usecond,
|
|
&tzinfo, &fold)) {
|
|
self = new_time_ex2(hour, minute, second, usecond, tzinfo, fold,
|
|
type);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Return new time from _strptime.strptime_datetime_time(). */
|
|
static PyObject *
|
|
time_strptime(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *string, *format, *result;
|
|
|
|
if (!PyArg_ParseTuple(args, "UU:strptime", &string, &format)) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *module = PyImport_Import(&_Py_ID(_strptime));
|
|
if (module == NULL) {
|
|
return NULL;
|
|
}
|
|
result = PyObject_CallMethodObjArgs(module,
|
|
&_Py_ID(_strptime_datetime_time), cls,
|
|
string, format, NULL);
|
|
Py_DECREF(module);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Destructor.
|
|
*/
|
|
|
|
static void
|
|
time_dealloc(PyDateTime_Time *self)
|
|
{
|
|
if (HASTZINFO(self)) {
|
|
Py_XDECREF(self->tzinfo);
|
|
}
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
}
|
|
|
|
/*
|
|
* Indirect access to tzinfo methods.
|
|
*/
|
|
|
|
/* These are all METH_NOARGS, so don't need to check the arglist. */
|
|
static PyObject *
|
|
time_utcoffset(PyObject *self, PyObject *unused) {
|
|
return call_utcoffset(GET_TIME_TZINFO(self), Py_None);
|
|
}
|
|
|
|
static PyObject *
|
|
time_dst(PyObject *self, PyObject *unused) {
|
|
return call_dst(GET_TIME_TZINFO(self), Py_None);
|
|
}
|
|
|
|
static PyObject *
|
|
time_tzname(PyDateTime_Time *self, PyObject *unused) {
|
|
return call_tzname(GET_TIME_TZINFO(self), Py_None);
|
|
}
|
|
|
|
/*
|
|
* Various ways to turn a time into a string.
|
|
*/
|
|
|
|
static PyObject *
|
|
time_repr(PyDateTime_Time *self)
|
|
{
|
|
const char *type_name = Py_TYPE(self)->tp_name;
|
|
int h = TIME_GET_HOUR(self);
|
|
int m = TIME_GET_MINUTE(self);
|
|
int s = TIME_GET_SECOND(self);
|
|
int us = TIME_GET_MICROSECOND(self);
|
|
int fold = TIME_GET_FOLD(self);
|
|
PyObject *result = NULL;
|
|
|
|
if (us)
|
|
result = PyUnicode_FromFormat("%s(%d, %d, %d, %d)",
|
|
type_name, h, m, s, us);
|
|
else if (s)
|
|
result = PyUnicode_FromFormat("%s(%d, %d, %d)",
|
|
type_name, h, m, s);
|
|
else
|
|
result = PyUnicode_FromFormat("%s(%d, %d)", type_name, h, m);
|
|
if (result != NULL && HASTZINFO(self))
|
|
result = append_keyword_tzinfo(result, self->tzinfo);
|
|
if (result != NULL && fold)
|
|
result = append_keyword_fold(result, fold);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
time_str(PyDateTime_Time *self)
|
|
{
|
|
return PyObject_CallMethodNoArgs((PyObject *)self, &_Py_ID(isoformat));
|
|
}
|
|
|
|
static PyObject *
|
|
time_isoformat(PyDateTime_Time *self, PyObject *args, PyObject *kw)
|
|
{
|
|
char buf[100];
|
|
const char *timespec = NULL;
|
|
static char *keywords[] = {"timespec", NULL};
|
|
PyObject *result;
|
|
int us = TIME_GET_MICROSECOND(self);
|
|
static const char *specs[][2] = {
|
|
{"hours", "%02d"},
|
|
{"minutes", "%02d:%02d"},
|
|
{"seconds", "%02d:%02d:%02d"},
|
|
{"milliseconds", "%02d:%02d:%02d.%03d"},
|
|
{"microseconds", "%02d:%02d:%02d.%06d"},
|
|
};
|
|
size_t given_spec;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "|s:isoformat", keywords, ×pec))
|
|
return NULL;
|
|
|
|
if (timespec == NULL || strcmp(timespec, "auto") == 0) {
|
|
if (us == 0) {
|
|
/* seconds */
|
|
given_spec = 2;
|
|
}
|
|
else {
|
|
/* microseconds */
|
|
given_spec = 4;
|
|
}
|
|
}
|
|
else {
|
|
for (given_spec = 0; given_spec < Py_ARRAY_LENGTH(specs); given_spec++) {
|
|
if (strcmp(timespec, specs[given_spec][0]) == 0) {
|
|
if (given_spec == 3) {
|
|
/* milliseconds */
|
|
us = us / 1000;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (given_spec == Py_ARRAY_LENGTH(specs)) {
|
|
PyErr_Format(PyExc_ValueError, "Unknown timespec value");
|
|
return NULL;
|
|
}
|
|
else {
|
|
result = PyUnicode_FromFormat(specs[given_spec][1],
|
|
TIME_GET_HOUR(self), TIME_GET_MINUTE(self),
|
|
TIME_GET_SECOND(self), us);
|
|
}
|
|
|
|
if (result == NULL || !HASTZINFO(self) || self->tzinfo == Py_None)
|
|
return result;
|
|
|
|
/* We need to append the UTC offset. */
|
|
if (format_utcoffset(buf, sizeof(buf), ":", self->tzinfo,
|
|
Py_None) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buf));
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
time_strftime(PyDateTime_Time *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *result;
|
|
PyObject *tuple;
|
|
PyObject *format;
|
|
static char *keywords[] = {"format", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "U:strftime", keywords,
|
|
&format))
|
|
return NULL;
|
|
|
|
/* Python's strftime does insane things with the year part of the
|
|
* timetuple. The year is forced to (the otherwise nonsensical)
|
|
* 1900 to work around that.
|
|
*/
|
|
tuple = Py_BuildValue("iiiiiiiii",
|
|
1900, 1, 1, /* year, month, day */
|
|
TIME_GET_HOUR(self),
|
|
TIME_GET_MINUTE(self),
|
|
TIME_GET_SECOND(self),
|
|
0, 1, -1); /* weekday, daynum, dst */
|
|
if (tuple == NULL)
|
|
return NULL;
|
|
assert(PyTuple_Size(tuple) == 9);
|
|
result = wrap_strftime((PyObject *)self, format, tuple,
|
|
Py_None);
|
|
Py_DECREF(tuple);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Miscellaneous methods.
|
|
*/
|
|
|
|
static PyObject *
|
|
time_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *offset1, *offset2;
|
|
int diff;
|
|
|
|
if (! PyTime_Check(other))
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
|
|
if (GET_TIME_TZINFO(self) == GET_TIME_TZINFO(other)) {
|
|
diff = memcmp(((PyDateTime_Time *)self)->data,
|
|
((PyDateTime_Time *)other)->data,
|
|
_PyDateTime_TIME_DATASIZE);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
offset1 = time_utcoffset(self, NULL);
|
|
if (offset1 == NULL)
|
|
return NULL;
|
|
offset2 = time_utcoffset(other, NULL);
|
|
if (offset2 == NULL)
|
|
goto done;
|
|
/* If they're both naive, or both aware and have the same offsets,
|
|
* we get off cheap. Note that if they're both naive, offset1 ==
|
|
* offset2 == Py_None at this point.
|
|
*/
|
|
if ((offset1 == offset2) ||
|
|
(PyDelta_Check(offset1) && PyDelta_Check(offset2) &&
|
|
delta_cmp(offset1, offset2) == 0)) {
|
|
diff = memcmp(((PyDateTime_Time *)self)->data,
|
|
((PyDateTime_Time *)other)->data,
|
|
_PyDateTime_TIME_DATASIZE);
|
|
result = diff_to_bool(diff, op);
|
|
}
|
|
/* The hard case: both aware with different UTC offsets */
|
|
else if (offset1 != Py_None && offset2 != Py_None) {
|
|
int offsecs1, offsecs2;
|
|
assert(offset1 != offset2); /* else last "if" handled it */
|
|
offsecs1 = TIME_GET_HOUR(self) * 3600 +
|
|
TIME_GET_MINUTE(self) * 60 +
|
|
TIME_GET_SECOND(self) -
|
|
GET_TD_DAYS(offset1) * 86400 -
|
|
GET_TD_SECONDS(offset1);
|
|
offsecs2 = TIME_GET_HOUR(other) * 3600 +
|
|
TIME_GET_MINUTE(other) * 60 +
|
|
TIME_GET_SECOND(other) -
|
|
GET_TD_DAYS(offset2) * 86400 -
|
|
GET_TD_SECONDS(offset2);
|
|
diff = offsecs1 - offsecs2;
|
|
if (diff == 0)
|
|
diff = TIME_GET_MICROSECOND(self) -
|
|
TIME_GET_MICROSECOND(other);
|
|
result = diff_to_bool(diff, op);
|
|
}
|
|
else if (op == Py_EQ) {
|
|
result = Py_NewRef(Py_False);
|
|
}
|
|
else if (op == Py_NE) {
|
|
result = Py_NewRef(Py_True);
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't compare offset-naive and "
|
|
"offset-aware times");
|
|
}
|
|
done:
|
|
Py_DECREF(offset1);
|
|
Py_XDECREF(offset2);
|
|
return result;
|
|
}
|
|
|
|
static Py_hash_t
|
|
time_hash(PyDateTime_Time *self)
|
|
{
|
|
if (self->hashcode == -1) {
|
|
PyObject *offset, *self0;
|
|
if (TIME_GET_FOLD(self)) {
|
|
self0 = new_time_ex2(TIME_GET_HOUR(self),
|
|
TIME_GET_MINUTE(self),
|
|
TIME_GET_SECOND(self),
|
|
TIME_GET_MICROSECOND(self),
|
|
HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
0, Py_TYPE(self));
|
|
if (self0 == NULL)
|
|
return -1;
|
|
}
|
|
else {
|
|
self0 = Py_NewRef(self);
|
|
}
|
|
offset = time_utcoffset(self0, NULL);
|
|
Py_DECREF(self0);
|
|
|
|
if (offset == NULL)
|
|
return -1;
|
|
|
|
/* Reduce this to a hash of another object. */
|
|
if (offset == Py_None)
|
|
self->hashcode = generic_hash(
|
|
(unsigned char *)self->data, _PyDateTime_TIME_DATASIZE);
|
|
else {
|
|
PyObject *temp1, *temp2;
|
|
int seconds, microseconds;
|
|
assert(HASTZINFO(self));
|
|
seconds = TIME_GET_HOUR(self) * 3600 +
|
|
TIME_GET_MINUTE(self) * 60 +
|
|
TIME_GET_SECOND(self);
|
|
microseconds = TIME_GET_MICROSECOND(self);
|
|
temp1 = new_delta(0, seconds, microseconds, 1);
|
|
if (temp1 == NULL) {
|
|
Py_DECREF(offset);
|
|
return -1;
|
|
}
|
|
temp2 = delta_subtract(temp1, offset);
|
|
Py_DECREF(temp1);
|
|
if (temp2 == NULL) {
|
|
Py_DECREF(offset);
|
|
return -1;
|
|
}
|
|
self->hashcode = PyObject_Hash(temp2);
|
|
Py_DECREF(temp2);
|
|
}
|
|
Py_DECREF(offset);
|
|
}
|
|
return self->hashcode;
|
|
}
|
|
|
|
/*[clinic input]
|
|
datetime.time.replace
|
|
|
|
hour: int(c_default="TIME_GET_HOUR(self)") = unchanged
|
|
minute: int(c_default="TIME_GET_MINUTE(self)") = unchanged
|
|
second: int(c_default="TIME_GET_SECOND(self)") = unchanged
|
|
microsecond: int(c_default="TIME_GET_MICROSECOND(self)") = unchanged
|
|
tzinfo: object(c_default="HASTZINFO(self) ? self->tzinfo : Py_None") = unchanged
|
|
*
|
|
fold: int(c_default="TIME_GET_FOLD(self)") = unchanged
|
|
|
|
Return time with new specified fields.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
datetime_time_replace_impl(PyDateTime_Time *self, int hour, int minute,
|
|
int second, int microsecond, PyObject *tzinfo,
|
|
int fold)
|
|
/*[clinic end generated code: output=0b89a44c299e4f80 input=9b6a35b1e704b0ca]*/
|
|
{
|
|
return new_time_subclass_fold_ex(hour, minute, second, microsecond, tzinfo,
|
|
fold, (PyObject *)Py_TYPE(self));
|
|
}
|
|
|
|
static PyObject *
|
|
time_fromisoformat(PyObject *cls, PyObject *tstr) {
|
|
assert(tstr != NULL);
|
|
|
|
if (!PyUnicode_Check(tstr)) {
|
|
PyErr_SetString(PyExc_TypeError, "fromisoformat: argument must be str");
|
|
return NULL;
|
|
}
|
|
|
|
Py_ssize_t len;
|
|
const char *p = PyUnicode_AsUTF8AndSize(tstr, &len);
|
|
|
|
if (p == NULL) {
|
|
goto invalid_string_error;
|
|
}
|
|
|
|
// The spec actually requires that time-only ISO 8601 strings start with
|
|
// T, but the extended format allows this to be omitted as long as there
|
|
// is no ambiguity with date strings.
|
|
if (*p == 'T') {
|
|
++p;
|
|
len -= 1;
|
|
}
|
|
|
|
int hour = 0, minute = 0, second = 0, microsecond = 0;
|
|
int tzoffset = 0, tzimicrosecond = 0;
|
|
int rv = parse_isoformat_time(p, len,
|
|
&hour, &minute, &second, µsecond,
|
|
&tzoffset, &tzimicrosecond);
|
|
|
|
if (rv < 0) {
|
|
goto invalid_string_error;
|
|
}
|
|
|
|
if (hour == 24) {
|
|
if (minute == 0 && second == 0 && microsecond == 0) {
|
|
hour = 0;
|
|
} else {
|
|
goto invalid_iso_midnight;
|
|
}
|
|
}
|
|
|
|
PyObject *tzinfo = tzinfo_from_isoformat_results(rv, tzoffset,
|
|
tzimicrosecond);
|
|
|
|
if (tzinfo == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
PyObject *t;
|
|
if ( (PyTypeObject *)cls == TIME_TYPE(NO_STATE)) {
|
|
t = new_time(hour, minute, second, microsecond, tzinfo, 0);
|
|
} else {
|
|
t = PyObject_CallFunction(cls, "iiiiO",
|
|
hour, minute, second, microsecond, tzinfo);
|
|
}
|
|
|
|
Py_DECREF(tzinfo);
|
|
return t;
|
|
|
|
invalid_iso_midnight:
|
|
PyErr_SetString(PyExc_ValueError, "minute, second, and microsecond must be 0 when hour is 24");
|
|
return NULL;
|
|
|
|
invalid_string_error:
|
|
PyErr_Format(PyExc_ValueError, "Invalid isoformat string: %R", tstr);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* Let basestate be the non-tzinfo data string.
|
|
* If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
|
|
* So it's a tuple in any (non-error) case.
|
|
* __getstate__ isn't exposed.
|
|
*/
|
|
static PyObject *
|
|
time_getstate(PyDateTime_Time *self, int proto)
|
|
{
|
|
PyObject *basestate;
|
|
PyObject *result = NULL;
|
|
|
|
basestate = PyBytes_FromStringAndSize((char *)self->data,
|
|
_PyDateTime_TIME_DATASIZE);
|
|
if (basestate != NULL) {
|
|
if (proto > 3 && TIME_GET_FOLD(self))
|
|
/* Set the first bit of the first byte */
|
|
PyBytes_AS_STRING(basestate)[0] |= (1 << 7);
|
|
if (! HASTZINFO(self) || self->tzinfo == Py_None)
|
|
result = PyTuple_Pack(1, basestate);
|
|
else
|
|
result = PyTuple_Pack(2, basestate, self->tzinfo);
|
|
Py_DECREF(basestate);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
time_reduce_ex(PyDateTime_Time *self, PyObject *args)
|
|
{
|
|
int proto;
|
|
if (!PyArg_ParseTuple(args, "i:__reduce_ex__", &proto))
|
|
return NULL;
|
|
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self, proto));
|
|
}
|
|
|
|
static PyObject *
|
|
time_reduce(PyDateTime_Time *self, PyObject *arg)
|
|
{
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), time_getstate(self, 2));
|
|
}
|
|
|
|
static PyMethodDef time_methods[] = {
|
|
|
|
/* Class method: */
|
|
|
|
{"strptime", (PyCFunction)time_strptime,
|
|
METH_VARARGS | METH_CLASS,
|
|
PyDoc_STR("string, format -> new time parsed from a string "
|
|
"(like time.strptime()).")},
|
|
|
|
/* Instance methods: */
|
|
|
|
{"isoformat", _PyCFunction_CAST(time_isoformat), METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("Return string in ISO 8601 format, [HH[:MM[:SS[.mmm[uuu]]]]]"
|
|
"[+HH:MM].\n\n"
|
|
"The optional argument timespec specifies the number "
|
|
"of additional terms\nof the time to include. Valid "
|
|
"options are 'auto', 'hours', 'minutes',\n'seconds', "
|
|
"'milliseconds' and 'microseconds'.\n")},
|
|
|
|
{"strftime", _PyCFunction_CAST(time_strftime), METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("format -> strftime() style string.")},
|
|
|
|
{"__format__", (PyCFunction)date_format, METH_VARARGS,
|
|
PyDoc_STR("Formats self with strftime.")},
|
|
|
|
{"utcoffset", (PyCFunction)time_utcoffset, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
|
|
|
|
{"tzname", (PyCFunction)time_tzname, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.tzname(self).")},
|
|
|
|
{"dst", (PyCFunction)time_dst, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.dst(self).")},
|
|
|
|
DATETIME_TIME_REPLACE_METHODDEF
|
|
|
|
{"__replace__", _PyCFunction_CAST(datetime_time_replace), METH_FASTCALL | METH_KEYWORDS,
|
|
PyDoc_STR("__replace__($self, /, **changes)\n--\n\nThe same as replace().")},
|
|
|
|
{"fromisoformat", (PyCFunction)time_fromisoformat, METH_O | METH_CLASS,
|
|
PyDoc_STR("string -> time from a string in ISO 8601 format")},
|
|
|
|
{"__reduce_ex__", (PyCFunction)time_reduce_ex, METH_VARARGS,
|
|
PyDoc_STR("__reduce_ex__(proto) -> (cls, state)")},
|
|
|
|
{"__reduce__", (PyCFunction)time_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static const char time_doc[] =
|
|
PyDoc_STR("time([hour[, minute[, second[, microsecond[, tzinfo]]]]]) --> a time object\n\
|
|
\n\
|
|
All arguments are optional. tzinfo may be None, or an instance of\n\
|
|
a tzinfo subclass. The remaining arguments may be ints.\n");
|
|
|
|
static PyTypeObject PyDateTime_TimeType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.time", /* tp_name */
|
|
sizeof(PyDateTime_Time), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)time_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
(reprfunc)time_repr, /* tp_repr */
|
|
0, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)time_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)time_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
time_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
time_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
time_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
time_getset, /* tp_getset */
|
|
0, /* tp_base */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
time_alloc, /* tp_alloc */
|
|
time_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/*
|
|
* PyDateTime_DateTime implementation.
|
|
*/
|
|
|
|
/* Accessor properties. Properties for day, month, and year are inherited
|
|
* from date.
|
|
*/
|
|
|
|
static PyObject *
|
|
datetime_hour(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_HOUR(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_minute(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_MINUTE(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_second(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_SECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_microsecond(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_MICROSECOND(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_tzinfo(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
PyObject *result = HASTZINFO(self) ? self->tzinfo : Py_None;
|
|
return Py_NewRef(result);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_fold(PyDateTime_DateTime *self, void *unused)
|
|
{
|
|
return PyLong_FromLong(DATE_GET_FOLD(self));
|
|
}
|
|
|
|
static PyGetSetDef datetime_getset[] = {
|
|
{"hour", (getter)datetime_hour},
|
|
{"minute", (getter)datetime_minute},
|
|
{"second", (getter)datetime_second},
|
|
{"microsecond", (getter)datetime_microsecond},
|
|
{"tzinfo", (getter)datetime_tzinfo},
|
|
{"fold", (getter)datetime_fold},
|
|
{NULL}
|
|
};
|
|
|
|
/*
|
|
* Constructors.
|
|
*/
|
|
|
|
static char *datetime_kws[] = {
|
|
"year", "month", "day", "hour", "minute", "second",
|
|
"microsecond", "tzinfo", "fold", NULL
|
|
};
|
|
|
|
static PyObject *
|
|
datetime_from_pickle(PyTypeObject *type, PyObject *state, PyObject *tzinfo)
|
|
{
|
|
PyDateTime_DateTime *me;
|
|
char aware = (char)(tzinfo != Py_None);
|
|
|
|
if (aware && check_tzinfo_subclass(tzinfo) < 0) {
|
|
PyErr_SetString(PyExc_TypeError, "bad tzinfo state arg");
|
|
return NULL;
|
|
}
|
|
|
|
me = (PyDateTime_DateTime *) (type->tp_alloc(type , aware));
|
|
if (me != NULL) {
|
|
const char *pdata = PyBytes_AS_STRING(state);
|
|
|
|
memcpy(me->data, pdata, _PyDateTime_DATETIME_DATASIZE);
|
|
me->hashcode = -1;
|
|
me->hastzinfo = aware;
|
|
if (aware) {
|
|
me->tzinfo = Py_NewRef(tzinfo);
|
|
}
|
|
if (pdata[2] & (1 << 7)) {
|
|
me->data[2] -= 128;
|
|
me->fold = 1;
|
|
}
|
|
else {
|
|
me->fold = 0;
|
|
}
|
|
}
|
|
return (PyObject *)me;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_new(PyTypeObject *type, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self = NULL;
|
|
int year;
|
|
int month;
|
|
int day;
|
|
int hour = 0;
|
|
int minute = 0;
|
|
int second = 0;
|
|
int usecond = 0;
|
|
int fold = 0;
|
|
PyObject *tzinfo = Py_None;
|
|
|
|
/* Check for invocation from pickle with __getstate__ state */
|
|
if (PyTuple_GET_SIZE(args) >= 1 && PyTuple_GET_SIZE(args) <= 2) {
|
|
PyObject *state = PyTuple_GET_ITEM(args, 0);
|
|
if (PyTuple_GET_SIZE(args) == 2) {
|
|
tzinfo = PyTuple_GET_ITEM(args, 1);
|
|
}
|
|
if (PyBytes_Check(state)) {
|
|
if (PyBytes_GET_SIZE(state) == _PyDateTime_DATETIME_DATASIZE &&
|
|
MONTH_IS_SANE(PyBytes_AS_STRING(state)[2] & 0x7F))
|
|
{
|
|
return datetime_from_pickle(type, state, tzinfo);
|
|
}
|
|
}
|
|
else if (PyUnicode_Check(state)) {
|
|
if (PyUnicode_GET_LENGTH(state) == _PyDateTime_DATETIME_DATASIZE &&
|
|
MONTH_IS_SANE(PyUnicode_READ_CHAR(state, 2) & 0x7F))
|
|
{
|
|
state = PyUnicode_AsLatin1String(state);
|
|
if (state == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_UnicodeEncodeError)) {
|
|
/* More informative error message. */
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"Failed to encode latin1 string when unpickling "
|
|
"a datetime object. "
|
|
"pickle.load(data, encoding='latin1') is assumed.");
|
|
}
|
|
return NULL;
|
|
}
|
|
self = datetime_from_pickle(type, state, tzinfo);
|
|
Py_DECREF(state);
|
|
return self;
|
|
}
|
|
}
|
|
tzinfo = Py_None;
|
|
}
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "iii|iiiiO$i", datetime_kws,
|
|
&year, &month, &day, &hour, &minute,
|
|
&second, &usecond, &tzinfo, &fold)) {
|
|
self = new_datetime_ex2(year, month, day,
|
|
hour, minute, second, usecond,
|
|
tzinfo, fold, type);
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* TM_FUNC is the shared type of _PyTime_localtime() and
|
|
* _PyTime_gmtime(). */
|
|
typedef int (*TM_FUNC)(time_t timer, struct tm*);
|
|
|
|
/* As of version 2015f max fold in IANA database is
|
|
* 23 hours at 1969-09-30 13:00:00 in Kwajalein. */
|
|
static long long max_fold_seconds = 24 * 3600;
|
|
/* NB: date(1970,1,1).toordinal() == 719163 */
|
|
static long long epoch = 719163LL * 24 * 60 * 60;
|
|
|
|
static long long
|
|
utc_to_seconds(int year, int month, int day,
|
|
int hour, int minute, int second)
|
|
{
|
|
long long ordinal;
|
|
|
|
/* ymd_to_ord() doesn't support year <= 0 */
|
|
if (year < MINYEAR || year > MAXYEAR) {
|
|
PyErr_Format(PyExc_ValueError, "year %i is out of range", year);
|
|
return -1;
|
|
}
|
|
|
|
ordinal = ymd_to_ord(year, month, day);
|
|
return ((ordinal * 24 + hour) * 60 + minute) * 60 + second;
|
|
}
|
|
|
|
static long long
|
|
local(long long u)
|
|
{
|
|
struct tm local_time;
|
|
time_t t;
|
|
u -= epoch;
|
|
t = u;
|
|
if (t != u) {
|
|
PyErr_SetString(PyExc_OverflowError,
|
|
"timestamp out of range for platform time_t");
|
|
return -1;
|
|
}
|
|
if (_PyTime_localtime(t, &local_time) != 0)
|
|
return -1;
|
|
return utc_to_seconds(local_time.tm_year + 1900,
|
|
local_time.tm_mon + 1,
|
|
local_time.tm_mday,
|
|
local_time.tm_hour,
|
|
local_time.tm_min,
|
|
local_time.tm_sec);
|
|
}
|
|
|
|
/* Internal helper.
|
|
* Build datetime from a time_t and a distinct count of microseconds.
|
|
* Pass localtime or gmtime for f, to control the interpretation of timet.
|
|
*/
|
|
static PyObject *
|
|
datetime_from_timet_and_us(PyObject *cls, TM_FUNC f, time_t timet, int us,
|
|
PyObject *tzinfo)
|
|
{
|
|
struct tm tm;
|
|
int year, month, day, hour, minute, second, fold = 0;
|
|
|
|
if (f(timet, &tm) != 0)
|
|
return NULL;
|
|
|
|
year = tm.tm_year + 1900;
|
|
month = tm.tm_mon + 1;
|
|
day = tm.tm_mday;
|
|
hour = tm.tm_hour;
|
|
minute = tm.tm_min;
|
|
/* The platform localtime/gmtime may insert leap seconds,
|
|
* indicated by tm.tm_sec > 59. We don't care about them,
|
|
* except to the extent that passing them on to the datetime
|
|
* constructor would raise ValueError for a reason that
|
|
* made no sense to the user.
|
|
*/
|
|
second = Py_MIN(59, tm.tm_sec);
|
|
|
|
/* local timezone requires to compute fold */
|
|
if (tzinfo == Py_None && f == _PyTime_localtime
|
|
/* On Windows, passing a negative value to local results
|
|
* in an OSError because localtime_s on Windows does
|
|
* not support negative timestamps. Unfortunately this
|
|
* means that fold detection for time values between
|
|
* 0 and max_fold_seconds will result in an identical
|
|
* error since we subtract max_fold_seconds to detect a
|
|
* fold. However, since we know there haven't been any
|
|
* folds in the interval [0, max_fold_seconds) in any
|
|
* timezone, we can hackily just forego fold detection
|
|
* for this time range.
|
|
*/
|
|
#ifdef MS_WINDOWS
|
|
&& (timet - max_fold_seconds > 0)
|
|
#endif
|
|
) {
|
|
long long probe_seconds, result_seconds, transition;
|
|
|
|
result_seconds = utc_to_seconds(year, month, day,
|
|
hour, minute, second);
|
|
if (result_seconds == -1 && PyErr_Occurred()) {
|
|
return NULL;
|
|
}
|
|
|
|
/* Probe max_fold_seconds to detect a fold. */
|
|
probe_seconds = local(epoch + timet - max_fold_seconds);
|
|
if (probe_seconds == -1)
|
|
return NULL;
|
|
transition = result_seconds - probe_seconds - max_fold_seconds;
|
|
if (transition < 0) {
|
|
probe_seconds = local(epoch + timet + transition);
|
|
if (probe_seconds == -1)
|
|
return NULL;
|
|
if (probe_seconds == result_seconds)
|
|
fold = 1;
|
|
}
|
|
}
|
|
return new_datetime_subclass_fold_ex(year, month, day, hour, minute,
|
|
second, us, tzinfo, fold, cls);
|
|
}
|
|
|
|
/* Internal helper.
|
|
* Build datetime from a Python timestamp. Pass localtime or gmtime for f,
|
|
* to control the interpretation of the timestamp. Since a double doesn't
|
|
* have enough bits to cover a datetime's full range of precision, it's
|
|
* better to call datetime_from_timet_and_us provided you have a way
|
|
* to get that much precision (e.g., C time() isn't good enough).
|
|
*/
|
|
static PyObject *
|
|
datetime_from_timestamp(PyObject *cls, TM_FUNC f, PyObject *timestamp,
|
|
PyObject *tzinfo)
|
|
{
|
|
time_t timet;
|
|
long us;
|
|
|
|
if (_PyTime_ObjectToTimeval(timestamp,
|
|
&timet, &us, _PyTime_ROUND_HALF_EVEN) == -1)
|
|
return NULL;
|
|
|
|
return datetime_from_timet_and_us(cls, f, timet, (int)us, tzinfo);
|
|
}
|
|
|
|
/* Internal helper.
|
|
* Build most accurate possible datetime for current time. Pass localtime or
|
|
* gmtime for f as appropriate.
|
|
*/
|
|
static PyObject *
|
|
datetime_best_possible(PyObject *cls, TM_FUNC f, PyObject *tzinfo)
|
|
{
|
|
PyTime_t ts;
|
|
if (PyTime_Time(&ts) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
time_t secs;
|
|
int us;
|
|
|
|
if (_PyTime_AsTimevalTime_t(ts, &secs, &us, _PyTime_ROUND_FLOOR) < 0)
|
|
return NULL;
|
|
assert(0 <= us && us <= 999999);
|
|
|
|
return datetime_from_timet_and_us(cls, f, secs, us, tzinfo);
|
|
}
|
|
|
|
/*[clinic input]
|
|
|
|
@classmethod
|
|
datetime.datetime.now
|
|
|
|
tz: object = None
|
|
Timezone object.
|
|
|
|
Returns new datetime object representing current time local to tz.
|
|
|
|
If no tz is specified, uses local timezone.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
datetime_datetime_now_impl(PyTypeObject *type, PyObject *tz)
|
|
/*[clinic end generated code: output=b3386e5345e2b47a input=80d09869c5267d00]*/
|
|
{
|
|
PyObject *self;
|
|
|
|
/* Return best possible local time -- this isn't constrained by the
|
|
* precision of a timestamp.
|
|
*/
|
|
if (check_tzinfo_subclass(tz) < 0)
|
|
return NULL;
|
|
|
|
self = datetime_best_possible((PyObject *)type,
|
|
tz == Py_None ? _PyTime_localtime :
|
|
_PyTime_gmtime,
|
|
tz);
|
|
if (self != NULL && tz != Py_None) {
|
|
/* Convert UTC to tzinfo's zone. */
|
|
PyObject *res = PyObject_CallMethodOneArg(tz, &_Py_ID(fromutc), self);
|
|
Py_DECREF(self);
|
|
return res;
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Return best possible UTC time -- this isn't constrained by the
|
|
* precision of a timestamp.
|
|
*/
|
|
static PyObject *
|
|
datetime_utcnow(PyObject *cls, PyObject *dummy)
|
|
{
|
|
if (PyErr_WarnEx(PyExc_DeprecationWarning,
|
|
"datetime.datetime.utcnow() is deprecated and scheduled for removal in a "
|
|
"future version. Use timezone-aware objects to represent datetimes "
|
|
"in UTC: datetime.datetime.now(datetime.UTC).", 1))
|
|
{
|
|
return NULL;
|
|
}
|
|
return datetime_best_possible(cls, _PyTime_gmtime, Py_None);
|
|
}
|
|
|
|
/* Return new local datetime from timestamp (Python timestamp -- a double). */
|
|
static PyObject *
|
|
datetime_fromtimestamp(PyObject *cls, PyObject *args, PyObject *kw)
|
|
{
|
|
PyObject *self;
|
|
PyObject *timestamp;
|
|
PyObject *tzinfo = Py_None;
|
|
static char *keywords[] = {"timestamp", "tz", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "O|O:fromtimestamp",
|
|
keywords, ×tamp, &tzinfo))
|
|
return NULL;
|
|
if (check_tzinfo_subclass(tzinfo) < 0)
|
|
return NULL;
|
|
|
|
self = datetime_from_timestamp(cls,
|
|
tzinfo == Py_None ? _PyTime_localtime :
|
|
_PyTime_gmtime,
|
|
timestamp,
|
|
tzinfo);
|
|
if (self != NULL && tzinfo != Py_None) {
|
|
/* Convert UTC to tzinfo's zone. */
|
|
PyObject *res = PyObject_CallMethodOneArg(tzinfo, &_Py_ID(fromutc), self);
|
|
Py_DECREF(self);
|
|
return res;
|
|
}
|
|
return self;
|
|
}
|
|
|
|
/* Return new UTC datetime from timestamp (Python timestamp -- a double). */
|
|
static PyObject *
|
|
datetime_utcfromtimestamp(PyObject *cls, PyObject *args)
|
|
{
|
|
if (PyErr_WarnEx(PyExc_DeprecationWarning,
|
|
"datetime.datetime.utcfromtimestamp() is deprecated and scheduled for removal "
|
|
"in a future version. Use timezone-aware objects to represent "
|
|
"datetimes in UTC: datetime.datetime.fromtimestamp(timestamp, datetime.UTC).", 1))
|
|
{
|
|
return NULL;
|
|
}
|
|
PyObject *timestamp;
|
|
PyObject *result = NULL;
|
|
|
|
if (PyArg_ParseTuple(args, "O:utcfromtimestamp", ×tamp))
|
|
result = datetime_from_timestamp(cls, _PyTime_gmtime, timestamp,
|
|
Py_None);
|
|
return result;
|
|
}
|
|
|
|
/* Return new datetime from _strptime.strptime_datetime_datetime(). */
|
|
static PyObject *
|
|
datetime_strptime(PyObject *cls, PyObject *args)
|
|
{
|
|
PyObject *string, *format, *result;
|
|
|
|
if (!PyArg_ParseTuple(args, "UU:strptime", &string, &format))
|
|
return NULL;
|
|
|
|
PyObject *module = PyImport_Import(&_Py_ID(_strptime));
|
|
if (module == NULL) {
|
|
return NULL;
|
|
}
|
|
result = PyObject_CallMethodObjArgs(module,
|
|
&_Py_ID(_strptime_datetime_datetime),
|
|
cls, string, format, NULL);
|
|
Py_DECREF(module);
|
|
return result;
|
|
}
|
|
|
|
/* Return new datetime from date/datetime and time arguments. */
|
|
static PyObject *
|
|
datetime_combine(PyObject *cls, PyObject *args, PyObject *kw)
|
|
{
|
|
static char *keywords[] = {"date", "time", "tzinfo", NULL};
|
|
PyObject *date;
|
|
PyObject *time;
|
|
PyObject *tzinfo = NULL;
|
|
PyObject *result = NULL;
|
|
|
|
if (PyArg_ParseTupleAndKeywords(args, kw, "O!O!|O:combine", keywords,
|
|
DATE_TYPE(NO_STATE), &date,
|
|
TIME_TYPE(NO_STATE), &time, &tzinfo)) {
|
|
if (tzinfo == NULL) {
|
|
if (HASTZINFO(time))
|
|
tzinfo = ((PyDateTime_Time *)time)->tzinfo;
|
|
else
|
|
tzinfo = Py_None;
|
|
}
|
|
result = new_datetime_subclass_fold_ex(GET_YEAR(date),
|
|
GET_MONTH(date),
|
|
GET_DAY(date),
|
|
TIME_GET_HOUR(time),
|
|
TIME_GET_MINUTE(time),
|
|
TIME_GET_SECOND(time),
|
|
TIME_GET_MICROSECOND(time),
|
|
tzinfo,
|
|
TIME_GET_FOLD(time),
|
|
cls);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
_sanitize_isoformat_str(PyObject *dtstr)
|
|
{
|
|
Py_ssize_t len = PyUnicode_GetLength(dtstr);
|
|
if (len < 7) { // All valid ISO 8601 strings are at least 7 characters long
|
|
return NULL;
|
|
}
|
|
|
|
// `fromisoformat` allows surrogate characters in exactly one position,
|
|
// the separator; to allow datetime_fromisoformat to make the simplifying
|
|
// assumption that all valid strings can be encoded in UTF-8, this function
|
|
// replaces any surrogate character separators with `T`.
|
|
//
|
|
// The result of this, if not NULL, returns a new reference
|
|
const void* const unicode_data = PyUnicode_DATA(dtstr);
|
|
const int kind = PyUnicode_KIND(dtstr);
|
|
|
|
// Depending on the format of the string, the separator can only ever be
|
|
// in positions 7, 8 or 10. We'll check each of these for a surrogate and
|
|
// if we find one, replace it with `T`. If there is more than one surrogate,
|
|
// we don't have to bother sanitizing it, because the function will later
|
|
// fail when we try to encode the string as ASCII.
|
|
static const size_t potential_separators[3] = {7, 8, 10};
|
|
size_t surrogate_separator = 0;
|
|
for(size_t idx = 0;
|
|
idx < sizeof(potential_separators) / sizeof(*potential_separators);
|
|
++idx) {
|
|
size_t pos = potential_separators[idx];
|
|
if (pos > (size_t)len) {
|
|
break;
|
|
}
|
|
|
|
if(Py_UNICODE_IS_SURROGATE(PyUnicode_READ(kind, unicode_data, pos))) {
|
|
surrogate_separator = pos;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (surrogate_separator == 0) {
|
|
return Py_NewRef(dtstr);
|
|
}
|
|
|
|
PyObject *str_out = _PyUnicode_Copy(dtstr);
|
|
if (str_out == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (PyUnicode_WriteChar(str_out, surrogate_separator, (Py_UCS4)'T')) {
|
|
Py_DECREF(str_out);
|
|
return NULL;
|
|
}
|
|
|
|
return str_out;
|
|
}
|
|
|
|
|
|
static Py_ssize_t
|
|
_find_isoformat_datetime_separator(const char *dtstr, Py_ssize_t len) {
|
|
// The valid date formats can all be distinguished by characters 4 and 5
|
|
// and further narrowed down by character
|
|
// which tells us where to look for the separator character.
|
|
// Format | As-rendered | Position
|
|
// ---------------------------------------
|
|
// %Y-%m-%d | YYYY-MM-DD | 10
|
|
// %Y%m%d | YYYYMMDD | 8
|
|
// %Y-W%V | YYYY-Www | 8
|
|
// %YW%V | YYYYWww | 7
|
|
// %Y-W%V-%u | YYYY-Www-d | 10
|
|
// %YW%V%u | YYYYWwwd | 8
|
|
// %Y-%j | YYYY-DDD | 8
|
|
// %Y%j | YYYYDDD | 7
|
|
//
|
|
// Note that because we allow *any* character for the separator, in the
|
|
// case where character 4 is W, it's not straightforward to determine where
|
|
// the separator is — in the case of YYYY-Www-d, you have actual ambiguity,
|
|
// e.g. 2020-W01-0000 could be YYYY-Www-D0HH or YYYY-Www-HHMM, when the
|
|
// separator character is a number in the former case or a hyphen in the
|
|
// latter case.
|
|
//
|
|
// The case of YYYYWww can be distinguished from YYYYWwwd by tracking ahead
|
|
// to either the end of the string or the first non-numeric character —
|
|
// since the time components all come in pairs YYYYWww#HH can be
|
|
// distinguished from YYYYWwwd#HH by the fact that there will always be an
|
|
// odd number of digits before the first non-digit character in the former
|
|
// case.
|
|
static const char date_separator = '-';
|
|
static const char week_indicator = 'W';
|
|
|
|
if (len == 7) {
|
|
return 7;
|
|
}
|
|
|
|
if (dtstr[4] == date_separator) {
|
|
// YYYY-???
|
|
|
|
if (dtstr[5] == week_indicator) {
|
|
// YYYY-W??
|
|
|
|
if (len < 8) {
|
|
return -1;
|
|
}
|
|
|
|
if (len > 8 && dtstr[8] == date_separator) {
|
|
// YYYY-Www-D (10) or YYYY-Www-HH (8)
|
|
if (len == 9) { return -1; }
|
|
if (len > 10 && is_digit(dtstr[10])) {
|
|
// This is as far as we'll try to go to resolve the
|
|
// ambiguity for the moment — if we have YYYY-Www-##, the
|
|
// separator is either a hyphen at 8 or a number at 10.
|
|
//
|
|
// We'll assume it's a hyphen at 8 because it's way more
|
|
// likely that someone will use a hyphen as a separator
|
|
// than a number, but at this point it's really best effort
|
|
// because this is an extension of the spec anyway.
|
|
return 8;
|
|
}
|
|
|
|
return 10;
|
|
} else {
|
|
// YYYY-Www (8)
|
|
return 8;
|
|
}
|
|
} else {
|
|
// YYYY-MM-DD (10)
|
|
return 10;
|
|
}
|
|
} else {
|
|
// YYYY???
|
|
if (dtstr[4] == week_indicator) {
|
|
// YYYYWww (7) or YYYYWwwd (8)
|
|
size_t idx = 7;
|
|
for (; idx < (size_t)len; ++idx) {
|
|
// Keep going until we run out of digits.
|
|
if (!is_digit(dtstr[idx])) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (idx < 9) {
|
|
return idx;
|
|
}
|
|
|
|
if (idx % 2 == 0) {
|
|
// If the index of the last number is even, it's YYYYWww
|
|
return 7;
|
|
} else {
|
|
return 8;
|
|
}
|
|
} else {
|
|
// YYYYMMDD (8)
|
|
return 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_fromisoformat(PyObject *cls, PyObject *dtstr)
|
|
{
|
|
assert(dtstr != NULL);
|
|
|
|
if (!PyUnicode_Check(dtstr)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"fromisoformat: argument must be str");
|
|
return NULL;
|
|
}
|
|
|
|
// We only need to sanitize this string if the separator is a surrogate
|
|
// character. In the situation where the separator location is ambiguous,
|
|
// we don't have to sanitize it anything because that can only happen when
|
|
// the separator is either '-' or a number. This should mostly be a noop
|
|
// but it makes the reference counting easier if we still sanitize.
|
|
PyObject *dtstr_clean = _sanitize_isoformat_str(dtstr);
|
|
if (dtstr_clean == NULL) {
|
|
goto invalid_string_error;
|
|
}
|
|
|
|
Py_ssize_t len;
|
|
const char *dt_ptr = PyUnicode_AsUTF8AndSize(dtstr_clean, &len);
|
|
|
|
if (dt_ptr == NULL) {
|
|
if (PyErr_ExceptionMatches(PyExc_UnicodeEncodeError)) {
|
|
// Encoding errors are invalid string errors at this point
|
|
goto invalid_string_error;
|
|
}
|
|
else {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
const Py_ssize_t separator_location = _find_isoformat_datetime_separator(
|
|
dt_ptr, len);
|
|
|
|
|
|
const char *p = dt_ptr;
|
|
|
|
int year = 0, month = 0, day = 0;
|
|
int hour = 0, minute = 0, second = 0, microsecond = 0;
|
|
int tzoffset = 0, tzusec = 0;
|
|
|
|
// date runs up to separator_location
|
|
int rv = parse_isoformat_date(p, separator_location, &year, &month, &day);
|
|
|
|
if (!rv && len > separator_location) {
|
|
// In UTF-8, the length of multi-byte characters is encoded in the MSB
|
|
p += separator_location;
|
|
if ((p[0] & 0x80) == 0) {
|
|
p += 1;
|
|
}
|
|
else {
|
|
switch (p[0] & 0xf0) {
|
|
case 0xe0:
|
|
p += 3;
|
|
break;
|
|
case 0xf0:
|
|
p += 4;
|
|
break;
|
|
default:
|
|
p += 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
len -= (p - dt_ptr);
|
|
rv = parse_isoformat_time(p, len, &hour, &minute, &second,
|
|
µsecond, &tzoffset, &tzusec);
|
|
}
|
|
if (rv < 0) {
|
|
goto invalid_string_error;
|
|
}
|
|
|
|
PyObject *tzinfo = tzinfo_from_isoformat_results(rv, tzoffset, tzusec);
|
|
if (tzinfo == NULL) {
|
|
goto error;
|
|
}
|
|
|
|
if ((hour == 24) && (month <= 12)) {
|
|
int d_in_month = days_in_month(year, month);
|
|
if (day <= d_in_month) {
|
|
if (minute == 0 && second == 0 && microsecond == 0) {
|
|
// Calculate midnight of the next day
|
|
hour = 0;
|
|
day += 1;
|
|
if (day > d_in_month) {
|
|
day = 1;
|
|
month += 1;
|
|
if (month > 12) {
|
|
month = 1;
|
|
year += 1;
|
|
}
|
|
}
|
|
} else {
|
|
goto invalid_iso_midnight;
|
|
}
|
|
}
|
|
}
|
|
PyObject *dt = new_datetime_subclass_ex(year, month, day, hour, minute,
|
|
second, microsecond, tzinfo, cls);
|
|
|
|
Py_DECREF(tzinfo);
|
|
Py_DECREF(dtstr_clean);
|
|
return dt;
|
|
|
|
invalid_iso_midnight:
|
|
PyErr_SetString(PyExc_ValueError, "minute, second, and microsecond must be 0 when hour is 24");
|
|
Py_DECREF(tzinfo);
|
|
Py_DECREF(dtstr_clean);
|
|
return NULL;
|
|
|
|
invalid_string_error:
|
|
PyErr_Format(PyExc_ValueError, "Invalid isoformat string: %R", dtstr);
|
|
|
|
error:
|
|
Py_XDECREF(dtstr_clean);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Destructor.
|
|
*/
|
|
|
|
static void
|
|
datetime_dealloc(PyDateTime_DateTime *self)
|
|
{
|
|
if (HASTZINFO(self)) {
|
|
Py_XDECREF(self->tzinfo);
|
|
}
|
|
Py_TYPE(self)->tp_free((PyObject *)self);
|
|
}
|
|
|
|
/*
|
|
* Indirect access to tzinfo methods.
|
|
*/
|
|
|
|
/* These are all METH_NOARGS, so don't need to check the arglist. */
|
|
static PyObject *
|
|
datetime_utcoffset(PyObject *self, PyObject *unused) {
|
|
return call_utcoffset(GET_DT_TZINFO(self), self);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_dst(PyObject *self, PyObject *unused) {
|
|
return call_dst(GET_DT_TZINFO(self), self);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_tzname(PyObject *self, PyObject *unused) {
|
|
return call_tzname(GET_DT_TZINFO(self), self);
|
|
}
|
|
|
|
/*
|
|
* datetime arithmetic.
|
|
*/
|
|
|
|
/* factor must be 1 (to add) or -1 (to subtract). The result inherits
|
|
* the tzinfo state of date.
|
|
*/
|
|
static PyObject *
|
|
add_datetime_timedelta(PyDateTime_DateTime *date, PyDateTime_Delta *delta,
|
|
int factor)
|
|
{
|
|
/* Note that the C-level additions can't overflow, because of
|
|
* invariant bounds on the member values.
|
|
*/
|
|
int year = GET_YEAR(date);
|
|
int month = GET_MONTH(date);
|
|
int day = GET_DAY(date) + GET_TD_DAYS(delta) * factor;
|
|
int hour = DATE_GET_HOUR(date);
|
|
int minute = DATE_GET_MINUTE(date);
|
|
int second = DATE_GET_SECOND(date) + GET_TD_SECONDS(delta) * factor;
|
|
int microsecond = DATE_GET_MICROSECOND(date) +
|
|
GET_TD_MICROSECONDS(delta) * factor;
|
|
|
|
assert(factor == 1 || factor == -1);
|
|
if (normalize_datetime(&year, &month, &day,
|
|
&hour, &minute, &second, µsecond) < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
return new_datetime_subclass_ex(year, month, day,
|
|
hour, minute, second, microsecond,
|
|
HASTZINFO(date) ? date->tzinfo : Py_None,
|
|
(PyObject *)Py_TYPE(date));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_add(PyObject *left, PyObject *right)
|
|
{
|
|
if (PyDateTime_Check(left)) {
|
|
/* datetime + ??? */
|
|
if (PyDelta_Check(right))
|
|
/* datetime + delta */
|
|
return add_datetime_timedelta(
|
|
(PyDateTime_DateTime *)left,
|
|
(PyDateTime_Delta *)right,
|
|
1);
|
|
}
|
|
else if (PyDelta_Check(left)) {
|
|
/* delta + datetime */
|
|
return add_datetime_timedelta((PyDateTime_DateTime *) right,
|
|
(PyDateTime_Delta *) left,
|
|
1);
|
|
}
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_subtract(PyObject *left, PyObject *right)
|
|
{
|
|
PyObject *result = Py_NotImplemented;
|
|
|
|
if (PyDateTime_Check(left)) {
|
|
/* datetime - ??? */
|
|
if (PyDateTime_Check(right)) {
|
|
/* datetime - datetime */
|
|
PyObject *offset1, *offset2, *offdiff = NULL;
|
|
int delta_d, delta_s, delta_us;
|
|
|
|
if (GET_DT_TZINFO(left) == GET_DT_TZINFO(right)) {
|
|
offset1 = Py_NewRef(Py_None);
|
|
offset2 = Py_NewRef(Py_None);
|
|
}
|
|
else {
|
|
offset1 = datetime_utcoffset(left, NULL);
|
|
if (offset1 == NULL)
|
|
return NULL;
|
|
offset2 = datetime_utcoffset(right, NULL);
|
|
if (offset2 == NULL) {
|
|
Py_DECREF(offset1);
|
|
return NULL;
|
|
}
|
|
if ((offset1 != Py_None) != (offset2 != Py_None)) {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't subtract offset-naive and "
|
|
"offset-aware datetimes");
|
|
Py_DECREF(offset1);
|
|
Py_DECREF(offset2);
|
|
return NULL;
|
|
}
|
|
}
|
|
if ((offset1 != offset2) &&
|
|
delta_cmp(offset1, offset2) != 0) {
|
|
offdiff = delta_subtract(offset1, offset2);
|
|
if (offdiff == NULL) {
|
|
Py_DECREF(offset1);
|
|
Py_DECREF(offset2);
|
|
return NULL;
|
|
}
|
|
}
|
|
Py_DECREF(offset1);
|
|
Py_DECREF(offset2);
|
|
delta_d = ymd_to_ord(GET_YEAR(left),
|
|
GET_MONTH(left),
|
|
GET_DAY(left)) -
|
|
ymd_to_ord(GET_YEAR(right),
|
|
GET_MONTH(right),
|
|
GET_DAY(right));
|
|
/* These can't overflow, since the values are
|
|
* normalized. At most this gives the number of
|
|
* seconds in one day.
|
|
*/
|
|
delta_s = (DATE_GET_HOUR(left) -
|
|
DATE_GET_HOUR(right)) * 3600 +
|
|
(DATE_GET_MINUTE(left) -
|
|
DATE_GET_MINUTE(right)) * 60 +
|
|
(DATE_GET_SECOND(left) -
|
|
DATE_GET_SECOND(right));
|
|
delta_us = DATE_GET_MICROSECOND(left) -
|
|
DATE_GET_MICROSECOND(right);
|
|
result = new_delta(delta_d, delta_s, delta_us, 1);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
if (offdiff != NULL) {
|
|
Py_SETREF(result, delta_subtract(result, offdiff));
|
|
Py_DECREF(offdiff);
|
|
}
|
|
}
|
|
else if (PyDelta_Check(right)) {
|
|
/* datetime - delta */
|
|
result = add_datetime_timedelta(
|
|
(PyDateTime_DateTime *)left,
|
|
(PyDateTime_Delta *)right,
|
|
-1);
|
|
}
|
|
}
|
|
|
|
if (result == Py_NotImplemented)
|
|
Py_INCREF(result);
|
|
return result;
|
|
}
|
|
|
|
/* Various ways to turn a datetime into a string. */
|
|
|
|
static PyObject *
|
|
datetime_repr(PyDateTime_DateTime *self)
|
|
{
|
|
const char *type_name = Py_TYPE(self)->tp_name;
|
|
PyObject *baserepr;
|
|
|
|
if (DATE_GET_MICROSECOND(self)) {
|
|
baserepr = PyUnicode_FromFormat(
|
|
"%s(%d, %d, %d, %d, %d, %d, %d)",
|
|
type_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_MICROSECOND(self));
|
|
}
|
|
else if (DATE_GET_SECOND(self)) {
|
|
baserepr = PyUnicode_FromFormat(
|
|
"%s(%d, %d, %d, %d, %d, %d)",
|
|
type_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self));
|
|
}
|
|
else {
|
|
baserepr = PyUnicode_FromFormat(
|
|
"%s(%d, %d, %d, %d, %d)",
|
|
type_name,
|
|
GET_YEAR(self), GET_MONTH(self), GET_DAY(self),
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self));
|
|
}
|
|
if (baserepr != NULL && DATE_GET_FOLD(self) != 0)
|
|
baserepr = append_keyword_fold(baserepr, DATE_GET_FOLD(self));
|
|
if (baserepr == NULL || ! HASTZINFO(self))
|
|
return baserepr;
|
|
return append_keyword_tzinfo(baserepr, self->tzinfo);
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_str(PyDateTime_DateTime *self)
|
|
{
|
|
PyObject *space = PyUnicode_FromString(" ");
|
|
if (space == NULL) {
|
|
return NULL;
|
|
}
|
|
PyObject *res = PyObject_CallMethodOneArg((PyObject *)self,
|
|
&_Py_ID(isoformat), space);
|
|
Py_DECREF(space);
|
|
return res;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_isoformat(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
|
|
{
|
|
int sep = 'T';
|
|
char *timespec = NULL;
|
|
static char *keywords[] = {"sep", "timespec", NULL};
|
|
char buffer[100];
|
|
PyObject *result = NULL;
|
|
int us = DATE_GET_MICROSECOND(self);
|
|
static const char *specs[][2] = {
|
|
{"hours", "%04d-%02d-%02d%c%02d"},
|
|
{"minutes", "%04d-%02d-%02d%c%02d:%02d"},
|
|
{"seconds", "%04d-%02d-%02d%c%02d:%02d:%02d"},
|
|
{"milliseconds", "%04d-%02d-%02d%c%02d:%02d:%02d.%03d"},
|
|
{"microseconds", "%04d-%02d-%02d%c%02d:%02d:%02d.%06d"},
|
|
};
|
|
size_t given_spec;
|
|
|
|
if (!PyArg_ParseTupleAndKeywords(args, kw, "|Cs:isoformat", keywords, &sep, ×pec))
|
|
return NULL;
|
|
|
|
if (timespec == NULL || strcmp(timespec, "auto") == 0) {
|
|
if (us == 0) {
|
|
/* seconds */
|
|
given_spec = 2;
|
|
}
|
|
else {
|
|
/* microseconds */
|
|
given_spec = 4;
|
|
}
|
|
}
|
|
else {
|
|
for (given_spec = 0; given_spec < Py_ARRAY_LENGTH(specs); given_spec++) {
|
|
if (strcmp(timespec, specs[given_spec][0]) == 0) {
|
|
if (given_spec == 3) {
|
|
us = us / 1000;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (given_spec == Py_ARRAY_LENGTH(specs)) {
|
|
PyErr_Format(PyExc_ValueError, "Unknown timespec value");
|
|
return NULL;
|
|
}
|
|
else {
|
|
result = PyUnicode_FromFormat(specs[given_spec][1],
|
|
GET_YEAR(self), GET_MONTH(self),
|
|
GET_DAY(self), (int)sep,
|
|
DATE_GET_HOUR(self), DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self), us);
|
|
}
|
|
|
|
if (!result || !HASTZINFO(self))
|
|
return result;
|
|
|
|
/* We need to append the UTC offset. */
|
|
if (format_utcoffset(buffer, sizeof(buffer), ":", self->tzinfo,
|
|
(PyObject *)self) < 0) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
PyUnicode_AppendAndDel(&result, PyUnicode_FromString(buffer));
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_ctime(PyDateTime_DateTime *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return format_ctime((PyDateTime_Date *)self,
|
|
DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self));
|
|
}
|
|
|
|
/* Miscellaneous methods. */
|
|
|
|
static PyObject *
|
|
flip_fold(PyObject *dt)
|
|
{
|
|
return new_datetime_ex2(GET_YEAR(dt),
|
|
GET_MONTH(dt),
|
|
GET_DAY(dt),
|
|
DATE_GET_HOUR(dt),
|
|
DATE_GET_MINUTE(dt),
|
|
DATE_GET_SECOND(dt),
|
|
DATE_GET_MICROSECOND(dt),
|
|
HASTZINFO(dt) ?
|
|
((PyDateTime_DateTime *)dt)->tzinfo : Py_None,
|
|
!DATE_GET_FOLD(dt),
|
|
Py_TYPE(dt));
|
|
}
|
|
|
|
static PyObject *
|
|
get_flip_fold_offset(PyObject *dt)
|
|
{
|
|
PyObject *result, *flip_dt;
|
|
|
|
flip_dt = flip_fold(dt);
|
|
if (flip_dt == NULL)
|
|
return NULL;
|
|
result = datetime_utcoffset(flip_dt, NULL);
|
|
Py_DECREF(flip_dt);
|
|
return result;
|
|
}
|
|
|
|
/* PEP 495 exception: Whenever one or both of the operands in
|
|
* inter-zone comparison is such that its utcoffset() depends
|
|
* on the value of its fold attribute, the result is False.
|
|
*
|
|
* Return 1 if exception applies, 0 if not, and -1 on error.
|
|
*/
|
|
static int
|
|
pep495_eq_exception(PyObject *self, PyObject *other,
|
|
PyObject *offset_self, PyObject *offset_other)
|
|
{
|
|
int result = 0;
|
|
PyObject *flip_offset;
|
|
|
|
flip_offset = get_flip_fold_offset(self);
|
|
if (flip_offset == NULL)
|
|
return -1;
|
|
if (flip_offset != offset_self &&
|
|
delta_cmp(flip_offset, offset_self))
|
|
{
|
|
result = 1;
|
|
goto done;
|
|
}
|
|
Py_DECREF(flip_offset);
|
|
|
|
flip_offset = get_flip_fold_offset(other);
|
|
if (flip_offset == NULL)
|
|
return -1;
|
|
if (flip_offset != offset_other &&
|
|
delta_cmp(flip_offset, offset_other))
|
|
result = 1;
|
|
done:
|
|
Py_DECREF(flip_offset);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_richcompare(PyObject *self, PyObject *other, int op)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *offset1, *offset2;
|
|
int diff;
|
|
|
|
if (!PyDateTime_Check(other)) {
|
|
Py_RETURN_NOTIMPLEMENTED;
|
|
}
|
|
|
|
if (GET_DT_TZINFO(self) == GET_DT_TZINFO(other)) {
|
|
diff = memcmp(((PyDateTime_DateTime *)self)->data,
|
|
((PyDateTime_DateTime *)other)->data,
|
|
_PyDateTime_DATETIME_DATASIZE);
|
|
return diff_to_bool(diff, op);
|
|
}
|
|
offset1 = datetime_utcoffset(self, NULL);
|
|
if (offset1 == NULL)
|
|
return NULL;
|
|
offset2 = datetime_utcoffset(other, NULL);
|
|
if (offset2 == NULL)
|
|
goto done;
|
|
/* If they're both naive, or both aware and have the same offsets,
|
|
* we get off cheap. Note that if they're both naive, offset1 ==
|
|
* offset2 == Py_None at this point.
|
|
*/
|
|
if ((offset1 == offset2) ||
|
|
(PyDelta_Check(offset1) && PyDelta_Check(offset2) &&
|
|
delta_cmp(offset1, offset2) == 0)) {
|
|
diff = memcmp(((PyDateTime_DateTime *)self)->data,
|
|
((PyDateTime_DateTime *)other)->data,
|
|
_PyDateTime_DATETIME_DATASIZE);
|
|
if ((op == Py_EQ || op == Py_NE) && diff == 0) {
|
|
int ex = pep495_eq_exception(self, other, offset1, offset2);
|
|
if (ex == -1)
|
|
goto done;
|
|
if (ex)
|
|
diff = 1;
|
|
}
|
|
result = diff_to_bool(diff, op);
|
|
}
|
|
else if (offset1 != Py_None && offset2 != Py_None) {
|
|
PyDateTime_Delta *delta;
|
|
|
|
assert(offset1 != offset2); /* else last "if" handled it */
|
|
delta = (PyDateTime_Delta *)datetime_subtract((PyObject *)self,
|
|
other);
|
|
if (delta == NULL)
|
|
goto done;
|
|
diff = GET_TD_DAYS(delta);
|
|
if (diff == 0)
|
|
diff = GET_TD_SECONDS(delta) |
|
|
GET_TD_MICROSECONDS(delta);
|
|
Py_DECREF(delta);
|
|
if ((op == Py_EQ || op == Py_NE) && diff == 0) {
|
|
int ex = pep495_eq_exception(self, other, offset1, offset2);
|
|
if (ex == -1)
|
|
goto done;
|
|
if (ex)
|
|
diff = 1;
|
|
}
|
|
result = diff_to_bool(diff, op);
|
|
}
|
|
else if (op == Py_EQ) {
|
|
result = Py_NewRef(Py_False);
|
|
}
|
|
else if (op == Py_NE) {
|
|
result = Py_NewRef(Py_True);
|
|
}
|
|
else {
|
|
PyErr_SetString(PyExc_TypeError,
|
|
"can't compare offset-naive and "
|
|
"offset-aware datetimes");
|
|
}
|
|
done:
|
|
Py_DECREF(offset1);
|
|
Py_XDECREF(offset2);
|
|
return result;
|
|
}
|
|
|
|
static Py_hash_t
|
|
datetime_hash(PyDateTime_DateTime *self)
|
|
{
|
|
if (self->hashcode == -1) {
|
|
PyObject *offset, *self0;
|
|
if (DATE_GET_FOLD(self)) {
|
|
self0 = new_datetime_ex2(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self),
|
|
DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_MICROSECOND(self),
|
|
HASTZINFO(self) ? self->tzinfo : Py_None,
|
|
0, Py_TYPE(self));
|
|
if (self0 == NULL)
|
|
return -1;
|
|
}
|
|
else {
|
|
self0 = Py_NewRef(self);
|
|
}
|
|
offset = datetime_utcoffset(self0, NULL);
|
|
Py_DECREF(self0);
|
|
|
|
if (offset == NULL)
|
|
return -1;
|
|
|
|
/* Reduce this to a hash of another object. */
|
|
if (offset == Py_None)
|
|
self->hashcode = generic_hash(
|
|
(unsigned char *)self->data, _PyDateTime_DATETIME_DATASIZE);
|
|
else {
|
|
PyObject *temp1, *temp2;
|
|
int days, seconds;
|
|
|
|
assert(HASTZINFO(self));
|
|
days = ymd_to_ord(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self));
|
|
seconds = DATE_GET_HOUR(self) * 3600 +
|
|
DATE_GET_MINUTE(self) * 60 +
|
|
DATE_GET_SECOND(self);
|
|
temp1 = new_delta(days, seconds,
|
|
DATE_GET_MICROSECOND(self),
|
|
1);
|
|
if (temp1 == NULL) {
|
|
Py_DECREF(offset);
|
|
return -1;
|
|
}
|
|
temp2 = delta_subtract(temp1, offset);
|
|
Py_DECREF(temp1);
|
|
if (temp2 == NULL) {
|
|
Py_DECREF(offset);
|
|
return -1;
|
|
}
|
|
self->hashcode = PyObject_Hash(temp2);
|
|
Py_DECREF(temp2);
|
|
}
|
|
Py_DECREF(offset);
|
|
}
|
|
return self->hashcode;
|
|
}
|
|
|
|
/*[clinic input]
|
|
datetime.datetime.replace
|
|
|
|
year: int(c_default="GET_YEAR(self)") = unchanged
|
|
month: int(c_default="GET_MONTH(self)") = unchanged
|
|
day: int(c_default="GET_DAY(self)") = unchanged
|
|
hour: int(c_default="DATE_GET_HOUR(self)") = unchanged
|
|
minute: int(c_default="DATE_GET_MINUTE(self)") = unchanged
|
|
second: int(c_default="DATE_GET_SECOND(self)") = unchanged
|
|
microsecond: int(c_default="DATE_GET_MICROSECOND(self)") = unchanged
|
|
tzinfo: object(c_default="HASTZINFO(self) ? self->tzinfo : Py_None") = unchanged
|
|
*
|
|
fold: int(c_default="DATE_GET_FOLD(self)") = unchanged
|
|
|
|
Return datetime with new specified fields.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
datetime_datetime_replace_impl(PyDateTime_DateTime *self, int year,
|
|
int month, int day, int hour, int minute,
|
|
int second, int microsecond, PyObject *tzinfo,
|
|
int fold)
|
|
/*[clinic end generated code: output=00bc96536833fddb input=9b38253d56d9bcad]*/
|
|
{
|
|
return new_datetime_subclass_fold_ex(year, month, day, hour, minute,
|
|
second, microsecond, tzinfo, fold,
|
|
(PyObject *)Py_TYPE(self));
|
|
}
|
|
|
|
static PyObject *
|
|
local_timezone_from_timestamp(time_t timestamp)
|
|
{
|
|
PyObject *result = NULL;
|
|
PyObject *delta;
|
|
struct tm local_time_tm;
|
|
PyObject *nameo = NULL;
|
|
const char *zone = NULL;
|
|
|
|
if (_PyTime_localtime(timestamp, &local_time_tm) != 0)
|
|
return NULL;
|
|
#ifdef HAVE_STRUCT_TM_TM_ZONE
|
|
zone = local_time_tm.tm_zone;
|
|
delta = new_delta(0, local_time_tm.tm_gmtoff, 0, 1);
|
|
#else /* HAVE_STRUCT_TM_TM_ZONE */
|
|
{
|
|
PyObject *local_time, *utc_time;
|
|
struct tm utc_time_tm;
|
|
char buf[100];
|
|
strftime(buf, sizeof(buf), "%Z", &local_time_tm);
|
|
zone = buf;
|
|
local_time = new_datetime(local_time_tm.tm_year + 1900,
|
|
local_time_tm.tm_mon + 1,
|
|
local_time_tm.tm_mday,
|
|
local_time_tm.tm_hour,
|
|
local_time_tm.tm_min,
|
|
local_time_tm.tm_sec, 0, Py_None, 0);
|
|
if (local_time == NULL) {
|
|
return NULL;
|
|
}
|
|
if (_PyTime_gmtime(timestamp, &utc_time_tm) != 0)
|
|
return NULL;
|
|
utc_time = new_datetime(utc_time_tm.tm_year + 1900,
|
|
utc_time_tm.tm_mon + 1,
|
|
utc_time_tm.tm_mday,
|
|
utc_time_tm.tm_hour,
|
|
utc_time_tm.tm_min,
|
|
utc_time_tm.tm_sec, 0, Py_None, 0);
|
|
if (utc_time == NULL) {
|
|
Py_DECREF(local_time);
|
|
return NULL;
|
|
}
|
|
delta = datetime_subtract(local_time, utc_time);
|
|
Py_DECREF(local_time);
|
|
Py_DECREF(utc_time);
|
|
}
|
|
#endif /* HAVE_STRUCT_TM_TM_ZONE */
|
|
if (delta == NULL) {
|
|
return NULL;
|
|
}
|
|
if (zone != NULL) {
|
|
nameo = PyUnicode_DecodeLocale(zone, "surrogateescape");
|
|
if (nameo == NULL)
|
|
goto error;
|
|
}
|
|
result = new_timezone(delta, nameo);
|
|
Py_XDECREF(nameo);
|
|
error:
|
|
Py_DECREF(delta);
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
local_timezone(PyDateTime_DateTime *utc_time)
|
|
{
|
|
time_t timestamp;
|
|
PyObject *delta;
|
|
PyObject *one_second;
|
|
PyObject *seconds;
|
|
|
|
PyObject *current_mod = NULL;
|
|
datetime_state *st = GET_CURRENT_STATE(current_mod);
|
|
|
|
delta = datetime_subtract((PyObject *)utc_time, CONST_EPOCH(st));
|
|
RELEASE_CURRENT_STATE(st, current_mod);
|
|
if (delta == NULL)
|
|
return NULL;
|
|
|
|
one_second = new_delta(0, 1, 0, 0);
|
|
if (one_second == NULL) {
|
|
Py_DECREF(delta);
|
|
return NULL;
|
|
}
|
|
seconds = divide_timedelta_timedelta((PyDateTime_Delta *)delta,
|
|
(PyDateTime_Delta *)one_second);
|
|
Py_DECREF(one_second);
|
|
Py_DECREF(delta);
|
|
if (seconds == NULL)
|
|
return NULL;
|
|
timestamp = _PyLong_AsTime_t(seconds);
|
|
Py_DECREF(seconds);
|
|
if (timestamp == -1 && PyErr_Occurred())
|
|
return NULL;
|
|
return local_timezone_from_timestamp(timestamp);
|
|
}
|
|
|
|
static long long
|
|
local_to_seconds(int year, int month, int day,
|
|
int hour, int minute, int second, int fold);
|
|
|
|
static PyObject *
|
|
local_timezone_from_local(PyDateTime_DateTime *local_dt)
|
|
{
|
|
long long seconds, seconds2;
|
|
time_t timestamp;
|
|
int fold = DATE_GET_FOLD(local_dt);
|
|
seconds = local_to_seconds(GET_YEAR(local_dt),
|
|
GET_MONTH(local_dt),
|
|
GET_DAY(local_dt),
|
|
DATE_GET_HOUR(local_dt),
|
|
DATE_GET_MINUTE(local_dt),
|
|
DATE_GET_SECOND(local_dt),
|
|
fold);
|
|
if (seconds == -1)
|
|
return NULL;
|
|
seconds2 = local_to_seconds(GET_YEAR(local_dt),
|
|
GET_MONTH(local_dt),
|
|
GET_DAY(local_dt),
|
|
DATE_GET_HOUR(local_dt),
|
|
DATE_GET_MINUTE(local_dt),
|
|
DATE_GET_SECOND(local_dt),
|
|
!fold);
|
|
if (seconds2 == -1)
|
|
return NULL;
|
|
/* Detect gap */
|
|
if (seconds2 != seconds && (seconds2 > seconds) == fold)
|
|
seconds = seconds2;
|
|
|
|
/* XXX: add bounds check */
|
|
timestamp = seconds - epoch;
|
|
return local_timezone_from_timestamp(timestamp);
|
|
}
|
|
|
|
static PyDateTime_DateTime *
|
|
datetime_astimezone(PyDateTime_DateTime *self, PyObject *args, PyObject *kw)
|
|
{
|
|
PyDateTime_DateTime *result;
|
|
PyObject *offset;
|
|
PyObject *temp;
|
|
PyObject *self_tzinfo;
|
|
PyObject *tzinfo = Py_None;
|
|
static char *keywords[] = {"tz", NULL};
|
|
|
|
if (! PyArg_ParseTupleAndKeywords(args, kw, "|O:astimezone", keywords,
|
|
&tzinfo))
|
|
return NULL;
|
|
|
|
if (check_tzinfo_subclass(tzinfo) == -1)
|
|
return NULL;
|
|
|
|
if (!HASTZINFO(self) || self->tzinfo == Py_None) {
|
|
naive:
|
|
self_tzinfo = local_timezone_from_local(self);
|
|
if (self_tzinfo == NULL)
|
|
return NULL;
|
|
} else {
|
|
self_tzinfo = Py_NewRef(self->tzinfo);
|
|
}
|
|
|
|
/* Conversion to self's own time zone is a NOP. */
|
|
if (self_tzinfo == tzinfo) {
|
|
Py_DECREF(self_tzinfo);
|
|
return (PyDateTime_DateTime*)Py_NewRef(self);
|
|
}
|
|
|
|
/* Convert self to UTC. */
|
|
offset = call_utcoffset(self_tzinfo, (PyObject *)self);
|
|
Py_DECREF(self_tzinfo);
|
|
if (offset == NULL)
|
|
return NULL;
|
|
else if(offset == Py_None) {
|
|
Py_DECREF(offset);
|
|
goto naive;
|
|
}
|
|
else if (!PyDelta_Check(offset)) {
|
|
Py_DECREF(offset);
|
|
PyErr_Format(PyExc_TypeError, "utcoffset() returned %.200s,"
|
|
" expected timedelta or None", Py_TYPE(offset)->tp_name);
|
|
return NULL;
|
|
}
|
|
/* result = self - offset */
|
|
result = (PyDateTime_DateTime *)add_datetime_timedelta(self,
|
|
(PyDateTime_Delta *)offset, -1);
|
|
Py_DECREF(offset);
|
|
if (result == NULL)
|
|
return NULL;
|
|
|
|
/* Make sure result is aware and UTC. */
|
|
if (!HASTZINFO(result)) {
|
|
temp = (PyObject *)result;
|
|
result = (PyDateTime_DateTime *)
|
|
new_datetime_ex2(GET_YEAR(result),
|
|
GET_MONTH(result),
|
|
GET_DAY(result),
|
|
DATE_GET_HOUR(result),
|
|
DATE_GET_MINUTE(result),
|
|
DATE_GET_SECOND(result),
|
|
DATE_GET_MICROSECOND(result),
|
|
CONST_UTC(NO_STATE),
|
|
DATE_GET_FOLD(result),
|
|
Py_TYPE(result));
|
|
Py_DECREF(temp);
|
|
if (result == NULL)
|
|
return NULL;
|
|
}
|
|
else {
|
|
/* Result is already aware - just replace tzinfo. */
|
|
Py_SETREF(result->tzinfo, Py_NewRef(CONST_UTC(NO_STATE)));
|
|
}
|
|
|
|
/* Attach new tzinfo and let fromutc() do the rest. */
|
|
if (tzinfo == Py_None) {
|
|
tzinfo = local_timezone(result);
|
|
if (tzinfo == NULL) {
|
|
Py_DECREF(result);
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
Py_INCREF(tzinfo);
|
|
Py_SETREF(result->tzinfo, tzinfo);
|
|
|
|
temp = (PyObject *)result;
|
|
result = (PyDateTime_DateTime *)
|
|
PyObject_CallMethodOneArg(tzinfo, &_Py_ID(fromutc), temp);
|
|
Py_DECREF(temp);
|
|
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_timetuple(PyDateTime_DateTime *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
int dstflag = -1;
|
|
|
|
if (HASTZINFO(self) && self->tzinfo != Py_None) {
|
|
PyObject * dst;
|
|
|
|
dst = call_dst(self->tzinfo, (PyObject *)self);
|
|
if (dst == NULL)
|
|
return NULL;
|
|
|
|
if (dst != Py_None)
|
|
dstflag = delta_bool((PyDateTime_Delta *)dst);
|
|
Py_DECREF(dst);
|
|
}
|
|
return build_struct_time(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self),
|
|
DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
dstflag);
|
|
}
|
|
|
|
static long long
|
|
local_to_seconds(int year, int month, int day,
|
|
int hour, int minute, int second, int fold)
|
|
{
|
|
long long t, a, b, u1, u2, t1, t2, lt;
|
|
t = utc_to_seconds(year, month, day, hour, minute, second);
|
|
/* Our goal is to solve t = local(u) for u. */
|
|
lt = local(t);
|
|
if (lt == -1)
|
|
return -1;
|
|
a = lt - t;
|
|
u1 = t - a;
|
|
t1 = local(u1);
|
|
if (t1 == -1)
|
|
return -1;
|
|
if (t1 == t) {
|
|
/* We found one solution, but it may not be the one we need.
|
|
* Look for an earlier solution (if `fold` is 0), or a
|
|
* later one (if `fold` is 1). */
|
|
if (fold)
|
|
u2 = u1 + max_fold_seconds;
|
|
else
|
|
u2 = u1 - max_fold_seconds;
|
|
lt = local(u2);
|
|
if (lt == -1)
|
|
return -1;
|
|
b = lt - u2;
|
|
if (a == b)
|
|
return u1;
|
|
}
|
|
else {
|
|
b = t1 - u1;
|
|
assert(a != b);
|
|
}
|
|
u2 = t - b;
|
|
t2 = local(u2);
|
|
if (t2 == -1)
|
|
return -1;
|
|
if (t2 == t)
|
|
return u2;
|
|
if (t1 == t)
|
|
return u1;
|
|
/* We have found both offsets a and b, but neither t - a nor t - b is
|
|
* a solution. This means t is in the gap. */
|
|
return fold?Py_MIN(u1, u2):Py_MAX(u1, u2);
|
|
}
|
|
|
|
/* date(1970,1,1).toordinal() == 719163 */
|
|
#define EPOCH_SECONDS (719163LL * 24 * 60 * 60)
|
|
|
|
static PyObject *
|
|
datetime_timestamp(PyDateTime_DateTime *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
PyObject *result;
|
|
|
|
if (HASTZINFO(self) && self->tzinfo != Py_None) {
|
|
PyObject *current_mod = NULL;
|
|
datetime_state *st = GET_CURRENT_STATE(current_mod);
|
|
|
|
PyObject *delta;
|
|
delta = datetime_subtract((PyObject *)self, CONST_EPOCH(st));
|
|
RELEASE_CURRENT_STATE(st, current_mod);
|
|
if (delta == NULL)
|
|
return NULL;
|
|
result = delta_total_seconds(delta, NULL);
|
|
Py_DECREF(delta);
|
|
}
|
|
else {
|
|
long long seconds;
|
|
seconds = local_to_seconds(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self),
|
|
DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_FOLD(self));
|
|
if (seconds == -1)
|
|
return NULL;
|
|
result = PyFloat_FromDouble(seconds - EPOCH_SECONDS +
|
|
DATE_GET_MICROSECOND(self) / 1e6);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_getdate(PyDateTime_DateTime *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return new_date(GET_YEAR(self),
|
|
GET_MONTH(self),
|
|
GET_DAY(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_gettime(PyDateTime_DateTime *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return new_time(DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_MICROSECOND(self),
|
|
Py_None,
|
|
DATE_GET_FOLD(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_gettimetz(PyDateTime_DateTime *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
return new_time(DATE_GET_HOUR(self),
|
|
DATE_GET_MINUTE(self),
|
|
DATE_GET_SECOND(self),
|
|
DATE_GET_MICROSECOND(self),
|
|
GET_DT_TZINFO(self),
|
|
DATE_GET_FOLD(self));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_utctimetuple(PyDateTime_DateTime *self, PyObject *Py_UNUSED(ignored))
|
|
{
|
|
int y, m, d, hh, mm, ss;
|
|
PyObject *tzinfo;
|
|
PyDateTime_DateTime *utcself;
|
|
|
|
tzinfo = GET_DT_TZINFO(self);
|
|
if (tzinfo == Py_None) {
|
|
utcself = (PyDateTime_DateTime*)Py_NewRef(self);
|
|
}
|
|
else {
|
|
PyObject *offset;
|
|
offset = call_utcoffset(tzinfo, (PyObject *)self);
|
|
if (offset == NULL)
|
|
return NULL;
|
|
if (offset == Py_None) {
|
|
Py_DECREF(offset);
|
|
utcself = (PyDateTime_DateTime*)Py_NewRef(self);
|
|
}
|
|
else {
|
|
utcself = (PyDateTime_DateTime *)add_datetime_timedelta(self,
|
|
(PyDateTime_Delta *)offset, -1);
|
|
Py_DECREF(offset);
|
|
if (utcself == NULL)
|
|
return NULL;
|
|
}
|
|
}
|
|
y = GET_YEAR(utcself);
|
|
m = GET_MONTH(utcself);
|
|
d = GET_DAY(utcself);
|
|
hh = DATE_GET_HOUR(utcself);
|
|
mm = DATE_GET_MINUTE(utcself);
|
|
ss = DATE_GET_SECOND(utcself);
|
|
|
|
Py_DECREF(utcself);
|
|
return build_struct_time(y, m, d, hh, mm, ss, 0);
|
|
}
|
|
|
|
/* Pickle support, a simple use of __reduce__. */
|
|
|
|
/* Let basestate be the non-tzinfo data string.
|
|
* If tzinfo is None, this returns (basestate,), else (basestate, tzinfo).
|
|
* So it's a tuple in any (non-error) case.
|
|
* __getstate__ isn't exposed.
|
|
*/
|
|
static PyObject *
|
|
datetime_getstate(PyDateTime_DateTime *self, int proto)
|
|
{
|
|
PyObject *basestate;
|
|
PyObject *result = NULL;
|
|
|
|
basestate = PyBytes_FromStringAndSize((char *)self->data,
|
|
_PyDateTime_DATETIME_DATASIZE);
|
|
if (basestate != NULL) {
|
|
if (proto > 3 && DATE_GET_FOLD(self))
|
|
/* Set the first bit of the third byte */
|
|
PyBytes_AS_STRING(basestate)[2] |= (1 << 7);
|
|
if (! HASTZINFO(self) || self->tzinfo == Py_None)
|
|
result = PyTuple_Pack(1, basestate);
|
|
else
|
|
result = PyTuple_Pack(2, basestate, self->tzinfo);
|
|
Py_DECREF(basestate);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_reduce_ex(PyDateTime_DateTime *self, PyObject *args)
|
|
{
|
|
int proto;
|
|
if (!PyArg_ParseTuple(args, "i:__reduce_ex__", &proto))
|
|
return NULL;
|
|
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self, proto));
|
|
}
|
|
|
|
static PyObject *
|
|
datetime_reduce(PyDateTime_DateTime *self, PyObject *arg)
|
|
{
|
|
return Py_BuildValue("(ON)", Py_TYPE(self), datetime_getstate(self, 2));
|
|
}
|
|
|
|
static PyMethodDef datetime_methods[] = {
|
|
|
|
/* Class methods: */
|
|
|
|
DATETIME_DATETIME_NOW_METHODDEF
|
|
|
|
{"utcnow", (PyCFunction)datetime_utcnow,
|
|
METH_NOARGS | METH_CLASS,
|
|
PyDoc_STR("Return a new datetime representing UTC day and time.")},
|
|
|
|
{"fromtimestamp", _PyCFunction_CAST(datetime_fromtimestamp),
|
|
METH_VARARGS | METH_KEYWORDS | METH_CLASS,
|
|
PyDoc_STR("timestamp[, tz] -> tz's local time from POSIX timestamp.")},
|
|
|
|
{"utcfromtimestamp", (PyCFunction)datetime_utcfromtimestamp,
|
|
METH_VARARGS | METH_CLASS,
|
|
PyDoc_STR("Construct a naive UTC datetime from a POSIX timestamp.")},
|
|
|
|
{"strptime", (PyCFunction)datetime_strptime,
|
|
METH_VARARGS | METH_CLASS,
|
|
PyDoc_STR("string, format -> new datetime parsed from a string "
|
|
"(like time.strptime()).")},
|
|
|
|
{"combine", _PyCFunction_CAST(datetime_combine),
|
|
METH_VARARGS | METH_KEYWORDS | METH_CLASS,
|
|
PyDoc_STR("date, time -> datetime with same date and time fields")},
|
|
|
|
{"fromisoformat", (PyCFunction)datetime_fromisoformat,
|
|
METH_O | METH_CLASS,
|
|
PyDoc_STR("string -> datetime from a string in most ISO 8601 formats")},
|
|
|
|
/* Instance methods: */
|
|
|
|
{"date", (PyCFunction)datetime_getdate, METH_NOARGS,
|
|
PyDoc_STR("Return date object with same year, month and day.")},
|
|
|
|
{"time", (PyCFunction)datetime_gettime, METH_NOARGS,
|
|
PyDoc_STR("Return time object with same time but with tzinfo=None.")},
|
|
|
|
{"timetz", (PyCFunction)datetime_gettimetz, METH_NOARGS,
|
|
PyDoc_STR("Return time object with same time and tzinfo.")},
|
|
|
|
{"ctime", (PyCFunction)datetime_ctime, METH_NOARGS,
|
|
PyDoc_STR("Return ctime() style string.")},
|
|
|
|
{"timetuple", (PyCFunction)datetime_timetuple, METH_NOARGS,
|
|
PyDoc_STR("Return time tuple, compatible with time.localtime().")},
|
|
|
|
{"timestamp", (PyCFunction)datetime_timestamp, METH_NOARGS,
|
|
PyDoc_STR("Return POSIX timestamp as float.")},
|
|
|
|
{"utctimetuple", (PyCFunction)datetime_utctimetuple, METH_NOARGS,
|
|
PyDoc_STR("Return UTC time tuple, compatible with time.localtime().")},
|
|
|
|
{"isoformat", _PyCFunction_CAST(datetime_isoformat), METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("[sep] -> string in ISO 8601 format, "
|
|
"YYYY-MM-DDT[HH[:MM[:SS[.mmm[uuu]]]]][+HH:MM].\n"
|
|
"sep is used to separate the year from the time, and "
|
|
"defaults to 'T'.\n"
|
|
"The optional argument timespec specifies the number "
|
|
"of additional terms\nof the time to include. Valid "
|
|
"options are 'auto', 'hours', 'minutes',\n'seconds', "
|
|
"'milliseconds' and 'microseconds'.\n")},
|
|
|
|
{"utcoffset", (PyCFunction)datetime_utcoffset, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.utcoffset(self).")},
|
|
|
|
{"tzname", (PyCFunction)datetime_tzname, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.tzname(self).")},
|
|
|
|
{"dst", (PyCFunction)datetime_dst, METH_NOARGS,
|
|
PyDoc_STR("Return self.tzinfo.dst(self).")},
|
|
|
|
DATETIME_DATETIME_REPLACE_METHODDEF
|
|
|
|
{"__replace__", _PyCFunction_CAST(datetime_datetime_replace), METH_FASTCALL | METH_KEYWORDS,
|
|
PyDoc_STR("__replace__($self, /, **changes)\n--\n\nThe same as replace().")},
|
|
|
|
{"astimezone", _PyCFunction_CAST(datetime_astimezone), METH_VARARGS | METH_KEYWORDS,
|
|
PyDoc_STR("tz -> convert to local time in new timezone tz\n")},
|
|
|
|
{"__reduce_ex__", (PyCFunction)datetime_reduce_ex, METH_VARARGS,
|
|
PyDoc_STR("__reduce_ex__(proto) -> (cls, state)")},
|
|
|
|
{"__reduce__", (PyCFunction)datetime_reduce, METH_NOARGS,
|
|
PyDoc_STR("__reduce__() -> (cls, state)")},
|
|
|
|
{NULL, NULL}
|
|
};
|
|
|
|
static const char datetime_doc[] =
|
|
PyDoc_STR("datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])\n\
|
|
\n\
|
|
The year, month and day arguments are required. tzinfo may be None, or an\n\
|
|
instance of a tzinfo subclass. The remaining arguments may be ints.\n");
|
|
|
|
static PyNumberMethods datetime_as_number = {
|
|
datetime_add, /* nb_add */
|
|
datetime_subtract, /* nb_subtract */
|
|
0, /* nb_multiply */
|
|
0, /* nb_remainder */
|
|
0, /* nb_divmod */
|
|
0, /* nb_power */
|
|
0, /* nb_negative */
|
|
0, /* nb_positive */
|
|
0, /* nb_absolute */
|
|
0, /* nb_bool */
|
|
};
|
|
|
|
static PyTypeObject PyDateTime_DateTimeType = {
|
|
PyVarObject_HEAD_INIT(NULL, 0)
|
|
"datetime.datetime", /* tp_name */
|
|
sizeof(PyDateTime_DateTime), /* tp_basicsize */
|
|
0, /* tp_itemsize */
|
|
(destructor)datetime_dealloc, /* tp_dealloc */
|
|
0, /* tp_vectorcall_offset */
|
|
0, /* tp_getattr */
|
|
0, /* tp_setattr */
|
|
0, /* tp_as_async */
|
|
(reprfunc)datetime_repr, /* tp_repr */
|
|
&datetime_as_number, /* tp_as_number */
|
|
0, /* tp_as_sequence */
|
|
0, /* tp_as_mapping */
|
|
(hashfunc)datetime_hash, /* tp_hash */
|
|
0, /* tp_call */
|
|
(reprfunc)datetime_str, /* tp_str */
|
|
PyObject_GenericGetAttr, /* tp_getattro */
|
|
0, /* tp_setattro */
|
|
0, /* tp_as_buffer */
|
|
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
|
|
datetime_doc, /* tp_doc */
|
|
0, /* tp_traverse */
|
|
0, /* tp_clear */
|
|
datetime_richcompare, /* tp_richcompare */
|
|
0, /* tp_weaklistoffset */
|
|
0, /* tp_iter */
|
|
0, /* tp_iternext */
|
|
datetime_methods, /* tp_methods */
|
|
0, /* tp_members */
|
|
datetime_getset, /* tp_getset */
|
|
0, /* tp_base; filled in
|
|
PyInit__datetime */
|
|
0, /* tp_dict */
|
|
0, /* tp_descr_get */
|
|
0, /* tp_descr_set */
|
|
0, /* tp_dictoffset */
|
|
0, /* tp_init */
|
|
datetime_alloc, /* tp_alloc */
|
|
datetime_new, /* tp_new */
|
|
0, /* tp_free */
|
|
};
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* datetime C-API.
|
|
*/
|
|
|
|
static PyTypeObject * const capi_types[] = {
|
|
&PyDateTime_DateType,
|
|
&PyDateTime_DateTimeType,
|
|
&PyDateTime_TimeType,
|
|
&PyDateTime_DeltaType,
|
|
&PyDateTime_TZInfoType,
|
|
/* Indirectly, via the utc object. */
|
|
&PyDateTime_TimeZoneType,
|
|
};
|
|
|
|
/* The C-API is process-global. This violates interpreter isolation
|
|
* due to the objects stored here. Thus each of those objects must
|
|
* be managed carefully. */
|
|
// XXX Can we make this const?
|
|
static PyDateTime_CAPI capi = {
|
|
/* The classes must be readied before used here.
|
|
* That will happen the first time the module is loaded.
|
|
* They aren't safe to be shared between interpreters,
|
|
* but that's okay as long as the module is single-phase init. */
|
|
.DateType = &PyDateTime_DateType,
|
|
.DateTimeType = &PyDateTime_DateTimeType,
|
|
.TimeType = &PyDateTime_TimeType,
|
|
.DeltaType = &PyDateTime_DeltaType,
|
|
.TZInfoType = &PyDateTime_TZInfoType,
|
|
|
|
.TimeZone_UTC = (PyObject *)&utc_timezone,
|
|
|
|
.Date_FromDate = new_date_ex,
|
|
.DateTime_FromDateAndTime = new_datetime_ex,
|
|
.Time_FromTime = new_time_ex,
|
|
.Delta_FromDelta = new_delta_ex,
|
|
.TimeZone_FromTimeZone = new_timezone,
|
|
.DateTime_FromTimestamp = datetime_fromtimestamp,
|
|
.Date_FromTimestamp = datetime_date_fromtimestamp_capi,
|
|
.DateTime_FromDateAndTimeAndFold = new_datetime_ex2,
|
|
.Time_FromTimeAndFold = new_time_ex2,
|
|
};
|
|
|
|
/* Get a new C API by calling this function.
|
|
* Clients get at C API via PyDateTime_IMPORT, defined in datetime.h.
|
|
*/
|
|
static inline PyDateTime_CAPI *
|
|
get_datetime_capi(void)
|
|
{
|
|
return &capi;
|
|
}
|
|
|
|
static PyObject *
|
|
create_timezone_from_delta(int days, int sec, int ms, int normalize)
|
|
{
|
|
PyObject *delta = new_delta(days, sec, ms, normalize);
|
|
if (delta == NULL) {
|
|
return NULL;
|
|
}
|
|
PyObject *tz = create_timezone(delta, NULL);
|
|
Py_DECREF(delta);
|
|
return tz;
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Module state lifecycle.
|
|
*/
|
|
|
|
static int
|
|
init_state(datetime_state *st, PyObject *module, PyObject *old_module)
|
|
{
|
|
/* Each module gets its own heap types. */
|
|
#define ADD_TYPE(FIELD, SPEC, BASE) \
|
|
do { \
|
|
PyObject *cls = PyType_FromModuleAndSpec( \
|
|
module, SPEC, (PyObject *)BASE); \
|
|
if (cls == NULL) { \
|
|
return -1; \
|
|
} \
|
|
st->FIELD = (PyTypeObject *)cls; \
|
|
} while (0)
|
|
|
|
ADD_TYPE(isocalendar_date_type, &isocal_spec, &PyTuple_Type);
|
|
#undef ADD_TYPE
|
|
|
|
if (old_module != NULL) {
|
|
assert(old_module != module);
|
|
datetime_state *st_old = get_module_state(old_module);
|
|
*st = (datetime_state){
|
|
.isocalendar_date_type = st->isocalendar_date_type,
|
|
.us_per_ms = Py_NewRef(st_old->us_per_ms),
|
|
.us_per_second = Py_NewRef(st_old->us_per_second),
|
|
.us_per_minute = Py_NewRef(st_old->us_per_minute),
|
|
.us_per_hour = Py_NewRef(st_old->us_per_hour),
|
|
.us_per_day = Py_NewRef(st_old->us_per_day),
|
|
.us_per_week = Py_NewRef(st_old->us_per_week),
|
|
.seconds_per_day = Py_NewRef(st_old->seconds_per_day),
|
|
.epoch = Py_NewRef(st_old->epoch),
|
|
};
|
|
return 0;
|
|
}
|
|
|
|
st->us_per_ms = PyLong_FromLong(1000);
|
|
if (st->us_per_ms == NULL) {
|
|
return -1;
|
|
}
|
|
st->us_per_second = PyLong_FromLong(1000000);
|
|
if (st->us_per_second == NULL) {
|
|
return -1;
|
|
}
|
|
st->us_per_minute = PyLong_FromLong(60000000);
|
|
if (st->us_per_minute == NULL) {
|
|
return -1;
|
|
}
|
|
st->seconds_per_day = PyLong_FromLong(24 * 3600);
|
|
if (st->seconds_per_day == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
/* The rest are too big for 32-bit ints, but even
|
|
* us_per_week fits in 40 bits, so doubles should be exact.
|
|
*/
|
|
st->us_per_hour = PyLong_FromDouble(3600000000.0);
|
|
if (st->us_per_hour == NULL) {
|
|
return -1;
|
|
}
|
|
st->us_per_day = PyLong_FromDouble(86400000000.0);
|
|
if (st->us_per_day == NULL) {
|
|
return -1;
|
|
}
|
|
st->us_per_week = PyLong_FromDouble(604800000000.0);
|
|
if (st->us_per_week == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
/* Init Unix epoch */
|
|
st->epoch = new_datetime(
|
|
1970, 1, 1, 0, 0, 0, 0, (PyObject *)&utc_timezone, 0);
|
|
if (st->epoch == NULL) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
traverse_state(datetime_state *st, visitproc visit, void *arg)
|
|
{
|
|
/* heap types */
|
|
Py_VISIT(st->isocalendar_date_type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
clear_state(datetime_state *st)
|
|
{
|
|
Py_CLEAR(st->isocalendar_date_type);
|
|
Py_CLEAR(st->us_per_ms);
|
|
Py_CLEAR(st->us_per_second);
|
|
Py_CLEAR(st->us_per_minute);
|
|
Py_CLEAR(st->us_per_hour);
|
|
Py_CLEAR(st->us_per_day);
|
|
Py_CLEAR(st->us_per_week);
|
|
Py_CLEAR(st->seconds_per_day);
|
|
Py_CLEAR(st->epoch);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
init_static_types(PyInterpreterState *interp, int reloading)
|
|
{
|
|
if (reloading) {
|
|
return 0;
|
|
}
|
|
|
|
// `&...` is not a constant expression according to a strict reading
|
|
// of C standards. Fill tp_base at run-time rather than statically.
|
|
// See https://bugs.python.org/issue40777
|
|
PyDateTime_TimeZoneType.tp_base = &PyDateTime_TZInfoType;
|
|
PyDateTime_DateTimeType.tp_base = &PyDateTime_DateType;
|
|
|
|
/* Bases classes must be initialized before subclasses,
|
|
* so capi_types must have the types in the appropriate order. */
|
|
for (size_t i = 0; i < Py_ARRAY_LENGTH(capi_types); i++) {
|
|
PyTypeObject *type = capi_types[i];
|
|
if (_PyStaticType_InitForExtension(interp, type) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
* Module methods and initialization.
|
|
*/
|
|
|
|
static PyMethodDef module_methods[] = {
|
|
{NULL, NULL}
|
|
};
|
|
|
|
|
|
static int
|
|
_datetime_exec(PyObject *module)
|
|
{
|
|
int rc = -1;
|
|
datetime_state *st = get_module_state(module);
|
|
int reloading = 0;
|
|
|
|
PyInterpreterState *interp = PyInterpreterState_Get();
|
|
PyObject *old_module = get_current_module(interp, &reloading);
|
|
if (PyErr_Occurred()) {
|
|
assert(old_module == NULL);
|
|
goto error;
|
|
}
|
|
/* We actually set the "current" module right before a successful return. */
|
|
|
|
if (init_static_types(interp, reloading) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
for (size_t i = 0; i < Py_ARRAY_LENGTH(capi_types); i++) {
|
|
PyTypeObject *type = capi_types[i];
|
|
const char *name = _PyType_Name(type);
|
|
assert(name != NULL);
|
|
if (PyModule_AddObjectRef(module, name, (PyObject *)type) < 0) {
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (init_state(st, module, old_module) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
#define DATETIME_ADD_MACRO(dict, c, value_expr) \
|
|
do { \
|
|
assert(!PyErr_Occurred()); \
|
|
PyObject *value = (value_expr); \
|
|
if (value == NULL) { \
|
|
goto error; \
|
|
} \
|
|
if (PyDict_SetItemString(dict, c, value) < 0) { \
|
|
Py_DECREF(value); \
|
|
goto error; \
|
|
} \
|
|
Py_DECREF(value); \
|
|
} while(0)
|
|
|
|
if (!reloading) {
|
|
/* timedelta values */
|
|
PyObject *d = _PyType_GetDict(&PyDateTime_DeltaType);
|
|
DATETIME_ADD_MACRO(d, "resolution", new_delta(0, 0, 1, 0));
|
|
DATETIME_ADD_MACRO(d, "min", new_delta(-MAX_DELTA_DAYS, 0, 0, 0));
|
|
DATETIME_ADD_MACRO(d, "max",
|
|
new_delta(MAX_DELTA_DAYS, 24*3600-1, 1000000-1, 0));
|
|
|
|
/* date values */
|
|
d = _PyType_GetDict(&PyDateTime_DateType);
|
|
DATETIME_ADD_MACRO(d, "min", new_date(1, 1, 1));
|
|
DATETIME_ADD_MACRO(d, "max", new_date(MAXYEAR, 12, 31));
|
|
DATETIME_ADD_MACRO(d, "resolution", new_delta(1, 0, 0, 0));
|
|
|
|
/* time values */
|
|
d = _PyType_GetDict(&PyDateTime_TimeType);
|
|
DATETIME_ADD_MACRO(d, "min", new_time(0, 0, 0, 0, Py_None, 0));
|
|
DATETIME_ADD_MACRO(d, "max", new_time(23, 59, 59, 999999, Py_None, 0));
|
|
DATETIME_ADD_MACRO(d, "resolution", new_delta(0, 0, 1, 0));
|
|
|
|
/* datetime values */
|
|
d = _PyType_GetDict(&PyDateTime_DateTimeType);
|
|
DATETIME_ADD_MACRO(d, "min",
|
|
new_datetime(1, 1, 1, 0, 0, 0, 0, Py_None, 0));
|
|
DATETIME_ADD_MACRO(d, "max", new_datetime(MAXYEAR, 12, 31, 23, 59, 59,
|
|
999999, Py_None, 0));
|
|
DATETIME_ADD_MACRO(d, "resolution", new_delta(0, 0, 1, 0));
|
|
|
|
/* timezone values */
|
|
d = _PyType_GetDict(&PyDateTime_TimeZoneType);
|
|
if (PyDict_SetItemString(d, "utc", (PyObject *)&utc_timezone) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* bpo-37642: These attributes are rounded to the nearest minute for backwards
|
|
* compatibility, even though the constructor will accept a wider range of
|
|
* values. This may change in the future.*/
|
|
|
|
/* -23:59 */
|
|
DATETIME_ADD_MACRO(d, "min", create_timezone_from_delta(-1, 60, 0, 1));
|
|
|
|
/* +23:59 */
|
|
DATETIME_ADD_MACRO(
|
|
d, "max", create_timezone_from_delta(0, (23 * 60 + 59) * 60, 0, 0));
|
|
}
|
|
|
|
#undef DATETIME_ADD_MACRO
|
|
|
|
/* Add module level attributes */
|
|
if (PyModule_AddIntMacro(module, MINYEAR) < 0) {
|
|
goto error;
|
|
}
|
|
if (PyModule_AddIntMacro(module, MAXYEAR) < 0) {
|
|
goto error;
|
|
}
|
|
if (PyModule_AddObjectRef(module, "UTC", (PyObject *)&utc_timezone) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* At last, set up and add the encapsulated C API */
|
|
PyDateTime_CAPI *capi = get_datetime_capi();
|
|
if (capi == NULL) {
|
|
goto error;
|
|
}
|
|
PyObject *capsule = PyCapsule_New(capi, PyDateTime_CAPSULE_NAME, NULL);
|
|
// (capsule == NULL) is handled by PyModule_Add
|
|
if (PyModule_Add(module, "datetime_CAPI", capsule) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
/* A 4-year cycle has an extra leap day over what we'd get from
|
|
* pasting together 4 single years.
|
|
*/
|
|
static_assert(DI4Y == 4 * 365 + 1, "DI4Y");
|
|
assert(DI4Y == days_before_year(4+1));
|
|
|
|
/* Similarly, a 400-year cycle has an extra leap day over what we'd
|
|
* get from pasting together 4 100-year cycles.
|
|
*/
|
|
static_assert(DI400Y == 4 * DI100Y + 1, "DI400Y");
|
|
assert(DI400Y == days_before_year(400+1));
|
|
|
|
/* OTOH, a 100-year cycle has one fewer leap day than we'd get from
|
|
* pasting together 25 4-year cycles.
|
|
*/
|
|
static_assert(DI100Y == 25 * DI4Y - 1, "DI100Y");
|
|
assert(DI100Y == days_before_year(100+1));
|
|
|
|
if (set_current_module(interp, module) < 0) {
|
|
goto error;
|
|
}
|
|
|
|
rc = 0;
|
|
goto finally;
|
|
|
|
error:
|
|
clear_state(st);
|
|
|
|
finally:
|
|
Py_XDECREF(old_module);
|
|
return rc;
|
|
}
|
|
|
|
static PyModuleDef_Slot module_slots[] = {
|
|
{Py_mod_exec, _datetime_exec},
|
|
{Py_mod_multiple_interpreters, Py_MOD_PER_INTERPRETER_GIL_SUPPORTED},
|
|
{Py_mod_gil, Py_MOD_GIL_NOT_USED},
|
|
{0, NULL},
|
|
};
|
|
|
|
static int
|
|
module_traverse(PyObject *mod, visitproc visit, void *arg)
|
|
{
|
|
datetime_state *st = get_module_state(mod);
|
|
traverse_state(st, visit, arg);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
module_clear(PyObject *mod)
|
|
{
|
|
datetime_state *st = get_module_state(mod);
|
|
clear_state(st);
|
|
|
|
PyInterpreterState *interp = PyInterpreterState_Get();
|
|
clear_current_module(interp, mod);
|
|
|
|
// The runtime takes care of the static types for us.
|
|
// See _PyTypes_FiniExtTypes()..
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
module_free(void *mod)
|
|
{
|
|
(void)module_clear((PyObject *)mod);
|
|
}
|
|
|
|
static PyModuleDef datetimemodule = {
|
|
.m_base = PyModuleDef_HEAD_INIT,
|
|
.m_name = "_datetime",
|
|
.m_doc = "Fast implementation of the datetime module.",
|
|
.m_size = sizeof(datetime_state),
|
|
.m_methods = module_methods,
|
|
.m_slots = module_slots,
|
|
.m_traverse = module_traverse,
|
|
.m_clear = module_clear,
|
|
.m_free = module_free,
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit__datetime(void)
|
|
{
|
|
return PyModuleDef_Init(&datetimemodule);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------------
|
|
Some time zone algebra. For a datetime x, let
|
|
x.n = x stripped of its timezone -- its naive time.
|
|
x.o = x.utcoffset(), and assuming that doesn't raise an exception or
|
|
return None
|
|
x.d = x.dst(), and assuming that doesn't raise an exception or
|
|
return None
|
|
x.s = x's standard offset, x.o - x.d
|
|
|
|
Now some derived rules, where k is a duration (timedelta).
|
|
|
|
1. x.o = x.s + x.d
|
|
This follows from the definition of x.s.
|
|
|
|
2. If x and y have the same tzinfo member, x.s = y.s.
|
|
This is actually a requirement, an assumption we need to make about
|
|
sane tzinfo classes.
|
|
|
|
3. The naive UTC time corresponding to x is x.n - x.o.
|
|
This is again a requirement for a sane tzinfo class.
|
|
|
|
4. (x+k).s = x.s
|
|
This follows from #2, and that datimetimetz+timedelta preserves tzinfo.
|
|
|
|
5. (x+k).n = x.n + k
|
|
Again follows from how arithmetic is defined.
|
|
|
|
Now we can explain tz.fromutc(x). Let's assume it's an interesting case
|
|
(meaning that the various tzinfo methods exist, and don't blow up or return
|
|
None when called).
|
|
|
|
The function wants to return a datetime y with timezone tz, equivalent to x.
|
|
x is already in UTC.
|
|
|
|
By #3, we want
|
|
|
|
y.n - y.o = x.n [1]
|
|
|
|
The algorithm starts by attaching tz to x.n, and calling that y. So
|
|
x.n = y.n at the start. Then it wants to add a duration k to y, so that [1]
|
|
becomes true; in effect, we want to solve [2] for k:
|
|
|
|
(y+k).n - (y+k).o = x.n [2]
|
|
|
|
By #1, this is the same as
|
|
|
|
(y+k).n - ((y+k).s + (y+k).d) = x.n [3]
|
|
|
|
By #5, (y+k).n = y.n + k, which equals x.n + k because x.n=y.n at the start.
|
|
Substituting that into [3],
|
|
|
|
x.n + k - (y+k).s - (y+k).d = x.n; the x.n terms cancel, leaving
|
|
k - (y+k).s - (y+k).d = 0; rearranging,
|
|
k = (y+k).s - (y+k).d; by #4, (y+k).s == y.s, so
|
|
k = y.s - (y+k).d
|
|
|
|
On the RHS, (y+k).d can't be computed directly, but y.s can be, and we
|
|
approximate k by ignoring the (y+k).d term at first. Note that k can't be
|
|
very large, since all offset-returning methods return a duration of magnitude
|
|
less than 24 hours. For that reason, if y is firmly in std time, (y+k).d must
|
|
be 0, so ignoring it has no consequence then.
|
|
|
|
In any case, the new value is
|
|
|
|
z = y + y.s [4]
|
|
|
|
It's helpful to step back at look at [4] from a higher level: it's simply
|
|
mapping from UTC to tz's standard time.
|
|
|
|
At this point, if
|
|
|
|
z.n - z.o = x.n [5]
|
|
|
|
we have an equivalent time, and are almost done. The insecurity here is
|
|
at the start of daylight time. Picture US Eastern for concreteness. The wall
|
|
time jumps from 1:59 to 3:00, and wall hours of the form 2:MM don't make good
|
|
sense then. The docs ask that an Eastern tzinfo class consider such a time to
|
|
be EDT (because it's "after 2"), which is a redundant spelling of 1:MM EST
|
|
on the day DST starts. We want to return the 1:MM EST spelling because that's
|
|
the only spelling that makes sense on the local wall clock.
|
|
|
|
In fact, if [5] holds at this point, we do have the standard-time spelling,
|
|
but that takes a bit of proof. We first prove a stronger result. What's the
|
|
difference between the LHS and RHS of [5]? Let
|
|
|
|
diff = x.n - (z.n - z.o) [6]
|
|
|
|
Now
|
|
z.n = by [4]
|
|
(y + y.s).n = by #5
|
|
y.n + y.s = since y.n = x.n
|
|
x.n + y.s = since z and y are have the same tzinfo member,
|
|
y.s = z.s by #2
|
|
x.n + z.s
|
|
|
|
Plugging that back into [6] gives
|
|
|
|
diff =
|
|
x.n - ((x.n + z.s) - z.o) = expanding
|
|
x.n - x.n - z.s + z.o = cancelling
|
|
- z.s + z.o = by #2
|
|
z.d
|
|
|
|
So diff = z.d.
|
|
|
|
If [5] is true now, diff = 0, so z.d = 0 too, and we have the standard-time
|
|
spelling we wanted in the endcase described above. We're done. Contrarily,
|
|
if z.d = 0, then we have a UTC equivalent, and are also done.
|
|
|
|
If [5] is not true now, diff = z.d != 0, and z.d is the offset we need to
|
|
add to z (in effect, z is in tz's standard time, and we need to shift the
|
|
local clock into tz's daylight time).
|
|
|
|
Let
|
|
|
|
z' = z + z.d = z + diff [7]
|
|
|
|
and we can again ask whether
|
|
|
|
z'.n - z'.o = x.n [8]
|
|
|
|
If so, we're done. If not, the tzinfo class is insane, according to the
|
|
assumptions we've made. This also requires a bit of proof. As before, let's
|
|
compute the difference between the LHS and RHS of [8] (and skipping some of
|
|
the justifications for the kinds of substitutions we've done several times
|
|
already):
|
|
|
|
diff' = x.n - (z'.n - z'.o) = replacing z'.n via [7]
|
|
x.n - (z.n + diff - z'.o) = replacing diff via [6]
|
|
x.n - (z.n + x.n - (z.n - z.o) - z'.o) =
|
|
x.n - z.n - x.n + z.n - z.o + z'.o = cancel x.n
|
|
- z.n + z.n - z.o + z'.o = cancel z.n
|
|
- z.o + z'.o = #1 twice
|
|
-z.s - z.d + z'.s + z'.d = z and z' have same tzinfo
|
|
z'.d - z.d
|
|
|
|
So z' is UTC-equivalent to x iff z'.d = z.d at this point. If they are equal,
|
|
we've found the UTC-equivalent so are done. In fact, we stop with [7] and
|
|
return z', not bothering to compute z'.d.
|
|
|
|
How could z.d and z'd differ? z' = z + z.d [7], so merely moving z' by
|
|
a dst() offset, and starting *from* a time already in DST (we know z.d != 0),
|
|
would have to change the result dst() returns: we start in DST, and moving
|
|
a little further into it takes us out of DST.
|
|
|
|
There isn't a sane case where this can happen. The closest it gets is at
|
|
the end of DST, where there's an hour in UTC with no spelling in a hybrid
|
|
tzinfo class. In US Eastern, that's 5:MM UTC = 0:MM EST = 1:MM EDT. During
|
|
that hour, on an Eastern clock 1:MM is taken as being in standard time (6:MM
|
|
UTC) because the docs insist on that, but 0:MM is taken as being in daylight
|
|
time (4:MM UTC). There is no local time mapping to 5:MM UTC. The local
|
|
clock jumps from 1:59 back to 1:00 again, and repeats the 1:MM hour in
|
|
standard time. Since that's what the local clock *does*, we want to map both
|
|
UTC hours 5:MM and 6:MM to 1:MM Eastern. The result is ambiguous
|
|
in local time, but so it goes -- it's the way the local clock works.
|
|
|
|
When x = 5:MM UTC is the input to this algorithm, x.o=0, y.o=-5 and y.d=0,
|
|
so z=0:MM. z.d=60 (minutes) then, so [5] doesn't hold and we keep going.
|
|
z' = z + z.d = 1:MM then, and z'.d=0, and z'.d - z.d = -60 != 0 so [8]
|
|
(correctly) concludes that z' is not UTC-equivalent to x.
|
|
|
|
Because we know z.d said z was in daylight time (else [5] would have held and
|
|
we would have stopped then), and we know z.d != z'.d (else [8] would have held
|
|
and we would have stopped then), and there are only 2 possible values dst() can
|
|
return in Eastern, it follows that z'.d must be 0 (which it is in the example,
|
|
but the reasoning doesn't depend on the example -- it depends on there being
|
|
two possible dst() outcomes, one zero and the other non-zero). Therefore
|
|
z' must be in standard time, and is the spelling we want in this case.
|
|
|
|
Note again that z' is not UTC-equivalent as far as the hybrid tzinfo class is
|
|
concerned (because it takes z' as being in standard time rather than the
|
|
daylight time we intend here), but returning it gives the real-life "local
|
|
clock repeats an hour" behavior when mapping the "unspellable" UTC hour into
|
|
tz.
|
|
|
|
When the input is 6:MM, z=1:MM and z.d=0, and we stop at once, again with
|
|
the 1:MM standard time spelling we want.
|
|
|
|
So how can this break? One of the assumptions must be violated. Two
|
|
possibilities:
|
|
|
|
1) [2] effectively says that y.s is invariant across all y belong to a given
|
|
time zone. This isn't true if, for political reasons or continental drift,
|
|
a region decides to change its base offset from UTC.
|
|
|
|
2) There may be versions of "double daylight" time where the tail end of
|
|
the analysis gives up a step too early. I haven't thought about that
|
|
enough to say.
|
|
|
|
In any case, it's clear that the default fromutc() is strong enough to handle
|
|
"almost all" time zones: so long as the standard offset is invariant, it
|
|
doesn't matter if daylight time transition points change from year to year, or
|
|
if daylight time is skipped in some years; it doesn't matter how large or
|
|
small dst() may get within its bounds; and it doesn't even matter if some
|
|
perverse time zone returns a negative dst()). So a breaking case must be
|
|
pretty bizarre, and a tzinfo subclass can override fromutc() if it is.
|
|
--------------------------------------------------------------------------- */
|