mirror of
https://github.com/python/cpython.git
synced 2024-11-21 21:09:37 +01:00
4f3786b761
This PR adds a private `Fraction._from_coprime_ints` classmethod for internal creations of `Fraction` objects, replacing the use of `_normalize=False` in the existing constructor. This speeds up creation of `Fraction` objects arising from calculations. The `_normalize` argument to the `Fraction` constructor has been removed. Co-authored-by: Pieter Eendebak <pieter.eendebak@gmail.com> Co-authored-by: Mark Dickinson <dickinsm@gmail.com>
231 lines
8.0 KiB
Python
231 lines
8.0 KiB
Python
# test interactions between int, float, Decimal and Fraction
|
|
|
|
import unittest
|
|
import random
|
|
import math
|
|
import sys
|
|
import operator
|
|
|
|
from decimal import Decimal as D
|
|
from fractions import Fraction as F
|
|
|
|
# Constants related to the hash implementation; hash(x) is based
|
|
# on the reduction of x modulo the prime _PyHASH_MODULUS.
|
|
_PyHASH_MODULUS = sys.hash_info.modulus
|
|
_PyHASH_INF = sys.hash_info.inf
|
|
|
|
|
|
class DummyIntegral(int):
|
|
"""Dummy Integral class to test conversion of the Rational to float."""
|
|
|
|
def __mul__(self, other):
|
|
return DummyIntegral(super().__mul__(other))
|
|
__rmul__ = __mul__
|
|
|
|
def __truediv__(self, other):
|
|
return NotImplemented
|
|
__rtruediv__ = __truediv__
|
|
|
|
@property
|
|
def numerator(self):
|
|
return DummyIntegral(self)
|
|
|
|
@property
|
|
def denominator(self):
|
|
return DummyIntegral(1)
|
|
|
|
|
|
class HashTest(unittest.TestCase):
|
|
def check_equal_hash(self, x, y):
|
|
# check both that x and y are equal and that their hashes are equal
|
|
self.assertEqual(hash(x), hash(y),
|
|
"got different hashes for {!r} and {!r}".format(x, y))
|
|
self.assertEqual(x, y)
|
|
|
|
def test_bools(self):
|
|
self.check_equal_hash(False, 0)
|
|
self.check_equal_hash(True, 1)
|
|
|
|
def test_integers(self):
|
|
# check that equal values hash equal
|
|
|
|
# exact integers
|
|
for i in range(-1000, 1000):
|
|
self.check_equal_hash(i, float(i))
|
|
self.check_equal_hash(i, D(i))
|
|
self.check_equal_hash(i, F(i))
|
|
|
|
# the current hash is based on reduction modulo 2**n-1 for some
|
|
# n, so pay special attention to numbers of the form 2**n and 2**n-1.
|
|
for i in range(100):
|
|
n = 2**i - 1
|
|
if n == int(float(n)):
|
|
self.check_equal_hash(n, float(n))
|
|
self.check_equal_hash(-n, -float(n))
|
|
self.check_equal_hash(n, D(n))
|
|
self.check_equal_hash(n, F(n))
|
|
self.check_equal_hash(-n, D(-n))
|
|
self.check_equal_hash(-n, F(-n))
|
|
|
|
n = 2**i
|
|
self.check_equal_hash(n, float(n))
|
|
self.check_equal_hash(-n, -float(n))
|
|
self.check_equal_hash(n, D(n))
|
|
self.check_equal_hash(n, F(n))
|
|
self.check_equal_hash(-n, D(-n))
|
|
self.check_equal_hash(-n, F(-n))
|
|
|
|
# random values of various sizes
|
|
for _ in range(1000):
|
|
e = random.randrange(300)
|
|
n = random.randrange(-10**e, 10**e)
|
|
self.check_equal_hash(n, D(n))
|
|
self.check_equal_hash(n, F(n))
|
|
if n == int(float(n)):
|
|
self.check_equal_hash(n, float(n))
|
|
|
|
def test_binary_floats(self):
|
|
# check that floats hash equal to corresponding Fractions and Decimals
|
|
|
|
# floats that are distinct but numerically equal should hash the same
|
|
self.check_equal_hash(0.0, -0.0)
|
|
|
|
# zeros
|
|
self.check_equal_hash(0.0, D(0))
|
|
self.check_equal_hash(-0.0, D(0))
|
|
self.check_equal_hash(-0.0, D('-0.0'))
|
|
self.check_equal_hash(0.0, F(0))
|
|
|
|
# infinities and nans
|
|
self.check_equal_hash(float('inf'), D('inf'))
|
|
self.check_equal_hash(float('-inf'), D('-inf'))
|
|
|
|
for _ in range(1000):
|
|
x = random.random() * math.exp(random.random()*200.0 - 100.0)
|
|
self.check_equal_hash(x, D.from_float(x))
|
|
self.check_equal_hash(x, F.from_float(x))
|
|
|
|
def test_complex(self):
|
|
# complex numbers with zero imaginary part should hash equal to
|
|
# the corresponding float
|
|
|
|
test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5,
|
|
float('inf'), float('-inf')]
|
|
|
|
for zero in -0.0, 0.0:
|
|
for value in test_values:
|
|
self.check_equal_hash(value, complex(value, zero))
|
|
|
|
def test_decimals(self):
|
|
# check that Decimal instances that have different representations
|
|
# but equal values give the same hash
|
|
zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10']
|
|
for zero in zeros:
|
|
self.check_equal_hash(D(zero), D(0))
|
|
|
|
self.check_equal_hash(D('1.00'), D(1))
|
|
self.check_equal_hash(D('1.00000'), D(1))
|
|
self.check_equal_hash(D('-1.00'), D(-1))
|
|
self.check_equal_hash(D('-1.00000'), D(-1))
|
|
self.check_equal_hash(D('123e2'), D(12300))
|
|
self.check_equal_hash(D('1230e1'), D(12300))
|
|
self.check_equal_hash(D('12300'), D(12300))
|
|
self.check_equal_hash(D('12300.0'), D(12300))
|
|
self.check_equal_hash(D('12300.00'), D(12300))
|
|
self.check_equal_hash(D('12300.000'), D(12300))
|
|
|
|
def test_fractions(self):
|
|
# check special case for fractions where either the numerator
|
|
# or the denominator is a multiple of _PyHASH_MODULUS
|
|
self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF)
|
|
self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF)
|
|
self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0)
|
|
self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0)
|
|
|
|
# The numbers ABC doesn't enforce that the "true" division
|
|
# of integers produces a float. This tests that the
|
|
# Rational.__float__() method has required type conversions.
|
|
x = F._from_coprime_ints(DummyIntegral(1), DummyIntegral(2))
|
|
self.assertRaises(TypeError, lambda: x.numerator/x.denominator)
|
|
self.assertEqual(float(x), 0.5)
|
|
|
|
def test_hash_normalization(self):
|
|
# Test for a bug encountered while changing long_hash.
|
|
#
|
|
# Given objects x and y, it should be possible for y's
|
|
# __hash__ method to return hash(x) in order to ensure that
|
|
# hash(x) == hash(y). But hash(x) is not exactly equal to the
|
|
# result of x.__hash__(): there's some internal normalization
|
|
# to make sure that the result fits in a C long, and is not
|
|
# equal to the invalid hash value -1. This internal
|
|
# normalization must therefore not change the result of
|
|
# hash(x) for any x.
|
|
|
|
class HalibutProxy:
|
|
def __hash__(self):
|
|
return hash('halibut')
|
|
def __eq__(self, other):
|
|
return other == 'halibut'
|
|
|
|
x = {'halibut', HalibutProxy()}
|
|
self.assertEqual(len(x), 1)
|
|
|
|
class ComparisonTest(unittest.TestCase):
|
|
def test_mixed_comparisons(self):
|
|
|
|
# ordered list of distinct test values of various types:
|
|
# int, float, Fraction, Decimal
|
|
test_values = [
|
|
float('-inf'),
|
|
D('-1e425000000'),
|
|
-1e308,
|
|
F(-22, 7),
|
|
-3.14,
|
|
-2,
|
|
0.0,
|
|
1e-320,
|
|
True,
|
|
F('1.2'),
|
|
D('1.3'),
|
|
float('1.4'),
|
|
F(275807, 195025),
|
|
D('1.414213562373095048801688724'),
|
|
F(114243, 80782),
|
|
F(473596569, 84615),
|
|
7e200,
|
|
D('infinity'),
|
|
]
|
|
for i, first in enumerate(test_values):
|
|
for second in test_values[i+1:]:
|
|
self.assertLess(first, second)
|
|
self.assertLessEqual(first, second)
|
|
self.assertGreater(second, first)
|
|
self.assertGreaterEqual(second, first)
|
|
|
|
def test_complex(self):
|
|
# comparisons with complex are special: equality and inequality
|
|
# comparisons should always succeed, but order comparisons should
|
|
# raise TypeError.
|
|
z = 1.0 + 0j
|
|
w = -3.14 + 2.7j
|
|
|
|
for v in 1, 1.0, F(1), D(1), complex(1):
|
|
self.assertEqual(z, v)
|
|
self.assertEqual(v, z)
|
|
|
|
for v in 2, 2.0, F(2), D(2), complex(2):
|
|
self.assertNotEqual(z, v)
|
|
self.assertNotEqual(v, z)
|
|
self.assertNotEqual(w, v)
|
|
self.assertNotEqual(v, w)
|
|
|
|
for v in (1, 1.0, F(1), D(1), complex(1),
|
|
2, 2.0, F(2), D(2), complex(2), w):
|
|
for op in operator.le, operator.lt, operator.ge, operator.gt:
|
|
self.assertRaises(TypeError, op, z, v)
|
|
self.assertRaises(TypeError, op, v, z)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|