0
0
mirror of https://github.com/python/cpython.git synced 2024-11-21 12:59:38 +01:00
cpython/Lib/test/test_collections.py

2388 lines
92 KiB
Python

"""Unit tests for collections.py."""
import array
import collections
import copy
import doctest
import inspect
import operator
import pickle
from random import choice, randrange
from itertools import product, chain, combinations
import string
import sys
from test import support
import types
import unittest
from collections import namedtuple, Counter, OrderedDict, _count_elements
from collections import UserDict, UserString, UserList
from collections import ChainMap
from collections import deque
from collections.abc import Awaitable, Coroutine
from collections.abc import AsyncIterator, AsyncIterable, AsyncGenerator
from collections.abc import Hashable, Iterable, Iterator, Generator, Reversible
from collections.abc import Sized, Container, Callable, Collection
from collections.abc import Set, MutableSet
from collections.abc import Mapping, MutableMapping, KeysView, ItemsView, ValuesView
from collections.abc import Sequence, MutableSequence
from collections.abc import Buffer
class TestUserObjects(unittest.TestCase):
def _superset_test(self, a, b):
self.assertGreaterEqual(
set(dir(a)),
set(dir(b)),
'{a} should have all the methods of {b}'.format(
a=a.__name__,
b=b.__name__,
),
)
def _copy_test(self, obj):
# Test internal copy
obj_copy = obj.copy()
self.assertIsNot(obj.data, obj_copy.data)
self.assertEqual(obj.data, obj_copy.data)
# Test copy.copy
obj.test = [1234] # Make sure instance vars are also copied.
obj_copy = copy.copy(obj)
self.assertIsNot(obj.data, obj_copy.data)
self.assertEqual(obj.data, obj_copy.data)
self.assertIs(obj.test, obj_copy.test)
def test_str_protocol(self):
self._superset_test(UserString, str)
def test_list_protocol(self):
self._superset_test(UserList, list)
def test_dict_protocol(self):
self._superset_test(UserDict, dict)
def test_list_copy(self):
obj = UserList()
obj.append(123)
self._copy_test(obj)
def test_dict_copy(self):
obj = UserDict()
obj[123] = "abc"
self._copy_test(obj)
def test_dict_missing(self):
class A(UserDict):
def __missing__(self, key):
return 456
self.assertEqual(A()[123], 456)
# get() ignores __missing__ on dict
self.assertIs(A().get(123), None)
################################################################################
### ChainMap (helper class for configparser and the string module)
################################################################################
class TestChainMap(unittest.TestCase):
def test_basics(self):
c = ChainMap()
c['a'] = 1
c['b'] = 2
d = c.new_child()
d['b'] = 20
d['c'] = 30
self.assertEqual(d.maps, [{'b':20, 'c':30}, {'a':1, 'b':2}]) # check internal state
self.assertEqual(d.items(), dict(a=1, b=20, c=30).items()) # check items/iter/getitem
self.assertEqual(len(d), 3) # check len
for key in 'abc': # check contains
self.assertIn(key, d)
for k, v in dict(a=1, b=20, c=30, z=100).items(): # check get
self.assertEqual(d.get(k, 100), v)
del d['b'] # unmask a value
self.assertEqual(d.maps, [{'c':30}, {'a':1, 'b':2}]) # check internal state
self.assertEqual(d.items(), dict(a=1, b=2, c=30).items()) # check items/iter/getitem
self.assertEqual(len(d), 3) # check len
for key in 'abc': # check contains
self.assertIn(key, d)
for k, v in dict(a=1, b=2, c=30, z=100).items(): # check get
self.assertEqual(d.get(k, 100), v)
self.assertIn(repr(d), [ # check repr
type(d).__name__ + "({'c': 30}, {'a': 1, 'b': 2})",
type(d).__name__ + "({'c': 30}, {'b': 2, 'a': 1})"
])
for e in d.copy(), copy.copy(d): # check shallow copies
self.assertEqual(d, e)
self.assertEqual(d.maps, e.maps)
self.assertIsNot(d, e)
self.assertIsNot(d.maps[0], e.maps[0])
for m1, m2 in zip(d.maps[1:], e.maps[1:]):
self.assertIs(m1, m2)
# check deep copies
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
e = pickle.loads(pickle.dumps(d, proto))
self.assertEqual(d, e)
self.assertEqual(d.maps, e.maps)
self.assertIsNot(d, e)
for m1, m2 in zip(d.maps, e.maps):
self.assertIsNot(m1, m2, e)
for e in [copy.deepcopy(d),
eval(repr(d))
]:
self.assertEqual(d, e)
self.assertEqual(d.maps, e.maps)
self.assertIsNot(d, e)
for m1, m2 in zip(d.maps, e.maps):
self.assertIsNot(m1, m2, e)
f = d.new_child()
f['b'] = 5
self.assertEqual(f.maps, [{'b': 5}, {'c':30}, {'a':1, 'b':2}])
self.assertEqual(f.parents.maps, [{'c':30}, {'a':1, 'b':2}]) # check parents
self.assertEqual(f['b'], 5) # find first in chain
self.assertEqual(f.parents['b'], 2) # look beyond maps[0]
def test_ordering(self):
# Combined order matches a series of dict updates from last to first.
# This test relies on the ordering of the underlying dicts.
baseline = {'music': 'bach', 'art': 'rembrandt'}
adjustments = {'art': 'van gogh', 'opera': 'carmen'}
cm = ChainMap(adjustments, baseline)
combined = baseline.copy()
combined.update(adjustments)
self.assertEqual(list(combined.items()), list(cm.items()))
def test_constructor(self):
self.assertEqual(ChainMap().maps, [{}]) # no-args --> one new dict
self.assertEqual(ChainMap({1:2}).maps, [{1:2}]) # 1 arg --> list
def test_bool(self):
self.assertFalse(ChainMap())
self.assertFalse(ChainMap({}, {}))
self.assertTrue(ChainMap({1:2}, {}))
self.assertTrue(ChainMap({}, {1:2}))
def test_missing(self):
class DefaultChainMap(ChainMap):
def __missing__(self, key):
return 999
d = DefaultChainMap(dict(a=1, b=2), dict(b=20, c=30))
for k, v in dict(a=1, b=2, c=30, d=999).items():
self.assertEqual(d[k], v) # check __getitem__ w/missing
for k, v in dict(a=1, b=2, c=30, d=77).items():
self.assertEqual(d.get(k, 77), v) # check get() w/ missing
for k, v in dict(a=True, b=True, c=True, d=False).items():
self.assertEqual(k in d, v) # check __contains__ w/missing
self.assertEqual(d.pop('a', 1001), 1, d)
self.assertEqual(d.pop('a', 1002), 1002) # check pop() w/missing
self.assertEqual(d.popitem(), ('b', 2)) # check popitem() w/missing
with self.assertRaises(KeyError):
d.popitem()
def test_order_preservation(self):
d = ChainMap(
OrderedDict(j=0, h=88888),
OrderedDict(),
OrderedDict(i=9999, d=4444, c=3333),
OrderedDict(f=666, b=222, g=777, c=333, h=888),
OrderedDict(),
OrderedDict(e=55, b=22),
OrderedDict(a=1, b=2, c=3, d=4, e=5),
OrderedDict(),
)
self.assertEqual(''.join(d), 'abcdefghij')
self.assertEqual(list(d.items()),
[('a', 1), ('b', 222), ('c', 3333), ('d', 4444),
('e', 55), ('f', 666), ('g', 777), ('h', 88888),
('i', 9999), ('j', 0)])
def test_iter_not_calling_getitem_on_maps(self):
class DictWithGetItem(UserDict):
def __init__(self, *args, **kwds):
self.called = False
UserDict.__init__(self, *args, **kwds)
def __getitem__(self, item):
self.called = True
UserDict.__getitem__(self, item)
d = DictWithGetItem(a=1)
c = ChainMap(d)
d.called = False
set(c) # iterate over chain map
self.assertFalse(d.called, '__getitem__ was called')
def test_dict_coercion(self):
d = ChainMap(dict(a=1, b=2), dict(b=20, c=30))
self.assertEqual(dict(d), dict(a=1, b=2, c=30))
self.assertEqual(dict(d.items()), dict(a=1, b=2, c=30))
def test_new_child(self):
'Tests for changes for issue #16613.'
c = ChainMap()
c['a'] = 1
c['b'] = 2
m = {'b':20, 'c': 30}
d = c.new_child(m)
self.assertEqual(d.maps, [{'b':20, 'c':30}, {'a':1, 'b':2}]) # check internal state
self.assertIs(m, d.maps[0])
# Use a different map than a dict
class lowerdict(dict):
def __getitem__(self, key):
if isinstance(key, str):
key = key.lower()
return dict.__getitem__(self, key)
def __contains__(self, key):
if isinstance(key, str):
key = key.lower()
return dict.__contains__(self, key)
c = ChainMap()
c['a'] = 1
c['b'] = 2
m = lowerdict(b=20, c=30)
d = c.new_child(m)
self.assertIs(m, d.maps[0])
for key in 'abc': # check contains
self.assertIn(key, d)
for k, v in dict(a=1, B=20, C=30, z=100).items(): # check get
self.assertEqual(d.get(k, 100), v)
c = ChainMap({'a': 1, 'b': 2})
d = c.new_child(b=20, c=30)
self.assertEqual(d.maps, [{'b': 20, 'c': 30}, {'a': 1, 'b': 2}])
def test_union_operators(self):
cm1 = ChainMap(dict(a=1, b=2), dict(c=3, d=4))
cm2 = ChainMap(dict(a=10, e=5), dict(b=20, d=4))
cm3 = cm1.copy()
d = dict(a=10, c=30)
pairs = [('c', 3), ('p',0)]
tmp = cm1 | cm2 # testing between chainmaps
self.assertEqual(tmp.maps, [cm1.maps[0] | dict(cm2), *cm1.maps[1:]])
cm1 |= cm2
self.assertEqual(tmp, cm1)
tmp = cm2 | d # testing between chainmap and mapping
self.assertEqual(tmp.maps, [cm2.maps[0] | d, *cm2.maps[1:]])
self.assertEqual((d | cm2).maps, [d | dict(cm2)])
cm2 |= d
self.assertEqual(tmp, cm2)
# testing behavior between chainmap and iterable key-value pairs
with self.assertRaises(TypeError):
cm3 | pairs
tmp = cm3.copy()
cm3 |= pairs
self.assertEqual(cm3.maps, [tmp.maps[0] | dict(pairs), *tmp.maps[1:]])
# testing proper return types for ChainMap and it's subclasses
class Subclass(ChainMap):
pass
class SubclassRor(ChainMap):
def __ror__(self, other):
return super().__ror__(other)
tmp = ChainMap() | ChainMap()
self.assertIs(type(tmp), ChainMap)
self.assertIs(type(tmp.maps[0]), dict)
tmp = ChainMap() | Subclass()
self.assertIs(type(tmp), ChainMap)
self.assertIs(type(tmp.maps[0]), dict)
tmp = Subclass() | ChainMap()
self.assertIs(type(tmp), Subclass)
self.assertIs(type(tmp.maps[0]), dict)
tmp = ChainMap() | SubclassRor()
self.assertIs(type(tmp), SubclassRor)
self.assertIs(type(tmp.maps[0]), dict)
################################################################################
### Named Tuples
################################################################################
TestNT = namedtuple('TestNT', 'x y z') # type used for pickle tests
class TestNamedTuple(unittest.TestCase):
def test_factory(self):
Point = namedtuple('Point', 'x y')
self.assertEqual(Point.__name__, 'Point')
self.assertEqual(Point.__slots__, ())
self.assertEqual(Point.__module__, __name__)
self.assertEqual(Point.__getitem__, tuple.__getitem__)
self.assertEqual(Point._fields, ('x', 'y'))
self.assertRaises(ValueError, namedtuple, 'abc%', 'efg ghi') # type has non-alpha char
self.assertRaises(ValueError, namedtuple, 'class', 'efg ghi') # type has keyword
self.assertRaises(ValueError, namedtuple, '9abc', 'efg ghi') # type starts with digit
self.assertRaises(ValueError, namedtuple, 'abc', 'efg g%hi') # field with non-alpha char
self.assertRaises(ValueError, namedtuple, 'abc', 'abc class') # field has keyword
self.assertRaises(ValueError, namedtuple, 'abc', '8efg 9ghi') # field starts with digit
self.assertRaises(ValueError, namedtuple, 'abc', '_efg ghi') # field with leading underscore
self.assertRaises(ValueError, namedtuple, 'abc', 'efg efg ghi') # duplicate field
namedtuple('Point0', 'x1 y2') # Verify that numbers are allowed in names
namedtuple('_', 'a b c') # Test leading underscores in a typename
nt = namedtuple('nt', 'the quick brown fox') # check unicode input
self.assertNotIn("u'", repr(nt._fields))
nt = namedtuple('nt', ('the', 'quick')) # check unicode input
self.assertNotIn("u'", repr(nt._fields))
self.assertRaises(TypeError, Point._make, [11]) # catch too few args
self.assertRaises(TypeError, Point._make, [11, 22, 33]) # catch too many args
def test_defaults(self):
Point = namedtuple('Point', 'x y', defaults=(10, 20)) # 2 defaults
self.assertEqual(Point._field_defaults, {'x': 10, 'y': 20})
self.assertEqual(Point(1, 2), (1, 2))
self.assertEqual(Point(1), (1, 20))
self.assertEqual(Point(), (10, 20))
Point = namedtuple('Point', 'x y', defaults=(20,)) # 1 default
self.assertEqual(Point._field_defaults, {'y': 20})
self.assertEqual(Point(1, 2), (1, 2))
self.assertEqual(Point(1), (1, 20))
Point = namedtuple('Point', 'x y', defaults=()) # 0 defaults
self.assertEqual(Point._field_defaults, {})
self.assertEqual(Point(1, 2), (1, 2))
with self.assertRaises(TypeError):
Point(1)
with self.assertRaises(TypeError): # catch too few args
Point()
with self.assertRaises(TypeError): # catch too many args
Point(1, 2, 3)
with self.assertRaises(TypeError): # too many defaults
Point = namedtuple('Point', 'x y', defaults=(10, 20, 30))
with self.assertRaises(TypeError): # non-iterable defaults
Point = namedtuple('Point', 'x y', defaults=10)
with self.assertRaises(TypeError): # another non-iterable default
Point = namedtuple('Point', 'x y', defaults=False)
Point = namedtuple('Point', 'x y', defaults=None) # default is None
self.assertEqual(Point._field_defaults, {})
self.assertIsNone(Point.__new__.__defaults__, None)
self.assertEqual(Point(10, 20), (10, 20))
with self.assertRaises(TypeError): # catch too few args
Point(10)
Point = namedtuple('Point', 'x y', defaults=[10, 20]) # allow non-tuple iterable
self.assertEqual(Point._field_defaults, {'x': 10, 'y': 20})
self.assertEqual(Point.__new__.__defaults__, (10, 20))
self.assertEqual(Point(1, 2), (1, 2))
self.assertEqual(Point(1), (1, 20))
self.assertEqual(Point(), (10, 20))
Point = namedtuple('Point', 'x y', defaults=iter([10, 20])) # allow plain iterator
self.assertEqual(Point._field_defaults, {'x': 10, 'y': 20})
self.assertEqual(Point.__new__.__defaults__, (10, 20))
self.assertEqual(Point(1, 2), (1, 2))
self.assertEqual(Point(1), (1, 20))
self.assertEqual(Point(), (10, 20))
def test_readonly(self):
Point = namedtuple('Point', 'x y')
p = Point(11, 22)
with self.assertRaises(AttributeError):
p.x = 33
with self.assertRaises(AttributeError):
del p.x
with self.assertRaises(TypeError):
p[0] = 33
with self.assertRaises(TypeError):
del p[0]
self.assertEqual(p.x, 11)
self.assertEqual(p[0], 11)
@unittest.skipIf(sys.flags.optimize >= 2,
"Docstrings are omitted with -O2 and above")
def test_factory_doc_attr(self):
Point = namedtuple('Point', 'x y')
self.assertEqual(Point.__doc__, 'Point(x, y)')
Point.__doc__ = '2D point'
self.assertEqual(Point.__doc__, '2D point')
@unittest.skipIf(sys.flags.optimize >= 2,
"Docstrings are omitted with -O2 and above")
def test_field_doc(self):
Point = namedtuple('Point', 'x y')
self.assertEqual(Point.x.__doc__, 'Alias for field number 0')
self.assertEqual(Point.y.__doc__, 'Alias for field number 1')
Point.x.__doc__ = 'docstring for Point.x'
self.assertEqual(Point.x.__doc__, 'docstring for Point.x')
# namedtuple can mutate doc of descriptors independently
Vector = namedtuple('Vector', 'x y')
self.assertEqual(Vector.x.__doc__, 'Alias for field number 0')
Vector.x.__doc__ = 'docstring for Vector.x'
self.assertEqual(Vector.x.__doc__, 'docstring for Vector.x')
@support.cpython_only
@unittest.skipIf(sys.flags.optimize >= 2,
"Docstrings are omitted with -O2 and above")
def test_field_doc_reuse(self):
P = namedtuple('P', ['m', 'n'])
Q = namedtuple('Q', ['o', 'p'])
self.assertIs(P.m.__doc__, Q.o.__doc__)
self.assertIs(P.n.__doc__, Q.p.__doc__)
@support.cpython_only
def test_field_repr(self):
Point = namedtuple('Point', 'x y')
self.assertEqual(repr(Point.x), "_tuplegetter(0, 'Alias for field number 0')")
self.assertEqual(repr(Point.y), "_tuplegetter(1, 'Alias for field number 1')")
Point.x.__doc__ = 'The x-coordinate'
Point.y.__doc__ = 'The y-coordinate'
self.assertEqual(repr(Point.x), "_tuplegetter(0, 'The x-coordinate')")
self.assertEqual(repr(Point.y), "_tuplegetter(1, 'The y-coordinate')")
def test_name_fixer(self):
for spec, renamed in [
[('efg', 'g%hi'), ('efg', '_1')], # field with non-alpha char
[('abc', 'class'), ('abc', '_1')], # field has keyword
[('8efg', '9ghi'), ('_0', '_1')], # field starts with digit
[('abc', '_efg'), ('abc', '_1')], # field with leading underscore
[('abc', 'efg', 'efg', 'ghi'), ('abc', 'efg', '_2', 'ghi')], # duplicate field
[('abc', '', 'x'), ('abc', '_1', 'x')], # fieldname is a space
]:
self.assertEqual(namedtuple('NT', spec, rename=True)._fields, renamed)
def test_module_parameter(self):
NT = namedtuple('NT', ['x', 'y'], module=collections)
self.assertEqual(NT.__module__, collections)
def test_instance(self):
Point = namedtuple('Point', 'x y')
p = Point(11, 22)
self.assertEqual(p, Point(x=11, y=22))
self.assertEqual(p, Point(11, y=22))
self.assertEqual(p, Point(y=22, x=11))
self.assertEqual(p, Point(*(11, 22)))
self.assertEqual(p, Point(**dict(x=11, y=22)))
self.assertRaises(TypeError, Point, 1) # too few args
self.assertRaises(TypeError, Point, 1, 2, 3) # too many args
with self.assertRaises(TypeError): # wrong keyword argument
Point(XXX=1, y=2)
with self.assertRaises(TypeError): # missing keyword argument
Point(x=1)
self.assertEqual(repr(p), 'Point(x=11, y=22)')
self.assertNotIn('__weakref__', dir(p))
self.assertEqual(p, Point._make([11, 22])) # test _make classmethod
self.assertEqual(p._fields, ('x', 'y')) # test _fields attribute
self.assertEqual(p._replace(x=1), (1, 22)) # test _replace method
self.assertEqual(p._asdict(), dict(x=11, y=22)) # test _asdict method
with self.assertRaises(TypeError):
p._replace(x=1, error=2)
# verify that field string can have commas
Point = namedtuple('Point', 'x, y')
p = Point(x=11, y=22)
self.assertEqual(repr(p), 'Point(x=11, y=22)')
# verify that fieldspec can be a non-string sequence
Point = namedtuple('Point', ('x', 'y'))
p = Point(x=11, y=22)
self.assertEqual(repr(p), 'Point(x=11, y=22)')
def test_tupleness(self):
Point = namedtuple('Point', 'x y')
p = Point(11, 22)
self.assertIsInstance(p, tuple)
self.assertEqual(p, (11, 22)) # matches a real tuple
self.assertEqual(tuple(p), (11, 22)) # coercible to a real tuple
self.assertEqual(list(p), [11, 22]) # coercible to a list
self.assertEqual(max(p), 22) # iterable
self.assertEqual(max(*p), 22) # star-able
x, y = p
self.assertEqual(p, (x, y)) # unpacks like a tuple
self.assertEqual((p[0], p[1]), (11, 22)) # indexable like a tuple
with self.assertRaises(IndexError):
p[3]
self.assertEqual(p[-1], 22)
self.assertEqual(hash(p), hash((11, 22)))
self.assertEqual(p.x, x)
self.assertEqual(p.y, y)
with self.assertRaises(AttributeError):
p.z
def test_odd_sizes(self):
Zero = namedtuple('Zero', '')
self.assertEqual(Zero(), ())
self.assertEqual(Zero._make([]), ())
self.assertEqual(repr(Zero()), 'Zero()')
self.assertEqual(Zero()._asdict(), {})
self.assertEqual(Zero()._fields, ())
Dot = namedtuple('Dot', 'd')
self.assertEqual(Dot(1), (1,))
self.assertEqual(Dot._make([1]), (1,))
self.assertEqual(Dot(1).d, 1)
self.assertEqual(repr(Dot(1)), 'Dot(d=1)')
self.assertEqual(Dot(1)._asdict(), {'d':1})
self.assertEqual(Dot(1)._replace(d=999), (999,))
self.assertEqual(Dot(1)._fields, ('d',))
n = support.exceeds_recursion_limit()
names = list(set(''.join([choice(string.ascii_letters)
for j in range(10)]) for i in range(n)))
n = len(names)
Big = namedtuple('Big', names)
b = Big(*range(n))
self.assertEqual(b, tuple(range(n)))
self.assertEqual(Big._make(range(n)), tuple(range(n)))
for pos, name in enumerate(names):
self.assertEqual(getattr(b, name), pos)
repr(b) # make sure repr() doesn't blow-up
d = b._asdict()
d_expected = dict(zip(names, range(n)))
self.assertEqual(d, d_expected)
b2 = b._replace(**dict([(names[1], 999),(names[-5], 42)]))
b2_expected = list(range(n))
b2_expected[1] = 999
b2_expected[-5] = 42
self.assertEqual(b2, tuple(b2_expected))
self.assertEqual(b._fields, tuple(names))
def test_pickle(self):
p = TestNT(x=10, y=20, z=30)
for module in (pickle,):
loads = getattr(module, 'loads')
dumps = getattr(module, 'dumps')
for protocol in range(-1, module.HIGHEST_PROTOCOL + 1):
q = loads(dumps(p, protocol))
self.assertEqual(p, q)
self.assertEqual(p._fields, q._fields)
self.assertNotIn(b'OrderedDict', dumps(p, protocol))
def test_copy(self):
p = TestNT(x=10, y=20, z=30)
for copier in copy.copy, copy.deepcopy:
q = copier(p)
self.assertEqual(p, q)
self.assertEqual(p._fields, q._fields)
def test_name_conflicts(self):
# Some names like "self", "cls", "tuple", "itemgetter", and "property"
# failed when used as field names. Test to make sure these now work.
T = namedtuple('T', 'itemgetter property self cls tuple')
t = T(1, 2, 3, 4, 5)
self.assertEqual(t, (1,2,3,4,5))
newt = t._replace(itemgetter=10, property=20, self=30, cls=40, tuple=50)
self.assertEqual(newt, (10,20,30,40,50))
# Broader test of all interesting names taken from the code, old
# template, and an example
words = {'Alias', 'At', 'AttributeError', 'Build', 'Bypass', 'Create',
'Encountered', 'Expected', 'Field', 'For', 'Got', 'Helper',
'IronPython', 'Jython', 'KeyError', 'Make', 'Modify', 'Note',
'OrderedDict', 'Point', 'Return', 'Returns', 'Type', 'TypeError',
'Used', 'Validate', 'ValueError', 'Variables', 'a', 'accessible', 'add',
'added', 'all', 'also', 'an', 'arg_list', 'args', 'arguments',
'automatically', 'be', 'build', 'builtins', 'but', 'by', 'cannot',
'class_namespace', 'classmethod', 'cls', 'collections', 'convert',
'copy', 'created', 'creation', 'd', 'debugging', 'defined', 'dict',
'dictionary', 'doc', 'docstring', 'docstrings', 'duplicate', 'effect',
'either', 'enumerate', 'environments', 'error', 'example', 'exec', 'f',
'f_globals', 'field', 'field_names', 'fields', 'formatted', 'frame',
'function', 'functions', 'generate', 'get', 'getter', 'got', 'greater',
'has', 'help', 'identifiers', 'index', 'indexable', 'instance',
'instantiate', 'interning', 'introspection', 'isidentifier',
'isinstance', 'itemgetter', 'iterable', 'join', 'keyword', 'keywords',
'kwds', 'len', 'like', 'list', 'map', 'maps', 'message', 'metadata',
'method', 'methods', 'module', 'module_name', 'must', 'name', 'named',
'namedtuple', 'namedtuple_', 'names', 'namespace', 'needs', 'new',
'nicely', 'num_fields', 'number', 'object', 'of', 'operator', 'option',
'p', 'particular', 'pickle', 'pickling', 'plain', 'pop', 'positional',
'property', 'r', 'regular', 'rename', 'replace', 'replacing', 'repr',
'repr_fmt', 'representation', 'result', 'reuse_itemgetter', 's', 'seen',
'self', 'sequence', 'set', 'side', 'specified', 'split', 'start',
'startswith', 'step', 'str', 'string', 'strings', 'subclass', 'sys',
'targets', 'than', 'the', 'their', 'this', 'to', 'tuple', 'tuple_new',
'type', 'typename', 'underscore', 'unexpected', 'unpack', 'up', 'use',
'used', 'user', 'valid', 'values', 'variable', 'verbose', 'where',
'which', 'work', 'x', 'y', 'z', 'zip'}
T = namedtuple('T', words)
# test __new__
values = tuple(range(len(words)))
t = T(*values)
self.assertEqual(t, values)
t = T(**dict(zip(T._fields, values)))
self.assertEqual(t, values)
# test _make
t = T._make(values)
self.assertEqual(t, values)
# exercise __repr__
repr(t)
# test _asdict
self.assertEqual(t._asdict(), dict(zip(T._fields, values)))
# test _replace
t = T._make(values)
newvalues = tuple(v*10 for v in values)
newt = t._replace(**dict(zip(T._fields, newvalues)))
self.assertEqual(newt, newvalues)
# test _fields
self.assertEqual(T._fields, tuple(words))
# test __getnewargs__
self.assertEqual(t.__getnewargs__(), values)
def test_repr(self):
A = namedtuple('A', 'x')
self.assertEqual(repr(A(1)), 'A(x=1)')
# repr should show the name of the subclass
class B(A):
pass
self.assertEqual(repr(B(1)), 'B(x=1)')
def test_keyword_only_arguments(self):
# See issue 25628
with self.assertRaises(TypeError):
NT = namedtuple('NT', ['x', 'y'], True)
NT = namedtuple('NT', ['abc', 'def'], rename=True)
self.assertEqual(NT._fields, ('abc', '_1'))
with self.assertRaises(TypeError):
NT = namedtuple('NT', ['abc', 'def'], False, True)
def test_namedtuple_subclass_issue_24931(self):
class Point(namedtuple('_Point', ['x', 'y'])):
pass
a = Point(3, 4)
self.assertEqual(a._asdict(), OrderedDict([('x', 3), ('y', 4)]))
a.w = 5
self.assertEqual(a.__dict__, {'w': 5})
@support.cpython_only
def test_field_descriptor(self):
Point = namedtuple('Point', 'x y')
p = Point(11, 22)
self.assertTrue(inspect.isdatadescriptor(Point.x))
self.assertEqual(Point.x.__get__(p), 11)
self.assertRaises(AttributeError, Point.x.__set__, p, 33)
self.assertRaises(AttributeError, Point.x.__delete__, p)
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
with self.subTest(proto=proto):
class NewPoint(tuple):
x = pickle.loads(pickle.dumps(Point.x, proto))
y = pickle.loads(pickle.dumps(Point.y, proto))
np = NewPoint([1, 2])
self.assertEqual(np.x, 1)
self.assertEqual(np.y, 2)
def test_new_builtins_issue_43102(self):
obj = namedtuple('C', ())
new_func = obj.__new__
self.assertEqual(new_func.__globals__['__builtins__'], {})
self.assertEqual(new_func.__builtins__, {})
def test_match_args(self):
Point = namedtuple('Point', 'x y')
self.assertEqual(Point.__match_args__, ('x', 'y'))
def test_non_generic_subscript(self):
# For backward compatibility, subscription works
# on arbitrary named tuple types.
Group = collections.namedtuple('Group', 'key group')
A = Group[int, list[int]]
self.assertEqual(A.__origin__, Group)
self.assertEqual(A.__parameters__, ())
self.assertEqual(A.__args__, (int, list[int]))
a = A(1, [2])
self.assertIs(type(a), Group)
self.assertEqual(a, (1, [2]))
################################################################################
### Abstract Base Classes
################################################################################
class ABCTestCase(unittest.TestCase):
def validate_abstract_methods(self, abc, *names):
methodstubs = dict.fromkeys(names, lambda s, *args: 0)
# everything should work will all required methods are present
C = type('C', (abc,), methodstubs)
C()
# instantiation should fail if a required method is missing
for name in names:
stubs = methodstubs.copy()
del stubs[name]
C = type('C', (abc,), stubs)
self.assertRaises(TypeError, C, name)
def validate_isinstance(self, abc, name):
stub = lambda s, *args: 0
C = type('C', (object,), {'__hash__': None})
setattr(C, name, stub)
self.assertIsInstance(C(), abc)
self.assertTrue(issubclass(C, abc))
C = type('C', (object,), {'__hash__': None})
self.assertNotIsInstance(C(), abc)
self.assertFalse(issubclass(C, abc))
def validate_comparison(self, instance):
ops = ['lt', 'gt', 'le', 'ge', 'ne', 'or', 'and', 'xor', 'sub']
operators = {}
for op in ops:
name = '__' + op + '__'
operators[name] = getattr(operator, name)
class Other:
def __init__(self):
self.right_side = False
def __eq__(self, other):
self.right_side = True
return True
__lt__ = __eq__
__gt__ = __eq__
__le__ = __eq__
__ge__ = __eq__
__ne__ = __eq__
__ror__ = __eq__
__rand__ = __eq__
__rxor__ = __eq__
__rsub__ = __eq__
for name, op in operators.items():
if not hasattr(instance, name):
continue
other = Other()
op(instance, other)
self.assertTrue(other.right_side,'Right side not called for %s.%s'
% (type(instance), name))
def _test_gen():
yield
class TestOneTrickPonyABCs(ABCTestCase):
def test_Awaitable(self):
def gen():
yield
@types.coroutine
def coro():
yield
async def new_coro():
pass
class Bar:
def __await__(self):
yield
class MinimalCoro(Coroutine):
def send(self, value):
return value
def throw(self, typ, val=None, tb=None):
super().throw(typ, val, tb)
def __await__(self):
yield
self.validate_abstract_methods(Awaitable, '__await__')
non_samples = [None, int(), gen(), object()]
for x in non_samples:
self.assertNotIsInstance(x, Awaitable)
self.assertFalse(issubclass(type(x), Awaitable), repr(type(x)))
samples = [Bar(), MinimalCoro()]
for x in samples:
self.assertIsInstance(x, Awaitable)
self.assertTrue(issubclass(type(x), Awaitable))
c = coro()
# Iterable coroutines (generators with CO_ITERABLE_COROUTINE
# flag don't have '__await__' method, hence can't be instances
# of Awaitable. Use inspect.isawaitable to detect them.
self.assertNotIsInstance(c, Awaitable)
c = new_coro()
self.assertIsInstance(c, Awaitable)
c.close() # avoid RuntimeWarning that coro() was not awaited
class CoroLike: pass
Coroutine.register(CoroLike)
self.assertTrue(isinstance(CoroLike(), Awaitable))
self.assertTrue(issubclass(CoroLike, Awaitable))
CoroLike = None
support.gc_collect() # Kill CoroLike to clean-up ABCMeta cache
def test_Coroutine(self):
def gen():
yield
@types.coroutine
def coro():
yield
async def new_coro():
pass
class Bar:
def __await__(self):
yield
class MinimalCoro(Coroutine):
def send(self, value):
return value
def throw(self, typ, val=None, tb=None):
super().throw(typ, val, tb)
def __await__(self):
yield
self.validate_abstract_methods(Coroutine, '__await__', 'send', 'throw')
non_samples = [None, int(), gen(), object(), Bar()]
for x in non_samples:
self.assertNotIsInstance(x, Coroutine)
self.assertFalse(issubclass(type(x), Coroutine), repr(type(x)))
samples = [MinimalCoro()]
for x in samples:
self.assertIsInstance(x, Awaitable)
self.assertTrue(issubclass(type(x), Awaitable))
c = coro()
# Iterable coroutines (generators with CO_ITERABLE_COROUTINE
# flag don't have '__await__' method, hence can't be instances
# of Coroutine. Use inspect.isawaitable to detect them.
self.assertNotIsInstance(c, Coroutine)
c = new_coro()
self.assertIsInstance(c, Coroutine)
c.close() # avoid RuntimeWarning that coro() was not awaited
class CoroLike:
def send(self, value):
pass
def throw(self, typ, val=None, tb=None):
pass
def close(self):
pass
def __await__(self):
pass
self.assertTrue(isinstance(CoroLike(), Coroutine))
self.assertTrue(issubclass(CoroLike, Coroutine))
class CoroLike:
def send(self, value):
pass
def close(self):
pass
def __await__(self):
pass
self.assertFalse(isinstance(CoroLike(), Coroutine))
self.assertFalse(issubclass(CoroLike, Coroutine))
def test_Hashable(self):
# Check some non-hashables
non_samples = [bytearray(), list(), set(), dict()]
for x in non_samples:
self.assertNotIsInstance(x, Hashable)
self.assertFalse(issubclass(type(x), Hashable), repr(type(x)))
# Check some hashables
samples = [None,
int(), float(), complex(),
str(),
tuple(), frozenset(),
int, list, object, type, bytes()
]
for x in samples:
self.assertIsInstance(x, Hashable)
self.assertTrue(issubclass(type(x), Hashable), repr(type(x)))
self.assertRaises(TypeError, Hashable)
# Check direct subclassing
class H(Hashable):
def __hash__(self):
return super().__hash__()
self.assertEqual(hash(H()), 0)
self.assertFalse(issubclass(int, H))
self.validate_abstract_methods(Hashable, '__hash__')
self.validate_isinstance(Hashable, '__hash__')
def test_AsyncIterable(self):
class AI:
def __aiter__(self):
return self
self.assertTrue(isinstance(AI(), AsyncIterable))
self.assertTrue(issubclass(AI, AsyncIterable))
# Check some non-iterables
non_samples = [None, object, []]
for x in non_samples:
self.assertNotIsInstance(x, AsyncIterable)
self.assertFalse(issubclass(type(x), AsyncIterable), repr(type(x)))
self.validate_abstract_methods(AsyncIterable, '__aiter__')
self.validate_isinstance(AsyncIterable, '__aiter__')
def test_AsyncIterator(self):
class AI:
def __aiter__(self):
return self
async def __anext__(self):
raise StopAsyncIteration
self.assertTrue(isinstance(AI(), AsyncIterator))
self.assertTrue(issubclass(AI, AsyncIterator))
non_samples = [None, object, []]
# Check some non-iterables
for x in non_samples:
self.assertNotIsInstance(x, AsyncIterator)
self.assertFalse(issubclass(type(x), AsyncIterator), repr(type(x)))
# Similarly to regular iterators (see issue 10565)
class AnextOnly:
async def __anext__(self):
raise StopAsyncIteration
self.assertNotIsInstance(AnextOnly(), AsyncIterator)
self.validate_abstract_methods(AsyncIterator, '__anext__', '__aiter__')
def test_Iterable(self):
# Check some non-iterables
non_samples = [None, 42, 3.14, 1j]
for x in non_samples:
self.assertNotIsInstance(x, Iterable)
self.assertFalse(issubclass(type(x), Iterable), repr(type(x)))
# Check some iterables
samples = [bytes(), str(),
tuple(), list(), set(), frozenset(), dict(),
dict().keys(), dict().items(), dict().values(),
_test_gen(),
(x for x in []),
]
for x in samples:
self.assertIsInstance(x, Iterable)
self.assertTrue(issubclass(type(x), Iterable), repr(type(x)))
# Check direct subclassing
class I(Iterable):
def __iter__(self):
return super().__iter__()
self.assertEqual(list(I()), [])
self.assertFalse(issubclass(str, I))
self.validate_abstract_methods(Iterable, '__iter__')
self.validate_isinstance(Iterable, '__iter__')
# Check None blocking
class It:
def __iter__(self): return iter([])
class ItBlocked(It):
__iter__ = None
self.assertTrue(issubclass(It, Iterable))
self.assertTrue(isinstance(It(), Iterable))
self.assertFalse(issubclass(ItBlocked, Iterable))
self.assertFalse(isinstance(ItBlocked(), Iterable))
def test_Reversible(self):
# Check some non-reversibles
non_samples = [None, 42, 3.14, 1j, set(), frozenset()]
for x in non_samples:
self.assertNotIsInstance(x, Reversible)
self.assertFalse(issubclass(type(x), Reversible), repr(type(x)))
# Check some non-reversible iterables
non_reversibles = [_test_gen(), (x for x in []), iter([]), reversed([])]
for x in non_reversibles:
self.assertNotIsInstance(x, Reversible)
self.assertFalse(issubclass(type(x), Reversible), repr(type(x)))
# Check some reversible iterables
samples = [bytes(), str(), tuple(), list(), OrderedDict(),
OrderedDict().keys(), OrderedDict().items(),
OrderedDict().values(), Counter(), Counter().keys(),
Counter().items(), Counter().values(), dict(),
dict().keys(), dict().items(), dict().values()]
for x in samples:
self.assertIsInstance(x, Reversible)
self.assertTrue(issubclass(type(x), Reversible), repr(type(x)))
# Check also Mapping, MutableMapping, and Sequence
self.assertTrue(issubclass(Sequence, Reversible), repr(Sequence))
self.assertFalse(issubclass(Mapping, Reversible), repr(Mapping))
self.assertFalse(issubclass(MutableMapping, Reversible), repr(MutableMapping))
# Check direct subclassing
class R(Reversible):
def __iter__(self):
return iter(list())
def __reversed__(self):
return iter(list())
self.assertEqual(list(reversed(R())), [])
self.assertFalse(issubclass(float, R))
self.validate_abstract_methods(Reversible, '__reversed__', '__iter__')
# Check reversible non-iterable (which is not Reversible)
class RevNoIter:
def __reversed__(self): return reversed([])
class RevPlusIter(RevNoIter):
def __iter__(self): return iter([])
self.assertFalse(issubclass(RevNoIter, Reversible))
self.assertFalse(isinstance(RevNoIter(), Reversible))
self.assertTrue(issubclass(RevPlusIter, Reversible))
self.assertTrue(isinstance(RevPlusIter(), Reversible))
# Check None blocking
class Rev:
def __iter__(self): return iter([])
def __reversed__(self): return reversed([])
class RevItBlocked(Rev):
__iter__ = None
class RevRevBlocked(Rev):
__reversed__ = None
self.assertTrue(issubclass(Rev, Reversible))
self.assertTrue(isinstance(Rev(), Reversible))
self.assertFalse(issubclass(RevItBlocked, Reversible))
self.assertFalse(isinstance(RevItBlocked(), Reversible))
self.assertFalse(issubclass(RevRevBlocked, Reversible))
self.assertFalse(isinstance(RevRevBlocked(), Reversible))
def test_Collection(self):
# Check some non-collections
non_collections = [None, 42, 3.14, 1j, lambda x: 2*x]
for x in non_collections:
self.assertNotIsInstance(x, Collection)
self.assertFalse(issubclass(type(x), Collection), repr(type(x)))
# Check some non-collection iterables
non_col_iterables = [_test_gen(), iter(b''), iter(bytearray()),
(x for x in [])]
for x in non_col_iterables:
self.assertNotIsInstance(x, Collection)
self.assertFalse(issubclass(type(x), Collection), repr(type(x)))
# Check some collections
samples = [set(), frozenset(), dict(), bytes(), str(), tuple(),
list(), dict().keys(), dict().items(), dict().values()]
for x in samples:
self.assertIsInstance(x, Collection)
self.assertTrue(issubclass(type(x), Collection), repr(type(x)))
# Check also Mapping, MutableMapping, etc.
self.assertTrue(issubclass(Sequence, Collection), repr(Sequence))
self.assertTrue(issubclass(Mapping, Collection), repr(Mapping))
self.assertTrue(issubclass(MutableMapping, Collection),
repr(MutableMapping))
self.assertTrue(issubclass(Set, Collection), repr(Set))
self.assertTrue(issubclass(MutableSet, Collection), repr(MutableSet))
self.assertTrue(issubclass(Sequence, Collection), repr(MutableSet))
# Check direct subclassing
class Col(Collection):
def __iter__(self):
return iter(list())
def __len__(self):
return 0
def __contains__(self, item):
return False
class DerCol(Col): pass
self.assertEqual(list(iter(Col())), [])
self.assertFalse(issubclass(list, Col))
self.assertFalse(issubclass(set, Col))
self.assertFalse(issubclass(float, Col))
self.assertEqual(list(iter(DerCol())), [])
self.assertFalse(issubclass(list, DerCol))
self.assertFalse(issubclass(set, DerCol))
self.assertFalse(issubclass(float, DerCol))
self.validate_abstract_methods(Collection, '__len__', '__iter__',
'__contains__')
# Check sized container non-iterable (which is not Collection) etc.
class ColNoIter:
def __len__(self): return 0
def __contains__(self, item): return False
class ColNoSize:
def __iter__(self): return iter([])
def __contains__(self, item): return False
class ColNoCont:
def __iter__(self): return iter([])
def __len__(self): return 0
self.assertFalse(issubclass(ColNoIter, Collection))
self.assertFalse(isinstance(ColNoIter(), Collection))
self.assertFalse(issubclass(ColNoSize, Collection))
self.assertFalse(isinstance(ColNoSize(), Collection))
self.assertFalse(issubclass(ColNoCont, Collection))
self.assertFalse(isinstance(ColNoCont(), Collection))
# Check None blocking
class SizeBlock:
def __iter__(self): return iter([])
def __contains__(self): return False
__len__ = None
class IterBlock:
def __len__(self): return 0
def __contains__(self): return True
__iter__ = None
self.assertFalse(issubclass(SizeBlock, Collection))
self.assertFalse(isinstance(SizeBlock(), Collection))
self.assertFalse(issubclass(IterBlock, Collection))
self.assertFalse(isinstance(IterBlock(), Collection))
# Check None blocking in subclass
class ColImpl:
def __iter__(self):
return iter(list())
def __len__(self):
return 0
def __contains__(self, item):
return False
class NonCol(ColImpl):
__contains__ = None
self.assertFalse(issubclass(NonCol, Collection))
self.assertFalse(isinstance(NonCol(), Collection))
def test_Iterator(self):
non_samples = [None, 42, 3.14, 1j, b"", "", (), [], {}, set()]
for x in non_samples:
self.assertNotIsInstance(x, Iterator)
self.assertFalse(issubclass(type(x), Iterator), repr(type(x)))
samples = [iter(bytes()), iter(str()),
iter(tuple()), iter(list()), iter(dict()),
iter(set()), iter(frozenset()),
iter(dict().keys()), iter(dict().items()),
iter(dict().values()),
_test_gen(),
(x for x in []),
]
for x in samples:
self.assertIsInstance(x, Iterator)
self.assertTrue(issubclass(type(x), Iterator), repr(type(x)))
self.validate_abstract_methods(Iterator, '__next__', '__iter__')
# Issue 10565
class NextOnly:
def __next__(self):
yield 1
return
self.assertNotIsInstance(NextOnly(), Iterator)
def test_Generator(self):
class NonGen1:
def __iter__(self): return self
def __next__(self): return None
def close(self): pass
def throw(self, typ, val=None, tb=None): pass
class NonGen2:
def __iter__(self): return self
def __next__(self): return None
def close(self): pass
def send(self, value): return value
class NonGen3:
def close(self): pass
def send(self, value): return value
def throw(self, typ, val=None, tb=None): pass
non_samples = [
None, 42, 3.14, 1j, b"", "", (), [], {}, set(),
iter(()), iter([]), NonGen1(), NonGen2(), NonGen3()]
for x in non_samples:
self.assertNotIsInstance(x, Generator)
self.assertFalse(issubclass(type(x), Generator), repr(type(x)))
class Gen:
def __iter__(self): return self
def __next__(self): return None
def close(self): pass
def send(self, value): return value
def throw(self, typ, val=None, tb=None): pass
class MinimalGen(Generator):
def send(self, value):
return value
def throw(self, typ, val=None, tb=None):
super().throw(typ, val, tb)
def gen():
yield 1
samples = [gen(), (lambda: (yield))(), Gen(), MinimalGen()]
for x in samples:
self.assertIsInstance(x, Iterator)
self.assertIsInstance(x, Generator)
self.assertTrue(issubclass(type(x), Generator), repr(type(x)))
self.validate_abstract_methods(Generator, 'send', 'throw')
# mixin tests
mgen = MinimalGen()
self.assertIs(mgen, iter(mgen))
self.assertIs(mgen.send(None), next(mgen))
self.assertEqual(2, mgen.send(2))
self.assertIsNone(mgen.close())
self.assertRaises(ValueError, mgen.throw, ValueError)
self.assertRaisesRegex(ValueError, "^huhu$",
mgen.throw, ValueError, ValueError("huhu"))
self.assertRaises(StopIteration, mgen.throw, StopIteration())
class FailOnClose(Generator):
def send(self, value): return value
def throw(self, *args): raise ValueError
self.assertRaises(ValueError, FailOnClose().close)
class IgnoreGeneratorExit(Generator):
def send(self, value): return value
def throw(self, *args): pass
self.assertRaises(RuntimeError, IgnoreGeneratorExit().close)
def test_AsyncGenerator(self):
class NonAGen1:
def __aiter__(self): return self
def __anext__(self): return None
def aclose(self): pass
def athrow(self, typ, val=None, tb=None): pass
class NonAGen2:
def __aiter__(self): return self
def __anext__(self): return None
def aclose(self): pass
def asend(self, value): return value
class NonAGen3:
def aclose(self): pass
def asend(self, value): return value
def athrow(self, typ, val=None, tb=None): pass
non_samples = [
None, 42, 3.14, 1j, b"", "", (), [], {}, set(),
iter(()), iter([]), NonAGen1(), NonAGen2(), NonAGen3()]
for x in non_samples:
self.assertNotIsInstance(x, AsyncGenerator)
self.assertFalse(issubclass(type(x), AsyncGenerator), repr(type(x)))
class Gen:
def __aiter__(self): return self
async def __anext__(self): return None
async def aclose(self): pass
async def asend(self, value): return value
async def athrow(self, typ, val=None, tb=None): pass
class MinimalAGen(AsyncGenerator):
async def asend(self, value):
return value
async def athrow(self, typ, val=None, tb=None):
await super().athrow(typ, val, tb)
async def gen():
yield 1
samples = [gen(), Gen(), MinimalAGen()]
for x in samples:
self.assertIsInstance(x, AsyncIterator)
self.assertIsInstance(x, AsyncGenerator)
self.assertTrue(issubclass(type(x), AsyncGenerator), repr(type(x)))
self.validate_abstract_methods(AsyncGenerator, 'asend', 'athrow')
def run_async(coro):
result = None
while True:
try:
coro.send(None)
except StopIteration as ex:
result = ex.args[0] if ex.args else None
break
return result
# mixin tests
mgen = MinimalAGen()
self.assertIs(mgen, mgen.__aiter__())
self.assertIs(run_async(mgen.asend(None)), run_async(mgen.__anext__()))
self.assertEqual(2, run_async(mgen.asend(2)))
self.assertIsNone(run_async(mgen.aclose()))
with self.assertRaises(ValueError):
run_async(mgen.athrow(ValueError))
class FailOnClose(AsyncGenerator):
async def asend(self, value): return value
async def athrow(self, *args): raise ValueError
with self.assertRaises(ValueError):
run_async(FailOnClose().aclose())
class IgnoreGeneratorExit(AsyncGenerator):
async def asend(self, value): return value
async def athrow(self, *args): pass
with self.assertRaises(RuntimeError):
run_async(IgnoreGeneratorExit().aclose())
def test_Sized(self):
non_samples = [None, 42, 3.14, 1j,
_test_gen(),
(x for x in []),
]
for x in non_samples:
self.assertNotIsInstance(x, Sized)
self.assertFalse(issubclass(type(x), Sized), repr(type(x)))
samples = [bytes(), str(),
tuple(), list(), set(), frozenset(), dict(),
dict().keys(), dict().items(), dict().values(),
]
for x in samples:
self.assertIsInstance(x, Sized)
self.assertTrue(issubclass(type(x), Sized), repr(type(x)))
self.validate_abstract_methods(Sized, '__len__')
self.validate_isinstance(Sized, '__len__')
def test_Container(self):
non_samples = [None, 42, 3.14, 1j,
_test_gen(),
(x for x in []),
]
for x in non_samples:
self.assertNotIsInstance(x, Container)
self.assertFalse(issubclass(type(x), Container), repr(type(x)))
samples = [bytes(), str(),
tuple(), list(), set(), frozenset(), dict(),
dict().keys(), dict().items(),
]
for x in samples:
self.assertIsInstance(x, Container)
self.assertTrue(issubclass(type(x), Container), repr(type(x)))
self.validate_abstract_methods(Container, '__contains__')
self.validate_isinstance(Container, '__contains__')
def test_Callable(self):
non_samples = [None, 42, 3.14, 1j,
"", b"", (), [], {}, set(),
_test_gen(),
(x for x in []),
]
for x in non_samples:
self.assertNotIsInstance(x, Callable)
self.assertFalse(issubclass(type(x), Callable), repr(type(x)))
samples = [lambda: None,
type, int, object,
len,
list.append, [].append,
]
for x in samples:
self.assertIsInstance(x, Callable)
self.assertTrue(issubclass(type(x), Callable), repr(type(x)))
self.validate_abstract_methods(Callable, '__call__')
self.validate_isinstance(Callable, '__call__')
def test_direct_subclassing(self):
for B in Hashable, Iterable, Iterator, Reversible, Sized, Container, Callable:
class C(B):
pass
self.assertTrue(issubclass(C, B))
self.assertFalse(issubclass(int, C))
def test_registration(self):
for B in Hashable, Iterable, Iterator, Reversible, Sized, Container, Callable:
class C:
__hash__ = None # Make sure it isn't hashable by default
self.assertFalse(issubclass(C, B), B.__name__)
B.register(C)
self.assertTrue(issubclass(C, B))
class WithSet(MutableSet):
def __init__(self, it=()):
self.data = set(it)
def __len__(self):
return len(self.data)
def __iter__(self):
return iter(self.data)
def __contains__(self, item):
return item in self.data
def add(self, item):
self.data.add(item)
def discard(self, item):
self.data.discard(item)
class TestCollectionABCs(ABCTestCase):
# XXX For now, we only test some virtual inheritance properties.
# We should also test the proper behavior of the collection ABCs
# as real base classes or mix-in classes.
def test_Set(self):
for sample in [set, frozenset]:
self.assertIsInstance(sample(), Set)
self.assertTrue(issubclass(sample, Set))
self.validate_abstract_methods(Set, '__contains__', '__iter__', '__len__')
class MySet(Set):
def __contains__(self, x):
return False
def __len__(self):
return 0
def __iter__(self):
return iter([])
self.validate_comparison(MySet())
def test_hash_Set(self):
class OneTwoThreeSet(Set):
def __init__(self):
self.contents = [1, 2, 3]
def __contains__(self, x):
return x in self.contents
def __len__(self):
return len(self.contents)
def __iter__(self):
return iter(self.contents)
def __hash__(self):
return self._hash()
a, b = OneTwoThreeSet(), OneTwoThreeSet()
self.assertTrue(hash(a) == hash(b))
def test_isdisjoint_Set(self):
class MySet(Set):
def __init__(self, itr):
self.contents = itr
def __contains__(self, x):
return x in self.contents
def __iter__(self):
return iter(self.contents)
def __len__(self):
return len([x for x in self.contents])
s1 = MySet((1, 2, 3))
s2 = MySet((4, 5, 6))
s3 = MySet((1, 5, 6))
self.assertTrue(s1.isdisjoint(s2))
self.assertFalse(s1.isdisjoint(s3))
def test_equality_Set(self):
class MySet(Set):
def __init__(self, itr):
self.contents = itr
def __contains__(self, x):
return x in self.contents
def __iter__(self):
return iter(self.contents)
def __len__(self):
return len([x for x in self.contents])
s1 = MySet((1,))
s2 = MySet((1, 2))
s3 = MySet((3, 4))
s4 = MySet((3, 4))
self.assertTrue(s2 > s1)
self.assertTrue(s1 < s2)
self.assertFalse(s2 <= s1)
self.assertFalse(s2 <= s3)
self.assertFalse(s1 >= s2)
self.assertEqual(s3, s4)
self.assertNotEqual(s2, s3)
def test_arithmetic_Set(self):
class MySet(Set):
def __init__(self, itr):
self.contents = itr
def __contains__(self, x):
return x in self.contents
def __iter__(self):
return iter(self.contents)
def __len__(self):
return len([x for x in self.contents])
s1 = MySet((1, 2, 3))
s2 = MySet((3, 4, 5))
s3 = s1 & s2
self.assertEqual(s3, MySet((3,)))
def test_MutableSet(self):
self.assertIsInstance(set(), MutableSet)
self.assertTrue(issubclass(set, MutableSet))
self.assertNotIsInstance(frozenset(), MutableSet)
self.assertFalse(issubclass(frozenset, MutableSet))
self.validate_abstract_methods(MutableSet, '__contains__', '__iter__', '__len__',
'add', 'discard')
def test_issue_5647(self):
# MutableSet.__iand__ mutated the set during iteration
s = WithSet('abcd')
s &= WithSet('cdef') # This used to fail
self.assertEqual(set(s), set('cd'))
def test_issue_4920(self):
# MutableSet.pop() method did not work
class MySet(MutableSet):
__slots__=['__s']
def __init__(self,items=None):
if items is None:
items=[]
self.__s=set(items)
def __contains__(self,v):
return v in self.__s
def __iter__(self):
return iter(self.__s)
def __len__(self):
return len(self.__s)
def add(self,v):
result=v not in self.__s
self.__s.add(v)
return result
def discard(self,v):
result=v in self.__s
self.__s.discard(v)
return result
def __repr__(self):
return "MySet(%s)" % repr(list(self))
items = [5,43,2,1]
s = MySet(items)
r = s.pop()
self.assertEqual(len(s), len(items) - 1)
self.assertNotIn(r, s)
self.assertIn(r, items)
def test_issue8750(self):
empty = WithSet()
full = WithSet(range(10))
s = WithSet(full)
s -= s
self.assertEqual(s, empty)
s = WithSet(full)
s ^= s
self.assertEqual(s, empty)
s = WithSet(full)
s &= s
self.assertEqual(s, full)
s |= s
self.assertEqual(s, full)
def test_issue16373(self):
# Recursion error comparing comparable and noncomparable
# Set instances
class MyComparableSet(Set):
def __contains__(self, x):
return False
def __len__(self):
return 0
def __iter__(self):
return iter([])
class MyNonComparableSet(Set):
def __contains__(self, x):
return False
def __len__(self):
return 0
def __iter__(self):
return iter([])
def __le__(self, x):
return NotImplemented
def __lt__(self, x):
return NotImplemented
cs = MyComparableSet()
ncs = MyNonComparableSet()
self.assertFalse(ncs < cs)
self.assertTrue(ncs <= cs)
self.assertFalse(ncs > cs)
self.assertTrue(ncs >= cs)
def test_issue26915(self):
# Container membership test should check identity first
class CustomSequence(Sequence):
def __init__(self, seq):
self._seq = seq
def __getitem__(self, index):
return self._seq[index]
def __len__(self):
return len(self._seq)
nan = float('nan')
obj = support.NEVER_EQ
seq = CustomSequence([nan, obj, nan])
containers = [
seq,
ItemsView({1: nan, 2: obj}),
KeysView({1: nan, 2: obj}),
ValuesView({1: nan, 2: obj})
]
for container in containers:
for elem in container:
self.assertIn(elem, container)
self.assertEqual(seq.index(nan), 0)
self.assertEqual(seq.index(obj), 1)
self.assertEqual(seq.count(nan), 2)
self.assertEqual(seq.count(obj), 1)
def assertSameSet(self, s1, s2):
# coerce both to a real set then check equality
self.assertSetEqual(set(s1), set(s2))
def test_Set_from_iterable(self):
"""Verify _from_iterable overridden to an instance method works."""
class SetUsingInstanceFromIterable(MutableSet):
def __init__(self, values, created_by):
if not created_by:
raise ValueError('created_by must be specified')
self.created_by = created_by
self._values = set(values)
def _from_iterable(self, values):
return type(self)(values, 'from_iterable')
def __contains__(self, value):
return value in self._values
def __iter__(self):
yield from self._values
def __len__(self):
return len(self._values)
def add(self, value):
self._values.add(value)
def discard(self, value):
self._values.discard(value)
impl = SetUsingInstanceFromIterable([1, 2, 3], 'test')
actual = impl - {1}
self.assertIsInstance(actual, SetUsingInstanceFromIterable)
self.assertEqual('from_iterable', actual.created_by)
self.assertEqual({2, 3}, actual)
actual = impl | {4}
self.assertIsInstance(actual, SetUsingInstanceFromIterable)
self.assertEqual('from_iterable', actual.created_by)
self.assertEqual({1, 2, 3, 4}, actual)
actual = impl & {2}
self.assertIsInstance(actual, SetUsingInstanceFromIterable)
self.assertEqual('from_iterable', actual.created_by)
self.assertEqual({2}, actual)
actual = impl ^ {3, 4}
self.assertIsInstance(actual, SetUsingInstanceFromIterable)
self.assertEqual('from_iterable', actual.created_by)
self.assertEqual({1, 2, 4}, actual)
# NOTE: ixor'ing with a list is important here: internally, __ixor__
# only calls _from_iterable if the other value isn't already a Set.
impl ^= [3, 4]
self.assertIsInstance(impl, SetUsingInstanceFromIterable)
self.assertEqual('test', impl.created_by)
self.assertEqual({1, 2, 4}, impl)
def test_Set_interoperability_with_real_sets(self):
# Issue: 8743
class ListSet(Set):
def __init__(self, elements=()):
self.data = []
for elem in elements:
if elem not in self.data:
self.data.append(elem)
def __contains__(self, elem):
return elem in self.data
def __iter__(self):
return iter(self.data)
def __len__(self):
return len(self.data)
def __repr__(self):
return 'Set({!r})'.format(self.data)
r1 = set('abc')
r2 = set('bcd')
r3 = set('abcde')
f1 = ListSet('abc')
f2 = ListSet('bcd')
f3 = ListSet('abcde')
l1 = list('abccba')
l2 = list('bcddcb')
l3 = list('abcdeedcba')
target = r1 & r2
self.assertSameSet(f1 & f2, target)
self.assertSameSet(f1 & r2, target)
self.assertSameSet(r2 & f1, target)
self.assertSameSet(f1 & l2, target)
target = r1 | r2
self.assertSameSet(f1 | f2, target)
self.assertSameSet(f1 | r2, target)
self.assertSameSet(r2 | f1, target)
self.assertSameSet(f1 | l2, target)
fwd_target = r1 - r2
rev_target = r2 - r1
self.assertSameSet(f1 - f2, fwd_target)
self.assertSameSet(f2 - f1, rev_target)
self.assertSameSet(f1 - r2, fwd_target)
self.assertSameSet(f2 - r1, rev_target)
self.assertSameSet(r1 - f2, fwd_target)
self.assertSameSet(r2 - f1, rev_target)
self.assertSameSet(f1 - l2, fwd_target)
self.assertSameSet(f2 - l1, rev_target)
target = r1 ^ r2
self.assertSameSet(f1 ^ f2, target)
self.assertSameSet(f1 ^ r2, target)
self.assertSameSet(r2 ^ f1, target)
self.assertSameSet(f1 ^ l2, target)
# Don't change the following to use assertLess or other
# "more specific" unittest assertions. The current
# assertTrue/assertFalse style makes the pattern of test
# case combinations clear and allows us to know for sure
# the exact operator being invoked.
# proper subset
self.assertTrue(f1 < f3)
self.assertFalse(f1 < f1)
self.assertFalse(f1 < f2)
self.assertTrue(r1 < f3)
self.assertFalse(r1 < f1)
self.assertFalse(r1 < f2)
self.assertTrue(r1 < r3)
self.assertFalse(r1 < r1)
self.assertFalse(r1 < r2)
with self.assertRaises(TypeError):
f1 < l3
with self.assertRaises(TypeError):
f1 < l1
with self.assertRaises(TypeError):
f1 < l2
# any subset
self.assertTrue(f1 <= f3)
self.assertTrue(f1 <= f1)
self.assertFalse(f1 <= f2)
self.assertTrue(r1 <= f3)
self.assertTrue(r1 <= f1)
self.assertFalse(r1 <= f2)
self.assertTrue(r1 <= r3)
self.assertTrue(r1 <= r1)
self.assertFalse(r1 <= r2)
with self.assertRaises(TypeError):
f1 <= l3
with self.assertRaises(TypeError):
f1 <= l1
with self.assertRaises(TypeError):
f1 <= l2
# proper superset
self.assertTrue(f3 > f1)
self.assertFalse(f1 > f1)
self.assertFalse(f2 > f1)
self.assertTrue(r3 > r1)
self.assertFalse(f1 > r1)
self.assertFalse(f2 > r1)
self.assertTrue(r3 > r1)
self.assertFalse(r1 > r1)
self.assertFalse(r2 > r1)
with self.assertRaises(TypeError):
f1 > l3
with self.assertRaises(TypeError):
f1 > l1
with self.assertRaises(TypeError):
f1 > l2
# any superset
self.assertTrue(f3 >= f1)
self.assertTrue(f1 >= f1)
self.assertFalse(f2 >= f1)
self.assertTrue(r3 >= r1)
self.assertTrue(f1 >= r1)
self.assertFalse(f2 >= r1)
self.assertTrue(r3 >= r1)
self.assertTrue(r1 >= r1)
self.assertFalse(r2 >= r1)
with self.assertRaises(TypeError):
f1 >= l3
with self.assertRaises(TypeError):
f1 >=l1
with self.assertRaises(TypeError):
f1 >= l2
# equality
self.assertTrue(f1 == f1)
self.assertTrue(r1 == f1)
self.assertTrue(f1 == r1)
self.assertFalse(f1 == f3)
self.assertFalse(r1 == f3)
self.assertFalse(f1 == r3)
self.assertFalse(f1 == l3)
self.assertFalse(f1 == l1)
self.assertFalse(f1 == l2)
# inequality
self.assertFalse(f1 != f1)
self.assertFalse(r1 != f1)
self.assertFalse(f1 != r1)
self.assertTrue(f1 != f3)
self.assertTrue(r1 != f3)
self.assertTrue(f1 != r3)
self.assertTrue(f1 != l3)
self.assertTrue(f1 != l1)
self.assertTrue(f1 != l2)
def test_Set_hash_matches_frozenset(self):
sets = [
{}, {1}, {None}, {-1}, {0.0}, {"abc"}, {1, 2, 3},
{10**100, 10**101}, {"a", "b", "ab", ""}, {False, True},
{object(), object(), object()}, {float("nan")}, {frozenset()},
{*range(1000)}, {*range(1000)} - {100, 200, 300},
{*range(sys.maxsize - 10, sys.maxsize + 10)},
]
for s in sets:
fs = frozenset(s)
self.assertEqual(hash(fs), Set._hash(fs), msg=s)
def test_Mapping(self):
for sample in [dict]:
self.assertIsInstance(sample(), Mapping)
self.assertTrue(issubclass(sample, Mapping))
self.validate_abstract_methods(Mapping, '__contains__', '__iter__', '__len__',
'__getitem__')
class MyMapping(Mapping):
def __len__(self):
return 0
def __getitem__(self, i):
raise IndexError
def __iter__(self):
return iter(())
self.validate_comparison(MyMapping())
self.assertRaises(TypeError, reversed, MyMapping())
def test_MutableMapping(self):
for sample in [dict]:
self.assertIsInstance(sample(), MutableMapping)
self.assertTrue(issubclass(sample, MutableMapping))
self.validate_abstract_methods(MutableMapping, '__contains__', '__iter__', '__len__',
'__getitem__', '__setitem__', '__delitem__')
def test_MutableMapping_subclass(self):
# Test issue 9214
mymap = UserDict()
mymap['red'] = 5
self.assertIsInstance(mymap.keys(), Set)
self.assertIsInstance(mymap.keys(), KeysView)
self.assertIsInstance(mymap.values(), Collection)
self.assertIsInstance(mymap.values(), ValuesView)
self.assertIsInstance(mymap.items(), Set)
self.assertIsInstance(mymap.items(), ItemsView)
mymap = UserDict()
mymap['red'] = 5
z = mymap.keys() | {'orange'}
self.assertIsInstance(z, set)
list(z)
mymap['blue'] = 7 # Shouldn't affect 'z'
self.assertEqual(sorted(z), ['orange', 'red'])
mymap = UserDict()
mymap['red'] = 5
z = mymap.items() | {('orange', 3)}
self.assertIsInstance(z, set)
list(z)
mymap['blue'] = 7 # Shouldn't affect 'z'
self.assertEqual(z, {('orange', 3), ('red', 5)})
def test_Sequence(self):
for sample in [tuple, list, bytes, str]:
self.assertIsInstance(sample(), Sequence)
self.assertTrue(issubclass(sample, Sequence))
self.assertIsInstance(range(10), Sequence)
self.assertTrue(issubclass(range, Sequence))
self.assertIsInstance(memoryview(b""), Sequence)
self.assertTrue(issubclass(memoryview, Sequence))
self.assertTrue(issubclass(str, Sequence))
self.validate_abstract_methods(Sequence, '__contains__', '__iter__', '__len__',
'__getitem__')
def test_Sequence_mixins(self):
class SequenceSubclass(Sequence):
def __init__(self, seq=()):
self.seq = seq
def __getitem__(self, index):
return self.seq[index]
def __len__(self):
return len(self.seq)
# Compare Sequence.index() behavior to (list|str).index() behavior
def assert_index_same(seq1, seq2, index_args):
try:
expected = seq1.index(*index_args)
except ValueError:
with self.assertRaises(ValueError):
seq2.index(*index_args)
else:
actual = seq2.index(*index_args)
self.assertEqual(
actual, expected, '%r.index%s' % (seq1, index_args))
for ty in list, str:
nativeseq = ty('abracadabra')
indexes = [-10000, -9999] + list(range(-3, len(nativeseq) + 3))
seqseq = SequenceSubclass(nativeseq)
for letter in set(nativeseq) | {'z'}:
assert_index_same(nativeseq, seqseq, (letter,))
for start in range(-3, len(nativeseq) + 3):
assert_index_same(nativeseq, seqseq, (letter, start))
for stop in range(-3, len(nativeseq) + 3):
assert_index_same(
nativeseq, seqseq, (letter, start, stop))
def test_Buffer(self):
for sample in [bytes, bytearray, memoryview]:
self.assertIsInstance(sample(b"x"), Buffer)
self.assertTrue(issubclass(sample, Buffer))
for sample in [str, list, tuple]:
self.assertNotIsInstance(sample(), Buffer)
self.assertFalse(issubclass(sample, Buffer))
self.validate_abstract_methods(Buffer, '__buffer__')
def test_MutableSequence(self):
for sample in [tuple, str, bytes]:
self.assertNotIsInstance(sample(), MutableSequence)
self.assertFalse(issubclass(sample, MutableSequence))
for sample in [list, bytearray, deque]:
self.assertIsInstance(sample(), MutableSequence)
self.assertTrue(issubclass(sample, MutableSequence))
self.assertTrue(issubclass(array.array, MutableSequence))
self.assertFalse(issubclass(str, MutableSequence))
self.validate_abstract_methods(MutableSequence, '__contains__', '__iter__',
'__len__', '__getitem__', '__setitem__', '__delitem__', 'insert')
def test_MutableSequence_mixins(self):
# Test the mixins of MutableSequence by creating a minimal concrete
# class inherited from it.
class MutableSequenceSubclass(MutableSequence):
def __init__(self):
self.lst = []
def __setitem__(self, index, value):
self.lst[index] = value
def __getitem__(self, index):
return self.lst[index]
def __len__(self):
return len(self.lst)
def __delitem__(self, index):
del self.lst[index]
def insert(self, index, value):
self.lst.insert(index, value)
mss = MutableSequenceSubclass()
mss.append(0)
mss.extend((1, 2, 3, 4))
self.assertEqual(len(mss), 5)
self.assertEqual(mss[3], 3)
mss.reverse()
self.assertEqual(mss[3], 1)
mss.pop()
self.assertEqual(len(mss), 4)
mss.remove(3)
self.assertEqual(len(mss), 3)
mss += (10, 20, 30)
self.assertEqual(len(mss), 6)
self.assertEqual(mss[-1], 30)
mss.clear()
self.assertEqual(len(mss), 0)
# issue 34427
# extending self should not cause infinite loop
items = 'ABCD'
mss2 = MutableSequenceSubclass()
mss2.extend(items + items)
mss.clear()
mss.extend(items)
mss.extend(mss)
self.assertEqual(len(mss), len(mss2))
self.assertEqual(list(mss), list(mss2))
def test_illegal_patma_flags(self):
with self.assertRaises(TypeError):
class Both(Collection):
__abc_tpflags__ = (Sequence.__flags__ | Mapping.__flags__)
################################################################################
### Counter
################################################################################
class CounterSubclassWithSetItem(Counter):
# Test a counter subclass that overrides __setitem__
def __init__(self, *args, **kwds):
self.called = False
Counter.__init__(self, *args, **kwds)
def __setitem__(self, key, value):
self.called = True
Counter.__setitem__(self, key, value)
class CounterSubclassWithGet(Counter):
# Test a counter subclass that overrides get()
def __init__(self, *args, **kwds):
self.called = False
Counter.__init__(self, *args, **kwds)
def get(self, key, default):
self.called = True
return Counter.get(self, key, default)
class TestCounter(unittest.TestCase):
def test_basics(self):
c = Counter('abcaba')
self.assertEqual(c, Counter({'a':3 , 'b': 2, 'c': 1}))
self.assertEqual(c, Counter(a=3, b=2, c=1))
self.assertIsInstance(c, dict)
self.assertIsInstance(c, Mapping)
self.assertTrue(issubclass(Counter, dict))
self.assertTrue(issubclass(Counter, Mapping))
self.assertEqual(len(c), 3)
self.assertEqual(sum(c.values()), 6)
self.assertEqual(list(c.values()), [3, 2, 1])
self.assertEqual(list(c.keys()), ['a', 'b', 'c'])
self.assertEqual(list(c), ['a', 'b', 'c'])
self.assertEqual(list(c.items()),
[('a', 3), ('b', 2), ('c', 1)])
self.assertEqual(c['b'], 2)
self.assertEqual(c['z'], 0)
self.assertEqual(c.__contains__('c'), True)
self.assertEqual(c.__contains__('z'), False)
self.assertEqual(c.get('b', 10), 2)
self.assertEqual(c.get('z', 10), 10)
self.assertEqual(c, dict(a=3, b=2, c=1))
self.assertEqual(repr(c), "Counter({'a': 3, 'b': 2, 'c': 1})")
self.assertEqual(c.most_common(), [('a', 3), ('b', 2), ('c', 1)])
for i in range(5):
self.assertEqual(c.most_common(i),
[('a', 3), ('b', 2), ('c', 1)][:i])
self.assertEqual(''.join(c.elements()), 'aaabbc')
c['a'] += 1 # increment an existing value
c['b'] -= 2 # sub existing value to zero
del c['c'] # remove an entry
del c['c'] # make sure that del doesn't raise KeyError
c['d'] -= 2 # sub from a missing value
c['e'] = -5 # directly assign a missing value
c['f'] += 4 # add to a missing value
self.assertEqual(c, dict(a=4, b=0, d=-2, e=-5, f=4))
self.assertEqual(''.join(c.elements()), 'aaaaffff')
self.assertEqual(c.pop('f'), 4)
self.assertNotIn('f', c)
for i in range(3):
elem, cnt = c.popitem()
self.assertNotIn(elem, c)
c.clear()
self.assertEqual(c, {})
self.assertEqual(repr(c), 'Counter()')
self.assertRaises(NotImplementedError, Counter.fromkeys, 'abc')
self.assertRaises(TypeError, hash, c)
c.update(dict(a=5, b=3))
c.update(c=1)
c.update(Counter('a' * 50 + 'b' * 30))
c.update() # test case with no args
c.__init__('a' * 500 + 'b' * 300)
c.__init__('cdc')
c.__init__()
self.assertEqual(c, dict(a=555, b=333, c=3, d=1))
self.assertEqual(c.setdefault('d', 5), 1)
self.assertEqual(c['d'], 1)
self.assertEqual(c.setdefault('e', 5), 5)
self.assertEqual(c['e'], 5)
def test_init(self):
self.assertEqual(list(Counter(self=42).items()), [('self', 42)])
self.assertEqual(list(Counter(iterable=42).items()), [('iterable', 42)])
self.assertEqual(list(Counter(iterable=None).items()), [('iterable', None)])
self.assertRaises(TypeError, Counter, 42)
self.assertRaises(TypeError, Counter, (), ())
self.assertRaises(TypeError, Counter.__init__)
def test_total(self):
c = Counter(a=10, b=5, c=0)
self.assertEqual(c.total(), 15)
def test_order_preservation(self):
# Input order dictates items() order
self.assertEqual(list(Counter('abracadabra').items()),
[('a', 5), ('b', 2), ('r', 2), ('c', 1), ('d', 1)])
# letters with same count: ^----------^ ^---------^
# Verify retention of order even when all counts are equal
self.assertEqual(list(Counter('xyzpdqqdpzyx').items()),
[('x', 2), ('y', 2), ('z', 2), ('p', 2), ('d', 2), ('q', 2)])
# Input order dictates elements() order
self.assertEqual(list(Counter('abracadabra simsalabim').elements()),
['a', 'a', 'a', 'a', 'a', 'a', 'a', 'b', 'b', 'b','r',
'r', 'c', 'd', ' ', 's', 's', 'i', 'i', 'm', 'm', 'l'])
# Math operations order first by the order encountered in the left
# operand and then by the order encountered in the right operand.
ps = 'aaabbcdddeefggghhijjjkkl'
qs = 'abbcccdeefffhkkllllmmnno'
order = {letter: i for i, letter in enumerate(dict.fromkeys(ps + qs))}
def correctly_ordered(seq):
'Return true if the letters occur in the expected order'
positions = [order[letter] for letter in seq]
return positions == sorted(positions)
p, q = Counter(ps), Counter(qs)
self.assertTrue(correctly_ordered(+p))
self.assertTrue(correctly_ordered(-p))
self.assertTrue(correctly_ordered(p + q))
self.assertTrue(correctly_ordered(p - q))
self.assertTrue(correctly_ordered(p | q))
self.assertTrue(correctly_ordered(p & q))
p, q = Counter(ps), Counter(qs)
p += q
self.assertTrue(correctly_ordered(p))
p, q = Counter(ps), Counter(qs)
p -= q
self.assertTrue(correctly_ordered(p))
p, q = Counter(ps), Counter(qs)
p |= q
self.assertTrue(correctly_ordered(p))
p, q = Counter(ps), Counter(qs)
p &= q
self.assertTrue(correctly_ordered(p))
p, q = Counter(ps), Counter(qs)
p.update(q)
self.assertTrue(correctly_ordered(p))
p, q = Counter(ps), Counter(qs)
p.subtract(q)
self.assertTrue(correctly_ordered(p))
def test_update(self):
c = Counter()
c.update(self=42)
self.assertEqual(list(c.items()), [('self', 42)])
c = Counter()
c.update(iterable=42)
self.assertEqual(list(c.items()), [('iterable', 42)])
c = Counter()
c.update(iterable=None)
self.assertEqual(list(c.items()), [('iterable', None)])
self.assertRaises(TypeError, Counter().update, 42)
self.assertRaises(TypeError, Counter().update, {}, {})
self.assertRaises(TypeError, Counter.update)
def test_copying(self):
# Check that counters are copyable, deepcopyable, picklable, and
#have a repr/eval round-trip
words = Counter('which witch had which witches wrist watch'.split())
def check(dup):
msg = "\ncopy: %s\nwords: %s" % (dup, words)
self.assertIsNot(dup, words, msg)
self.assertEqual(dup, words)
check(words.copy())
check(copy.copy(words))
check(copy.deepcopy(words))
for proto in range(pickle.HIGHEST_PROTOCOL + 1):
with self.subTest(proto=proto):
check(pickle.loads(pickle.dumps(words, proto)))
check(eval(repr(words)))
update_test = Counter()
update_test.update(words)
check(update_test)
check(Counter(words))
def test_copy_subclass(self):
class MyCounter(Counter):
pass
c = MyCounter('slartibartfast')
d = c.copy()
self.assertEqual(d, c)
self.assertEqual(len(d), len(c))
self.assertEqual(type(d), type(c))
def test_conversions(self):
# Convert to: set, list, dict
s = 'she sells sea shells by the sea shore'
self.assertEqual(sorted(Counter(s).elements()), sorted(s))
self.assertEqual(sorted(Counter(s)), sorted(set(s)))
self.assertEqual(dict(Counter(s)), dict(Counter(s).items()))
self.assertEqual(set(Counter(s)), set(s))
def test_invariant_for_the_in_operator(self):
c = Counter(a=10, b=-2, c=0)
for elem in c:
self.assertTrue(elem in c)
self.assertIn(elem, c)
def test_multiset_operations(self):
# Verify that adding a zero counter will strip zeros and negatives
c = Counter(a=10, b=-2, c=0) + Counter()
self.assertEqual(dict(c), dict(a=10))
elements = 'abcd'
for i in range(1000):
# test random pairs of multisets
p = Counter(dict((elem, randrange(-2,4)) for elem in elements))
p.update(e=1, f=-1, g=0)
q = Counter(dict((elem, randrange(-2,4)) for elem in elements))
q.update(h=1, i=-1, j=0)
for counterop, numberop in [
(Counter.__add__, lambda x, y: max(0, x+y)),
(Counter.__sub__, lambda x, y: max(0, x-y)),
(Counter.__or__, lambda x, y: max(0,x,y)),
(Counter.__and__, lambda x, y: max(0, min(x,y))),
]:
result = counterop(p, q)
for x in elements:
self.assertEqual(numberop(p[x], q[x]), result[x],
(counterop, x, p, q))
# verify that results exclude non-positive counts
self.assertTrue(x>0 for x in result.values())
elements = 'abcdef'
for i in range(100):
# verify that random multisets with no repeats are exactly like sets
p = Counter(dict((elem, randrange(0, 2)) for elem in elements))
q = Counter(dict((elem, randrange(0, 2)) for elem in elements))
for counterop, setop in [
(Counter.__sub__, set.__sub__),
(Counter.__or__, set.__or__),
(Counter.__and__, set.__and__),
]:
counter_result = counterop(p, q)
set_result = setop(set(p.elements()), set(q.elements()))
self.assertEqual(counter_result, dict.fromkeys(set_result, 1))
def test_inplace_operations(self):
elements = 'abcd'
for i in range(1000):
# test random pairs of multisets
p = Counter(dict((elem, randrange(-2,4)) for elem in elements))
p.update(e=1, f=-1, g=0)
q = Counter(dict((elem, randrange(-2,4)) for elem in elements))
q.update(h=1, i=-1, j=0)
for inplace_op, regular_op in [
(Counter.__iadd__, Counter.__add__),
(Counter.__isub__, Counter.__sub__),
(Counter.__ior__, Counter.__or__),
(Counter.__iand__, Counter.__and__),
]:
c = p.copy()
c_id = id(c)
regular_result = regular_op(c, q)
inplace_result = inplace_op(c, q)
self.assertEqual(inplace_result, regular_result)
self.assertEqual(id(inplace_result), c_id)
def test_subtract(self):
c = Counter(a=-5, b=0, c=5, d=10, e=15,g=40)
c.subtract(a=1, b=2, c=-3, d=10, e=20, f=30, h=-50)
self.assertEqual(c, Counter(a=-6, b=-2, c=8, d=0, e=-5, f=-30, g=40, h=50))
c = Counter(a=-5, b=0, c=5, d=10, e=15,g=40)
c.subtract(Counter(a=1, b=2, c=-3, d=10, e=20, f=30, h=-50))
self.assertEqual(c, Counter(a=-6, b=-2, c=8, d=0, e=-5, f=-30, g=40, h=50))
c = Counter('aaabbcd')
c.subtract('aaaabbcce')
self.assertEqual(c, Counter(a=-1, b=0, c=-1, d=1, e=-1))
c = Counter()
c.subtract(self=42)
self.assertEqual(list(c.items()), [('self', -42)])
c = Counter()
c.subtract(iterable=42)
self.assertEqual(list(c.items()), [('iterable', -42)])
self.assertRaises(TypeError, Counter().subtract, 42)
self.assertRaises(TypeError, Counter().subtract, {}, {})
self.assertRaises(TypeError, Counter.subtract)
def test_unary(self):
c = Counter(a=-5, b=0, c=5, d=10, e=15,g=40)
self.assertEqual(dict(+c), dict(c=5, d=10, e=15, g=40))
self.assertEqual(dict(-c), dict(a=5))
def test_repr_nonsortable(self):
c = Counter(a=2, b=None)
r = repr(c)
self.assertIn("'a': 2", r)
self.assertIn("'b': None", r)
def test_helper_function(self):
# two paths, one for real dicts and one for other mappings
elems = list('abracadabra')
d = dict()
_count_elements(d, elems)
self.assertEqual(d, {'a': 5, 'r': 2, 'b': 2, 'c': 1, 'd': 1})
m = OrderedDict()
_count_elements(m, elems)
self.assertEqual(m,
OrderedDict([('a', 5), ('b', 2), ('r', 2), ('c', 1), ('d', 1)]))
# test fidelity to the pure python version
c = CounterSubclassWithSetItem('abracadabra')
self.assertTrue(c.called)
self.assertEqual(dict(c), {'a': 5, 'b': 2, 'c': 1, 'd': 1, 'r':2 })
c = CounterSubclassWithGet('abracadabra')
self.assertTrue(c.called)
self.assertEqual(dict(c), {'a': 5, 'b': 2, 'c': 1, 'd': 1, 'r':2 })
def test_multiset_operations_equivalent_to_set_operations(self):
# When the multiplicities are all zero or one, multiset operations
# are guaranteed to be equivalent to the corresponding operations
# for regular sets.
s = list(product(('a', 'b', 'c'), range(2)))
powerset = chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
counters = [Counter(dict(groups)) for groups in powerset]
for cp, cq in product(counters, repeat=2):
sp = set(cp.elements())
sq = set(cq.elements())
self.assertEqual(set(cp + cq), sp | sq)
self.assertEqual(set(cp - cq), sp - sq)
self.assertEqual(set(cp | cq), sp | sq)
self.assertEqual(set(cp & cq), sp & sq)
self.assertEqual(cp == cq, sp == sq)
self.assertEqual(cp != cq, sp != sq)
self.assertEqual(cp <= cq, sp <= sq)
self.assertEqual(cp >= cq, sp >= sq)
self.assertEqual(cp < cq, sp < sq)
self.assertEqual(cp > cq, sp > sq)
def test_eq(self):
self.assertEqual(Counter(a=3, b=2, c=0), Counter('ababa'))
self.assertNotEqual(Counter(a=3, b=2), Counter('babab'))
def test_le(self):
self.assertTrue(Counter(a=3, b=2, c=0) <= Counter('ababa'))
self.assertFalse(Counter(a=3, b=2) <= Counter('babab'))
def test_lt(self):
self.assertTrue(Counter(a=3, b=1, c=0) < Counter('ababa'))
self.assertFalse(Counter(a=3, b=2, c=0) < Counter('ababa'))
def test_ge(self):
self.assertTrue(Counter(a=2, b=1, c=0) >= Counter('aab'))
self.assertFalse(Counter(a=3, b=2, c=0) >= Counter('aabd'))
def test_gt(self):
self.assertTrue(Counter(a=3, b=2, c=0) > Counter('aab'))
self.assertFalse(Counter(a=2, b=1, c=0) > Counter('aab'))
def load_tests(loader, tests, pattern):
tests.addTest(doctest.DocTestSuite(collections))
return tests
if __name__ == "__main__":
unittest.main()