mirror of
https://github.com/python/cpython.git
synced 2024-11-24 00:38:00 +01:00
8e9ffd956a
Fix missing 'is' in cmath.log() docstring.
(cherry picked from commit 71f614ef2a
)
Co-authored-by: Owain Davies <116417456+OTheDev@users.noreply.github.com>
1423 lines
42 KiB
C
1423 lines
42 KiB
C
/* Complex math module */
|
|
|
|
/* much code borrowed from mathmodule.c */
|
|
|
|
#include "Python.h"
|
|
#include "pycore_dtoa.h"
|
|
#include "_math.h"
|
|
/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from
|
|
float.h. We assume that FLT_RADIX is either 2 or 16. */
|
|
#include <float.h>
|
|
|
|
#include "clinic/cmathmodule.c.h"
|
|
/*[clinic input]
|
|
module cmath
|
|
[clinic start generated code]*/
|
|
/*[clinic end generated code: output=da39a3ee5e6b4b0d input=308d6839f4a46333]*/
|
|
|
|
/*[python input]
|
|
class Py_complex_protected_converter(Py_complex_converter):
|
|
def modify(self):
|
|
return 'errno = 0;'
|
|
|
|
|
|
class Py_complex_protected_return_converter(CReturnConverter):
|
|
type = "Py_complex"
|
|
|
|
def render(self, function, data):
|
|
self.declare(data)
|
|
data.return_conversion.append("""
|
|
if (errno == EDOM) {
|
|
PyErr_SetString(PyExc_ValueError, "math domain error");
|
|
goto exit;
|
|
}
|
|
else if (errno == ERANGE) {
|
|
PyErr_SetString(PyExc_OverflowError, "math range error");
|
|
goto exit;
|
|
}
|
|
else {
|
|
return_value = PyComplex_FromCComplex(_return_value);
|
|
}
|
|
""".strip())
|
|
[python start generated code]*/
|
|
/*[python end generated code: output=da39a3ee5e6b4b0d input=8b27adb674c08321]*/
|
|
|
|
#if (FLT_RADIX != 2 && FLT_RADIX != 16)
|
|
#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16"
|
|
#endif
|
|
|
|
#ifndef M_LN2
|
|
#define M_LN2 (0.6931471805599453094) /* natural log of 2 */
|
|
#endif
|
|
|
|
#ifndef M_LN10
|
|
#define M_LN10 (2.302585092994045684) /* natural log of 10 */
|
|
#endif
|
|
|
|
/*
|
|
CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log,
|
|
inverse trig and inverse hyperbolic trig functions. Its log is used in the
|
|
evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unnecessary
|
|
overflow.
|
|
*/
|
|
|
|
#define CM_LARGE_DOUBLE (DBL_MAX/4.)
|
|
#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE))
|
|
#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE))
|
|
#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN))
|
|
|
|
/*
|
|
CM_SCALE_UP is an odd integer chosen such that multiplication by
|
|
2**CM_SCALE_UP is sufficient to turn a subnormal into a normal.
|
|
CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute
|
|
square roots accurately when the real and imaginary parts of the argument
|
|
are subnormal.
|
|
*/
|
|
|
|
#if FLT_RADIX==2
|
|
#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1)
|
|
#elif FLT_RADIX==16
|
|
#define CM_SCALE_UP (4*DBL_MANT_DIG+1)
|
|
#endif
|
|
#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2)
|
|
|
|
/* Constants cmath.inf, cmath.infj, cmath.nan, cmath.nanj.
|
|
cmath.nan and cmath.nanj are defined only when either
|
|
PY_NO_SHORT_FLOAT_REPR is *not* defined (which should be
|
|
the most common situation on machines using an IEEE 754
|
|
representation), or Py_NAN is defined. */
|
|
|
|
static double
|
|
m_inf(void)
|
|
{
|
|
#ifndef PY_NO_SHORT_FLOAT_REPR
|
|
return _Py_dg_infinity(0);
|
|
#else
|
|
return Py_HUGE_VAL;
|
|
#endif
|
|
}
|
|
|
|
static Py_complex
|
|
c_infj(void)
|
|
{
|
|
Py_complex r;
|
|
r.real = 0.0;
|
|
r.imag = m_inf();
|
|
return r;
|
|
}
|
|
|
|
#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
|
|
|
|
static double
|
|
m_nan(void)
|
|
{
|
|
#ifndef PY_NO_SHORT_FLOAT_REPR
|
|
return _Py_dg_stdnan(0);
|
|
#else
|
|
return Py_NAN;
|
|
#endif
|
|
}
|
|
|
|
static Py_complex
|
|
c_nanj(void)
|
|
{
|
|
Py_complex r;
|
|
r.real = 0.0;
|
|
r.imag = m_nan();
|
|
return r;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* forward declarations */
|
|
static Py_complex cmath_asinh_impl(PyObject *, Py_complex);
|
|
static Py_complex cmath_atanh_impl(PyObject *, Py_complex);
|
|
static Py_complex cmath_cosh_impl(PyObject *, Py_complex);
|
|
static Py_complex cmath_sinh_impl(PyObject *, Py_complex);
|
|
static Py_complex cmath_sqrt_impl(PyObject *, Py_complex);
|
|
static Py_complex cmath_tanh_impl(PyObject *, Py_complex);
|
|
static PyObject * math_error(void);
|
|
|
|
/* Code to deal with special values (infinities, NaNs, etc.). */
|
|
|
|
/* special_type takes a double and returns an integer code indicating
|
|
the type of the double as follows:
|
|
*/
|
|
|
|
enum special_types {
|
|
ST_NINF, /* 0, negative infinity */
|
|
ST_NEG, /* 1, negative finite number (nonzero) */
|
|
ST_NZERO, /* 2, -0. */
|
|
ST_PZERO, /* 3, +0. */
|
|
ST_POS, /* 4, positive finite number (nonzero) */
|
|
ST_PINF, /* 5, positive infinity */
|
|
ST_NAN /* 6, Not a Number */
|
|
};
|
|
|
|
static enum special_types
|
|
special_type(double d)
|
|
{
|
|
if (Py_IS_FINITE(d)) {
|
|
if (d != 0) {
|
|
if (copysign(1., d) == 1.)
|
|
return ST_POS;
|
|
else
|
|
return ST_NEG;
|
|
}
|
|
else {
|
|
if (copysign(1., d) == 1.)
|
|
return ST_PZERO;
|
|
else
|
|
return ST_NZERO;
|
|
}
|
|
}
|
|
if (Py_IS_NAN(d))
|
|
return ST_NAN;
|
|
if (copysign(1., d) == 1.)
|
|
return ST_PINF;
|
|
else
|
|
return ST_NINF;
|
|
}
|
|
|
|
#define SPECIAL_VALUE(z, table) \
|
|
if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \
|
|
errno = 0; \
|
|
return table[special_type((z).real)] \
|
|
[special_type((z).imag)]; \
|
|
}
|
|
|
|
#define P Py_MATH_PI
|
|
#define P14 0.25*Py_MATH_PI
|
|
#define P12 0.5*Py_MATH_PI
|
|
#define P34 0.75*Py_MATH_PI
|
|
#define INF Py_HUGE_VAL
|
|
#define N Py_NAN
|
|
#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */
|
|
|
|
/* First, the C functions that do the real work. Each of the c_*
|
|
functions computes and returns the C99 Annex G recommended result
|
|
and also sets errno as follows: errno = 0 if no floating-point
|
|
exception is associated with the result; errno = EDOM if C99 Annex
|
|
G recommends raising divide-by-zero or invalid for this result; and
|
|
errno = ERANGE where the overflow floating-point signal should be
|
|
raised.
|
|
*/
|
|
|
|
static Py_complex acos_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.acos -> Py_complex_protected
|
|
|
|
z: Py_complex_protected
|
|
/
|
|
|
|
Return the arc cosine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_acos_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=40bd42853fd460ae input=bd6cbd78ae851927]*/
|
|
{
|
|
Py_complex s1, s2, r;
|
|
|
|
SPECIAL_VALUE(z, acos_special_values);
|
|
|
|
if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
|
/* avoid unnecessary overflow for large arguments */
|
|
r.real = atan2(fabs(z.imag), z.real);
|
|
/* split into cases to make sure that the branch cut has the
|
|
correct continuity on systems with unsigned zeros */
|
|
if (z.real < 0.) {
|
|
r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|
M_LN2*2., z.imag);
|
|
} else {
|
|
r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|
M_LN2*2., -z.imag);
|
|
}
|
|
} else {
|
|
s1.real = 1.-z.real;
|
|
s1.imag = -z.imag;
|
|
s1 = cmath_sqrt_impl(module, s1);
|
|
s2.real = 1.+z.real;
|
|
s2.imag = z.imag;
|
|
s2 = cmath_sqrt_impl(module, s2);
|
|
r.real = 2.*atan2(s1.real, s2.real);
|
|
r.imag = m_asinh(s2.real*s1.imag - s2.imag*s1.real);
|
|
}
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
static Py_complex acosh_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.acosh = cmath.acos
|
|
|
|
Return the inverse hyperbolic cosine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_acosh_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=3e2454d4fcf404ca input=3f61bee7d703e53c]*/
|
|
{
|
|
Py_complex s1, s2, r;
|
|
|
|
SPECIAL_VALUE(z, acosh_special_values);
|
|
|
|
if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
|
/* avoid unnecessary overflow for large arguments */
|
|
r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.;
|
|
r.imag = atan2(z.imag, z.real);
|
|
} else {
|
|
s1.real = z.real - 1.;
|
|
s1.imag = z.imag;
|
|
s1 = cmath_sqrt_impl(module, s1);
|
|
s2.real = z.real + 1.;
|
|
s2.imag = z.imag;
|
|
s2 = cmath_sqrt_impl(module, s2);
|
|
r.real = m_asinh(s1.real*s2.real + s1.imag*s2.imag);
|
|
r.imag = 2.*atan2(s1.imag, s2.real);
|
|
}
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
/*[clinic input]
|
|
cmath.asin = cmath.acos
|
|
|
|
Return the arc sine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_asin_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=3b264cd1b16bf4e1 input=be0bf0cfdd5239c5]*/
|
|
{
|
|
/* asin(z) = -i asinh(iz) */
|
|
Py_complex s, r;
|
|
s.real = -z.imag;
|
|
s.imag = z.real;
|
|
s = cmath_asinh_impl(module, s);
|
|
r.real = s.imag;
|
|
r.imag = -s.real;
|
|
return r;
|
|
}
|
|
|
|
|
|
static Py_complex asinh_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.asinh = cmath.acos
|
|
|
|
Return the inverse hyperbolic sine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_asinh_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=733d8107841a7599 input=5c09448fcfc89a79]*/
|
|
{
|
|
Py_complex s1, s2, r;
|
|
|
|
SPECIAL_VALUE(z, asinh_special_values);
|
|
|
|
if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) {
|
|
if (z.imag >= 0.) {
|
|
r.real = copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|
M_LN2*2., z.real);
|
|
} else {
|
|
r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) +
|
|
M_LN2*2., -z.real);
|
|
}
|
|
r.imag = atan2(z.imag, fabs(z.real));
|
|
} else {
|
|
s1.real = 1.+z.imag;
|
|
s1.imag = -z.real;
|
|
s1 = cmath_sqrt_impl(module, s1);
|
|
s2.real = 1.-z.imag;
|
|
s2.imag = z.real;
|
|
s2 = cmath_sqrt_impl(module, s2);
|
|
r.real = m_asinh(s1.real*s2.imag-s2.real*s1.imag);
|
|
r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag);
|
|
}
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
cmath.atan = cmath.acos
|
|
|
|
Return the arc tangent of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_atan_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=b6bfc497058acba4 input=3b21ff7d5eac632a]*/
|
|
{
|
|
/* atan(z) = -i atanh(iz) */
|
|
Py_complex s, r;
|
|
s.real = -z.imag;
|
|
s.imag = z.real;
|
|
s = cmath_atanh_impl(module, s);
|
|
r.real = s.imag;
|
|
r.imag = -s.real;
|
|
return r;
|
|
}
|
|
|
|
/* Windows screws up atan2 for inf and nan, and alpha Tru64 5.1 doesn't follow
|
|
C99 for atan2(0., 0.). */
|
|
static double
|
|
c_atan2(Py_complex z)
|
|
{
|
|
if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag))
|
|
return Py_NAN;
|
|
if (Py_IS_INFINITY(z.imag)) {
|
|
if (Py_IS_INFINITY(z.real)) {
|
|
if (copysign(1., z.real) == 1.)
|
|
/* atan2(+-inf, +inf) == +-pi/4 */
|
|
return copysign(0.25*Py_MATH_PI, z.imag);
|
|
else
|
|
/* atan2(+-inf, -inf) == +-pi*3/4 */
|
|
return copysign(0.75*Py_MATH_PI, z.imag);
|
|
}
|
|
/* atan2(+-inf, x) == +-pi/2 for finite x */
|
|
return copysign(0.5*Py_MATH_PI, z.imag);
|
|
}
|
|
if (Py_IS_INFINITY(z.real) || z.imag == 0.) {
|
|
if (copysign(1., z.real) == 1.)
|
|
/* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
|
|
return copysign(0., z.imag);
|
|
else
|
|
/* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
|
|
return copysign(Py_MATH_PI, z.imag);
|
|
}
|
|
return atan2(z.imag, z.real);
|
|
}
|
|
|
|
|
|
static Py_complex atanh_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.atanh = cmath.acos
|
|
|
|
Return the inverse hyperbolic tangent of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_atanh_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=e83355f93a989c9e input=2b3fdb82fb34487b]*/
|
|
{
|
|
Py_complex r;
|
|
double ay, h;
|
|
|
|
SPECIAL_VALUE(z, atanh_special_values);
|
|
|
|
/* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */
|
|
if (z.real < 0.) {
|
|
return _Py_c_neg(cmath_atanh_impl(module, _Py_c_neg(z)));
|
|
}
|
|
|
|
ay = fabs(z.imag);
|
|
if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) {
|
|
/*
|
|
if abs(z) is large then we use the approximation
|
|
atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign
|
|
of z.imag)
|
|
*/
|
|
h = hypot(z.real/2., z.imag/2.); /* safe from overflow */
|
|
r.real = z.real/4./h/h;
|
|
/* the two negations in the next line cancel each other out
|
|
except when working with unsigned zeros: they're there to
|
|
ensure that the branch cut has the correct continuity on
|
|
systems that don't support signed zeros */
|
|
r.imag = -copysign(Py_MATH_PI/2., -z.imag);
|
|
errno = 0;
|
|
} else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) {
|
|
/* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */
|
|
if (ay == 0.) {
|
|
r.real = INF;
|
|
r.imag = z.imag;
|
|
errno = EDOM;
|
|
} else {
|
|
r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.)));
|
|
r.imag = copysign(atan2(2., -ay)/2, z.imag);
|
|
errno = 0;
|
|
}
|
|
} else {
|
|
r.real = m_log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.;
|
|
r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.;
|
|
errno = 0;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
cmath.cos = cmath.acos
|
|
|
|
Return the cosine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_cos_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=fd64918d5b3186db input=6022e39b77127ac7]*/
|
|
{
|
|
/* cos(z) = cosh(iz) */
|
|
Py_complex r;
|
|
r.real = -z.imag;
|
|
r.imag = z.real;
|
|
r = cmath_cosh_impl(module, r);
|
|
return r;
|
|
}
|
|
|
|
|
|
/* cosh(infinity + i*y) needs to be dealt with specially */
|
|
static Py_complex cosh_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.cosh = cmath.acos
|
|
|
|
Return the hyperbolic cosine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_cosh_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=2e969047da601bdb input=d6b66339e9cc332b]*/
|
|
{
|
|
Py_complex r;
|
|
double x_minus_one;
|
|
|
|
/* special treatment for cosh(+/-inf + iy) if y is not a NaN */
|
|
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) &&
|
|
(z.imag != 0.)) {
|
|
if (z.real > 0) {
|
|
r.real = copysign(INF, cos(z.imag));
|
|
r.imag = copysign(INF, sin(z.imag));
|
|
}
|
|
else {
|
|
r.real = copysign(INF, cos(z.imag));
|
|
r.imag = -copysign(INF, sin(z.imag));
|
|
}
|
|
}
|
|
else {
|
|
r = cosh_special_values[special_type(z.real)]
|
|
[special_type(z.imag)];
|
|
}
|
|
/* need to set errno = EDOM if y is +/- infinity and x is not
|
|
a NaN */
|
|
if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
|
/* deal correctly with cases where cosh(z.real) overflows but
|
|
cosh(z) does not. */
|
|
x_minus_one = z.real - copysign(1., z.real);
|
|
r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
|
r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
|
} else {
|
|
r.real = cos(z.imag) * cosh(z.real);
|
|
r.imag = sin(z.imag) * sinh(z.real);
|
|
}
|
|
/* detect overflow, and set errno accordingly */
|
|
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|
errno = ERANGE;
|
|
else
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for
|
|
finite y */
|
|
static Py_complex exp_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.exp = cmath.acos
|
|
|
|
Return the exponential value e**z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_exp_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=edcec61fb9dfda6c input=8b9e6cf8a92174c3]*/
|
|
{
|
|
Py_complex r;
|
|
double l;
|
|
|
|
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
|
&& (z.imag != 0.)) {
|
|
if (z.real > 0) {
|
|
r.real = copysign(INF, cos(z.imag));
|
|
r.imag = copysign(INF, sin(z.imag));
|
|
}
|
|
else {
|
|
r.real = copysign(0., cos(z.imag));
|
|
r.imag = copysign(0., sin(z.imag));
|
|
}
|
|
}
|
|
else {
|
|
r = exp_special_values[special_type(z.real)]
|
|
[special_type(z.imag)];
|
|
}
|
|
/* need to set errno = EDOM if y is +/- infinity and x is not
|
|
a NaN and not -infinity */
|
|
if (Py_IS_INFINITY(z.imag) &&
|
|
(Py_IS_FINITE(z.real) ||
|
|
(Py_IS_INFINITY(z.real) && z.real > 0)))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
if (z.real > CM_LOG_LARGE_DOUBLE) {
|
|
l = exp(z.real-1.);
|
|
r.real = l*cos(z.imag)*Py_MATH_E;
|
|
r.imag = l*sin(z.imag)*Py_MATH_E;
|
|
} else {
|
|
l = exp(z.real);
|
|
r.real = l*cos(z.imag);
|
|
r.imag = l*sin(z.imag);
|
|
}
|
|
/* detect overflow, and set errno accordingly */
|
|
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|
errno = ERANGE;
|
|
else
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
static Py_complex log_special_values[7][7];
|
|
|
|
static Py_complex
|
|
c_log(Py_complex z)
|
|
{
|
|
/*
|
|
The usual formula for the real part is log(hypot(z.real, z.imag)).
|
|
There are four situations where this formula is potentially
|
|
problematic:
|
|
|
|
(1) the absolute value of z is subnormal. Then hypot is subnormal,
|
|
so has fewer than the usual number of bits of accuracy, hence may
|
|
have large relative error. This then gives a large absolute error
|
|
in the log. This can be solved by rescaling z by a suitable power
|
|
of 2.
|
|
|
|
(2) the absolute value of z is greater than DBL_MAX (e.g. when both
|
|
z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX)
|
|
Again, rescaling solves this.
|
|
|
|
(3) the absolute value of z is close to 1. In this case it's
|
|
difficult to achieve good accuracy, at least in part because a
|
|
change of 1ulp in the real or imaginary part of z can result in a
|
|
change of billions of ulps in the correctly rounded answer.
|
|
|
|
(4) z = 0. The simplest thing to do here is to call the
|
|
floating-point log with an argument of 0, and let its behaviour
|
|
(returning -infinity, signaling a floating-point exception, setting
|
|
errno, or whatever) determine that of c_log. So the usual formula
|
|
is fine here.
|
|
|
|
*/
|
|
|
|
Py_complex r;
|
|
double ax, ay, am, an, h;
|
|
|
|
SPECIAL_VALUE(z, log_special_values);
|
|
|
|
ax = fabs(z.real);
|
|
ay = fabs(z.imag);
|
|
|
|
if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) {
|
|
r.real = log(hypot(ax/2., ay/2.)) + M_LN2;
|
|
} else if (ax < DBL_MIN && ay < DBL_MIN) {
|
|
if (ax > 0. || ay > 0.) {
|
|
/* catch cases where hypot(ax, ay) is subnormal */
|
|
r.real = log(hypot(ldexp(ax, DBL_MANT_DIG),
|
|
ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2;
|
|
}
|
|
else {
|
|
/* log(+/-0. +/- 0i) */
|
|
r.real = -INF;
|
|
r.imag = atan2(z.imag, z.real);
|
|
errno = EDOM;
|
|
return r;
|
|
}
|
|
} else {
|
|
h = hypot(ax, ay);
|
|
if (0.71 <= h && h <= 1.73) {
|
|
am = ax > ay ? ax : ay; /* max(ax, ay) */
|
|
an = ax > ay ? ay : ax; /* min(ax, ay) */
|
|
r.real = m_log1p((am-1)*(am+1)+an*an)/2.;
|
|
} else {
|
|
r.real = log(h);
|
|
}
|
|
}
|
|
r.imag = atan2(z.imag, z.real);
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
cmath.log10 = cmath.acos
|
|
|
|
Return the base-10 logarithm of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_log10_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=2922779a7c38cbe1 input=cff5644f73c1519c]*/
|
|
{
|
|
Py_complex r;
|
|
int errno_save;
|
|
|
|
r = c_log(z);
|
|
errno_save = errno; /* just in case the divisions affect errno */
|
|
r.real = r.real / M_LN10;
|
|
r.imag = r.imag / M_LN10;
|
|
errno = errno_save;
|
|
return r;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
cmath.sin = cmath.acos
|
|
|
|
Return the sine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_sin_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=980370d2ff0bb5aa input=2d3519842a8b4b85]*/
|
|
{
|
|
/* sin(z) = -i sin(iz) */
|
|
Py_complex s, r;
|
|
s.real = -z.imag;
|
|
s.imag = z.real;
|
|
s = cmath_sinh_impl(module, s);
|
|
r.real = s.imag;
|
|
r.imag = -s.real;
|
|
return r;
|
|
}
|
|
|
|
|
|
/* sinh(infinity + i*y) needs to be dealt with specially */
|
|
static Py_complex sinh_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.sinh = cmath.acos
|
|
|
|
Return the hyperbolic sine of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_sinh_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=38b0a6cce26f3536 input=d2d3fc8c1ddfd2dd]*/
|
|
{
|
|
Py_complex r;
|
|
double x_minus_one;
|
|
|
|
/* special treatment for sinh(+/-inf + iy) if y is finite and
|
|
nonzero */
|
|
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
|
&& (z.imag != 0.)) {
|
|
if (z.real > 0) {
|
|
r.real = copysign(INF, cos(z.imag));
|
|
r.imag = copysign(INF, sin(z.imag));
|
|
}
|
|
else {
|
|
r.real = -copysign(INF, cos(z.imag));
|
|
r.imag = copysign(INF, sin(z.imag));
|
|
}
|
|
}
|
|
else {
|
|
r = sinh_special_values[special_type(z.real)]
|
|
[special_type(z.imag)];
|
|
}
|
|
/* need to set errno = EDOM if y is +/- infinity and x is not
|
|
a NaN */
|
|
if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
|
x_minus_one = z.real - copysign(1., z.real);
|
|
r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E;
|
|
r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E;
|
|
} else {
|
|
r.real = cos(z.imag) * sinh(z.real);
|
|
r.imag = sin(z.imag) * cosh(z.real);
|
|
}
|
|
/* detect overflow, and set errno accordingly */
|
|
if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag))
|
|
errno = ERANGE;
|
|
else
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
static Py_complex sqrt_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.sqrt = cmath.acos
|
|
|
|
Return the square root of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_sqrt_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=b6507b3029c339fc input=7088b166fc9a58c7]*/
|
|
{
|
|
/*
|
|
Method: use symmetries to reduce to the case when x = z.real and y
|
|
= z.imag are nonnegative. Then the real part of the result is
|
|
given by
|
|
|
|
s = sqrt((x + hypot(x, y))/2)
|
|
|
|
and the imaginary part is
|
|
|
|
d = (y/2)/s
|
|
|
|
If either x or y is very large then there's a risk of overflow in
|
|
computation of the expression x + hypot(x, y). We can avoid this
|
|
by rewriting the formula for s as:
|
|
|
|
s = 2*sqrt(x/8 + hypot(x/8, y/8))
|
|
|
|
This costs us two extra multiplications/divisions, but avoids the
|
|
overhead of checking for x and y large.
|
|
|
|
If both x and y are subnormal then hypot(x, y) may also be
|
|
subnormal, so will lack full precision. We solve this by rescaling
|
|
x and y by a sufficiently large power of 2 to ensure that x and y
|
|
are normal.
|
|
*/
|
|
|
|
|
|
Py_complex r;
|
|
double s,d;
|
|
double ax, ay;
|
|
|
|
SPECIAL_VALUE(z, sqrt_special_values);
|
|
|
|
if (z.real == 0. && z.imag == 0.) {
|
|
r.real = 0.;
|
|
r.imag = z.imag;
|
|
return r;
|
|
}
|
|
|
|
ax = fabs(z.real);
|
|
ay = fabs(z.imag);
|
|
|
|
if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) {
|
|
/* here we catch cases where hypot(ax, ay) is subnormal */
|
|
ax = ldexp(ax, CM_SCALE_UP);
|
|
s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))),
|
|
CM_SCALE_DOWN);
|
|
} else {
|
|
ax /= 8.;
|
|
s = 2.*sqrt(ax + hypot(ax, ay/8.));
|
|
}
|
|
d = ay/(2.*s);
|
|
|
|
if (z.real >= 0.) {
|
|
r.real = s;
|
|
r.imag = copysign(d, z.imag);
|
|
} else {
|
|
r.real = d;
|
|
r.imag = copysign(s, z.imag);
|
|
}
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
cmath.tan = cmath.acos
|
|
|
|
Return the tangent of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_tan_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=7c5f13158a72eb13 input=fc167e528767888e]*/
|
|
{
|
|
/* tan(z) = -i tanh(iz) */
|
|
Py_complex s, r;
|
|
s.real = -z.imag;
|
|
s.imag = z.real;
|
|
s = cmath_tanh_impl(module, s);
|
|
r.real = s.imag;
|
|
r.imag = -s.real;
|
|
return r;
|
|
}
|
|
|
|
|
|
/* tanh(infinity + i*y) needs to be dealt with specially */
|
|
static Py_complex tanh_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.tanh = cmath.acos
|
|
|
|
Return the hyperbolic tangent of z.
|
|
[clinic start generated code]*/
|
|
|
|
static Py_complex
|
|
cmath_tanh_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=36d547ef7aca116c input=22f67f9dc6d29685]*/
|
|
{
|
|
/* Formula:
|
|
|
|
tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) /
|
|
(1+tan(y)^2 tanh(x)^2)
|
|
|
|
To avoid excessive roundoff error, 1-tanh(x)^2 is better computed
|
|
as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2
|
|
by 4 exp(-2*x) instead, to avoid possible overflow in the
|
|
computation of cosh(x).
|
|
|
|
*/
|
|
|
|
Py_complex r;
|
|
double tx, ty, cx, txty, denom;
|
|
|
|
/* special treatment for tanh(+/-inf + iy) if y is finite and
|
|
nonzero */
|
|
if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
|
|
if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag)
|
|
&& (z.imag != 0.)) {
|
|
if (z.real > 0) {
|
|
r.real = 1.0;
|
|
r.imag = copysign(0.,
|
|
2.*sin(z.imag)*cos(z.imag));
|
|
}
|
|
else {
|
|
r.real = -1.0;
|
|
r.imag = copysign(0.,
|
|
2.*sin(z.imag)*cos(z.imag));
|
|
}
|
|
}
|
|
else {
|
|
r = tanh_special_values[special_type(z.real)]
|
|
[special_type(z.imag)];
|
|
}
|
|
/* need to set errno = EDOM if z.imag is +/-infinity and
|
|
z.real is finite */
|
|
if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
/* danger of overflow in 2.*z.imag !*/
|
|
if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) {
|
|
r.real = copysign(1., z.real);
|
|
r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real));
|
|
} else {
|
|
tx = tanh(z.real);
|
|
ty = tan(z.imag);
|
|
cx = 1./cosh(z.real);
|
|
txty = tx*ty;
|
|
denom = 1. + txty*txty;
|
|
r.real = tx*(1.+ty*ty)/denom;
|
|
r.imag = ((ty/denom)*cx)*cx;
|
|
}
|
|
errno = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
cmath.log
|
|
|
|
z as x: Py_complex
|
|
base as y_obj: object = NULL
|
|
/
|
|
|
|
log(z[, base]) -> the logarithm of z to the given base.
|
|
|
|
If the base is not specified, returns the natural logarithm (base e) of z.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
cmath_log_impl(PyObject *module, Py_complex x, PyObject *y_obj)
|
|
/*[clinic end generated code: output=4effdb7d258e0d94 input=e1f81d4fcfd26497]*/
|
|
{
|
|
Py_complex y;
|
|
|
|
errno = 0;
|
|
x = c_log(x);
|
|
if (y_obj != NULL) {
|
|
y = PyComplex_AsCComplex(y_obj);
|
|
if (PyErr_Occurred()) {
|
|
return NULL;
|
|
}
|
|
y = c_log(y);
|
|
x = _Py_c_quot(x, y);
|
|
}
|
|
if (errno != 0)
|
|
return math_error();
|
|
return PyComplex_FromCComplex(x);
|
|
}
|
|
|
|
|
|
/* And now the glue to make them available from Python: */
|
|
|
|
static PyObject *
|
|
math_error(void)
|
|
{
|
|
if (errno == EDOM)
|
|
PyErr_SetString(PyExc_ValueError, "math domain error");
|
|
else if (errno == ERANGE)
|
|
PyErr_SetString(PyExc_OverflowError, "math range error");
|
|
else /* Unexpected math error */
|
|
PyErr_SetFromErrno(PyExc_ValueError);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*[clinic input]
|
|
cmath.phase
|
|
|
|
z: Py_complex
|
|
/
|
|
|
|
Return argument, also known as the phase angle, of a complex.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
cmath_phase_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=50725086a7bfd253 input=5cf75228ba94b69d]*/
|
|
{
|
|
double phi;
|
|
|
|
errno = 0;
|
|
phi = c_atan2(z);
|
|
if (errno != 0)
|
|
return math_error();
|
|
else
|
|
return PyFloat_FromDouble(phi);
|
|
}
|
|
|
|
/*[clinic input]
|
|
cmath.polar
|
|
|
|
z: Py_complex
|
|
/
|
|
|
|
Convert a complex from rectangular coordinates to polar coordinates.
|
|
|
|
r is the distance from 0 and phi the phase angle.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
cmath_polar_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=d0a8147c41dbb654 input=26c353574fd1a861]*/
|
|
{
|
|
double r, phi;
|
|
|
|
errno = 0;
|
|
phi = c_atan2(z); /* should not cause any exception */
|
|
r = _Py_c_abs(z); /* sets errno to ERANGE on overflow */
|
|
if (errno != 0)
|
|
return math_error();
|
|
else
|
|
return Py_BuildValue("dd", r, phi);
|
|
}
|
|
|
|
/*
|
|
rect() isn't covered by the C99 standard, but it's not too hard to
|
|
figure out 'spirit of C99' rules for special value handing:
|
|
|
|
rect(x, t) should behave like exp(log(x) + it) for positive-signed x
|
|
rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x
|
|
rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0)
|
|
gives nan +- i0 with the sign of the imaginary part unspecified.
|
|
|
|
*/
|
|
|
|
static Py_complex rect_special_values[7][7];
|
|
|
|
/*[clinic input]
|
|
cmath.rect
|
|
|
|
r: double
|
|
phi: double
|
|
/
|
|
|
|
Convert from polar coordinates to rectangular coordinates.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
cmath_rect_impl(PyObject *module, double r, double phi)
|
|
/*[clinic end generated code: output=385a0690925df2d5 input=24c5646d147efd69]*/
|
|
{
|
|
Py_complex z;
|
|
errno = 0;
|
|
|
|
/* deal with special values */
|
|
if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) {
|
|
/* if r is +/-infinity and phi is finite but nonzero then
|
|
result is (+-INF +-INF i), but we need to compute cos(phi)
|
|
and sin(phi) to figure out the signs. */
|
|
if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi)
|
|
&& (phi != 0.))) {
|
|
if (r > 0) {
|
|
z.real = copysign(INF, cos(phi));
|
|
z.imag = copysign(INF, sin(phi));
|
|
}
|
|
else {
|
|
z.real = -copysign(INF, cos(phi));
|
|
z.imag = -copysign(INF, sin(phi));
|
|
}
|
|
}
|
|
else {
|
|
z = rect_special_values[special_type(r)]
|
|
[special_type(phi)];
|
|
}
|
|
/* need to set errno = EDOM if r is a nonzero number and phi
|
|
is infinite */
|
|
if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi))
|
|
errno = EDOM;
|
|
else
|
|
errno = 0;
|
|
}
|
|
else if (phi == 0.0) {
|
|
/* Workaround for buggy results with phi=-0.0 on OS X 10.8. See
|
|
bugs.python.org/issue18513. */
|
|
z.real = r;
|
|
z.imag = r * phi;
|
|
errno = 0;
|
|
}
|
|
else {
|
|
z.real = r * cos(phi);
|
|
z.imag = r * sin(phi);
|
|
errno = 0;
|
|
}
|
|
|
|
if (errno != 0)
|
|
return math_error();
|
|
else
|
|
return PyComplex_FromCComplex(z);
|
|
}
|
|
|
|
/*[clinic input]
|
|
cmath.isfinite = cmath.polar
|
|
|
|
Return True if both the real and imaginary parts of z are finite, else False.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
cmath_isfinite_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=ac76611e2c774a36 input=848e7ee701895815]*/
|
|
{
|
|
return PyBool_FromLong(Py_IS_FINITE(z.real) && Py_IS_FINITE(z.imag));
|
|
}
|
|
|
|
/*[clinic input]
|
|
cmath.isnan = cmath.polar
|
|
|
|
Checks if the real or imaginary part of z not a number (NaN).
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
cmath_isnan_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=e7abf6e0b28beab7 input=71799f5d284c9baf]*/
|
|
{
|
|
return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag));
|
|
}
|
|
|
|
/*[clinic input]
|
|
cmath.isinf = cmath.polar
|
|
|
|
Checks if the real or imaginary part of z is infinite.
|
|
[clinic start generated code]*/
|
|
|
|
static PyObject *
|
|
cmath_isinf_impl(PyObject *module, Py_complex z)
|
|
/*[clinic end generated code: output=502a75a79c773469 input=363df155c7181329]*/
|
|
{
|
|
return PyBool_FromLong(Py_IS_INFINITY(z.real) ||
|
|
Py_IS_INFINITY(z.imag));
|
|
}
|
|
|
|
/*[clinic input]
|
|
cmath.isclose -> bool
|
|
|
|
a: Py_complex
|
|
b: Py_complex
|
|
*
|
|
rel_tol: double = 1e-09
|
|
maximum difference for being considered "close", relative to the
|
|
magnitude of the input values
|
|
abs_tol: double = 0.0
|
|
maximum difference for being considered "close", regardless of the
|
|
magnitude of the input values
|
|
|
|
Determine whether two complex numbers are close in value.
|
|
|
|
Return True if a is close in value to b, and False otherwise.
|
|
|
|
For the values to be considered close, the difference between them must be
|
|
smaller than at least one of the tolerances.
|
|
|
|
-inf, inf and NaN behave similarly to the IEEE 754 Standard. That is, NaN is
|
|
not close to anything, even itself. inf and -inf are only close to themselves.
|
|
[clinic start generated code]*/
|
|
|
|
static int
|
|
cmath_isclose_impl(PyObject *module, Py_complex a, Py_complex b,
|
|
double rel_tol, double abs_tol)
|
|
/*[clinic end generated code: output=8a2486cc6e0014d1 input=df9636d7de1d4ac3]*/
|
|
{
|
|
double diff;
|
|
|
|
/* sanity check on the inputs */
|
|
if (rel_tol < 0.0 || abs_tol < 0.0 ) {
|
|
PyErr_SetString(PyExc_ValueError,
|
|
"tolerances must be non-negative");
|
|
return -1;
|
|
}
|
|
|
|
if ( (a.real == b.real) && (a.imag == b.imag) ) {
|
|
/* short circuit exact equality -- needed to catch two infinities of
|
|
the same sign. And perhaps speeds things up a bit sometimes.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/* This catches the case of two infinities of opposite sign, or
|
|
one infinity and one finite number. Two infinities of opposite
|
|
sign would otherwise have an infinite relative tolerance.
|
|
Two infinities of the same sign are caught by the equality check
|
|
above.
|
|
*/
|
|
|
|
if (Py_IS_INFINITY(a.real) || Py_IS_INFINITY(a.imag) ||
|
|
Py_IS_INFINITY(b.real) || Py_IS_INFINITY(b.imag)) {
|
|
return 0;
|
|
}
|
|
|
|
/* now do the regular computation
|
|
this is essentially the "weak" test from the Boost library
|
|
*/
|
|
|
|
diff = _Py_c_abs(_Py_c_diff(a, b));
|
|
|
|
return (((diff <= rel_tol * _Py_c_abs(b)) ||
|
|
(diff <= rel_tol * _Py_c_abs(a))) ||
|
|
(diff <= abs_tol));
|
|
}
|
|
|
|
PyDoc_STRVAR(module_doc,
|
|
"This module provides access to mathematical functions for complex\n"
|
|
"numbers.");
|
|
|
|
static PyMethodDef cmath_methods[] = {
|
|
CMATH_ACOS_METHODDEF
|
|
CMATH_ACOSH_METHODDEF
|
|
CMATH_ASIN_METHODDEF
|
|
CMATH_ASINH_METHODDEF
|
|
CMATH_ATAN_METHODDEF
|
|
CMATH_ATANH_METHODDEF
|
|
CMATH_COS_METHODDEF
|
|
CMATH_COSH_METHODDEF
|
|
CMATH_EXP_METHODDEF
|
|
CMATH_ISCLOSE_METHODDEF
|
|
CMATH_ISFINITE_METHODDEF
|
|
CMATH_ISINF_METHODDEF
|
|
CMATH_ISNAN_METHODDEF
|
|
CMATH_LOG_METHODDEF
|
|
CMATH_LOG10_METHODDEF
|
|
CMATH_PHASE_METHODDEF
|
|
CMATH_POLAR_METHODDEF
|
|
CMATH_RECT_METHODDEF
|
|
CMATH_SIN_METHODDEF
|
|
CMATH_SINH_METHODDEF
|
|
CMATH_SQRT_METHODDEF
|
|
CMATH_TAN_METHODDEF
|
|
CMATH_TANH_METHODDEF
|
|
{NULL, NULL} /* sentinel */
|
|
};
|
|
|
|
static int
|
|
cmath_exec(PyObject *mod)
|
|
{
|
|
if (PyModule_AddObject(mod, "pi", PyFloat_FromDouble(Py_MATH_PI)) < 0) {
|
|
return -1;
|
|
}
|
|
if (PyModule_AddObject(mod, "e", PyFloat_FromDouble(Py_MATH_E)) < 0) {
|
|
return -1;
|
|
}
|
|
// 2pi
|
|
if (PyModule_AddObject(mod, "tau", PyFloat_FromDouble(Py_MATH_TAU)) < 0) {
|
|
return -1;
|
|
}
|
|
if (PyModule_AddObject(mod, "inf", PyFloat_FromDouble(m_inf())) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (PyModule_AddObject(mod, "infj",
|
|
PyComplex_FromCComplex(c_infj())) < 0) {
|
|
return -1;
|
|
}
|
|
#if !defined(PY_NO_SHORT_FLOAT_REPR) || defined(Py_NAN)
|
|
if (PyModule_AddObject(mod, "nan", PyFloat_FromDouble(m_nan())) < 0) {
|
|
return -1;
|
|
}
|
|
if (PyModule_AddObject(mod, "nanj",
|
|
PyComplex_FromCComplex(c_nanj())) < 0) {
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
/* initialize special value tables */
|
|
|
|
#define INIT_SPECIAL_VALUES(NAME, BODY) { Py_complex* p = (Py_complex*)NAME; BODY }
|
|
#define C(REAL, IMAG) p->real = REAL; p->imag = IMAG; ++p;
|
|
|
|
INIT_SPECIAL_VALUES(acos_special_values, {
|
|
C(P34,INF) C(P,INF) C(P,INF) C(P,-INF) C(P,-INF) C(P34,-INF) C(N,INF)
|
|
C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
|
C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
|
C(P12,INF) C(U,U) C(P12,0.) C(P12,-0.) C(U,U) C(P12,-INF) C(P12,N)
|
|
C(P12,INF) C(U,U) C(U,U) C(U,U) C(U,U) C(P12,-INF) C(N,N)
|
|
C(P14,INF) C(0.,INF) C(0.,INF) C(0.,-INF) C(0.,-INF) C(P14,-INF) C(N,INF)
|
|
C(N,INF) C(N,N) C(N,N) C(N,N) C(N,N) C(N,-INF) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(acosh_special_values, {
|
|
C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
|
C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(0.,-P12) C(0.,P12) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
|
C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(asinh_special_values, {
|
|
C(-INF,-P14) C(-INF,-0.) C(-INF,-0.) C(-INF,0.) C(-INF,0.) C(-INF,P14) C(-INF,N)
|
|
C(-INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-INF,P12) C(N,N)
|
|
C(-INF,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
|
C(INF,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(INF,N) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(atanh_special_values, {
|
|
C(-0.,-P12) C(-0.,-P12) C(-0.,-P12) C(-0.,P12) C(-0.,P12) C(-0.,P12) C(-0.,N)
|
|
C(-0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(-0.,P12) C(N,N)
|
|
C(-0.,-P12) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(-0.,P12) C(-0.,N)
|
|
C(0.,-P12) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,P12) C(0.,N)
|
|
C(0.,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(0.,P12) C(N,N)
|
|
C(0.,-P12) C(0.,-P12) C(0.,-P12) C(0.,P12) C(0.,P12) C(0.,P12) C(0.,N)
|
|
C(0.,-P12) C(N,N) C(N,N) C(N,N) C(N,N) C(0.,P12) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(cosh_special_values, {
|
|
C(INF,N) C(U,U) C(INF,0.) C(INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(N,0.) C(U,U) C(1.,0.) C(1.,-0.) C(U,U) C(N,0.) C(N,0.)
|
|
C(N,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,0.) C(N,0.)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|
C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(exp_special_values, {
|
|
C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
|
C(N,N) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(N,N) C(N,N)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|
C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(log_special_values, {
|
|
C(INF,-P34) C(INF,-P) C(INF,-P) C(INF,P) C(INF,P) C(INF,P34) C(INF,N)
|
|
C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(-INF,-P) C(-INF,P) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P12) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,P12) C(N,N)
|
|
C(INF,-P14) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,P14) C(INF,N)
|
|
C(INF,N) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,N) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(sinh_special_values, {
|
|
C(INF,N) C(U,U) C(-INF,-0.) C(-INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(0.,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(0.,N) C(0.,N)
|
|
C(0.,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,N) C(0.,N)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|
C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(sqrt_special_values, {
|
|
C(INF,-INF) C(0.,-INF) C(0.,-INF) C(0.,INF) C(0.,INF) C(INF,INF) C(N,INF)
|
|
C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
|
C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
|
C(INF,-INF) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(INF,INF) C(N,N)
|
|
C(INF,-INF) C(U,U) C(U,U) C(U,U) C(U,U) C(INF,INF) C(N,N)
|
|
C(INF,-INF) C(INF,-0.) C(INF,-0.) C(INF,0.) C(INF,0.) C(INF,INF) C(INF,N)
|
|
C(INF,-INF) C(N,N) C(N,N) C(N,N) C(N,N) C(INF,INF) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(tanh_special_values, {
|
|
C(-1.,0.) C(U,U) C(-1.,-0.) C(-1.,0.) C(U,U) C(-1.,0.) C(-1.,0.)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(N,N) C(U,U) C(-0.,-0.) C(-0.,0.) C(U,U) C(N,N) C(N,N)
|
|
C(N,N) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(N,N) C(N,N)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(1.,0.) C(U,U) C(1.,-0.) C(1.,0.) C(U,U) C(1.,0.) C(1.,0.)
|
|
C(N,N) C(N,N) C(N,-0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|
})
|
|
|
|
INIT_SPECIAL_VALUES(rect_special_values, {
|
|
C(INF,N) C(U,U) C(-INF,0.) C(-INF,-0.) C(U,U) C(INF,N) C(INF,N)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(0.,0.) C(U,U) C(-0.,0.) C(-0.,-0.) C(U,U) C(0.,0.) C(0.,0.)
|
|
C(0.,0.) C(U,U) C(0.,-0.) C(0.,0.) C(U,U) C(0.,0.) C(0.,0.)
|
|
C(N,N) C(U,U) C(U,U) C(U,U) C(U,U) C(N,N) C(N,N)
|
|
C(INF,N) C(U,U) C(INF,-0.) C(INF,0.) C(U,U) C(INF,N) C(INF,N)
|
|
C(N,N) C(N,N) C(N,0.) C(N,0.) C(N,N) C(N,N) C(N,N)
|
|
})
|
|
return 0;
|
|
}
|
|
|
|
static PyModuleDef_Slot cmath_slots[] = {
|
|
{Py_mod_exec, cmath_exec},
|
|
{0, NULL}
|
|
};
|
|
|
|
static struct PyModuleDef cmathmodule = {
|
|
PyModuleDef_HEAD_INIT,
|
|
.m_name = "cmath",
|
|
.m_doc = module_doc,
|
|
.m_size = 0,
|
|
.m_methods = cmath_methods,
|
|
.m_slots = cmath_slots
|
|
};
|
|
|
|
PyMODINIT_FUNC
|
|
PyInit_cmath(void)
|
|
{
|
|
return PyModuleDef_Init(&cmathmodule);
|
|
} |