/* MIT License * * Copyright (c) 2016-2022 INRIA, CMU and Microsoft Corporation * Copyright (c) 2022-2023 HACL* Contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "internal/Hacl_Hash_SHA3.h" const uint32_t Hacl_Hash_SHA3_keccak_rotc[24U] = { 1U, 3U, 6U, 10U, 15U, 21U, 28U, 36U, 45U, 55U, 2U, 14U, 27U, 41U, 56U, 8U, 25U, 43U, 62U, 18U, 39U, 61U, 20U, 44U }; const uint32_t Hacl_Hash_SHA3_keccak_piln[24U] = { 10U, 7U, 11U, 17U, 18U, 3U, 5U, 16U, 8U, 21U, 24U, 4U, 15U, 23U, 19U, 13U, 12U, 2U, 20U, 14U, 22U, 9U, 6U, 1U }; const uint64_t Hacl_Hash_SHA3_keccak_rndc[24U] = { 0x0000000000000001ULL, 0x0000000000008082ULL, 0x800000000000808aULL, 0x8000000080008000ULL, 0x000000000000808bULL, 0x0000000080000001ULL, 0x8000000080008081ULL, 0x8000000000008009ULL, 0x000000000000008aULL, 0x0000000000000088ULL, 0x0000000080008009ULL, 0x000000008000000aULL, 0x000000008000808bULL, 0x800000000000008bULL, 0x8000000000008089ULL, 0x8000000000008003ULL, 0x8000000000008002ULL, 0x8000000000000080ULL, 0x000000000000800aULL, 0x800000008000000aULL, 0x8000000080008081ULL, 0x8000000000008080ULL, 0x0000000080000001ULL, 0x8000000080008008ULL }; static void absorb_inner_32(uint8_t *b, uint64_t *s) { uint64_t ws[32U] = { 0U }; uint8_t *b1 = b; uint64_t u = load64_le(b1); ws[0U] = u; uint64_t u0 = load64_le(b1 + 8U); ws[1U] = u0; uint64_t u1 = load64_le(b1 + 16U); ws[2U] = u1; uint64_t u2 = load64_le(b1 + 24U); ws[3U] = u2; uint64_t u3 = load64_le(b1 + 32U); ws[4U] = u3; uint64_t u4 = load64_le(b1 + 40U); ws[5U] = u4; uint64_t u5 = load64_le(b1 + 48U); ws[6U] = u5; uint64_t u6 = load64_le(b1 + 56U); ws[7U] = u6; uint64_t u7 = load64_le(b1 + 64U); ws[8U] = u7; uint64_t u8 = load64_le(b1 + 72U); ws[9U] = u8; uint64_t u9 = load64_le(b1 + 80U); ws[10U] = u9; uint64_t u10 = load64_le(b1 + 88U); ws[11U] = u10; uint64_t u11 = load64_le(b1 + 96U); ws[12U] = u11; uint64_t u12 = load64_le(b1 + 104U); ws[13U] = u12; uint64_t u13 = load64_le(b1 + 112U); ws[14U] = u13; uint64_t u14 = load64_le(b1 + 120U); ws[15U] = u14; uint64_t u15 = load64_le(b1 + 128U); ws[16U] = u15; uint64_t u16 = load64_le(b1 + 136U); ws[17U] = u16; uint64_t u17 = load64_le(b1 + 144U); ws[18U] = u17; uint64_t u18 = load64_le(b1 + 152U); ws[19U] = u18; uint64_t u19 = load64_le(b1 + 160U); ws[20U] = u19; uint64_t u20 = load64_le(b1 + 168U); ws[21U] = u20; uint64_t u21 = load64_le(b1 + 176U); ws[22U] = u21; uint64_t u22 = load64_le(b1 + 184U); ws[23U] = u22; uint64_t u23 = load64_le(b1 + 192U); ws[24U] = u23; uint64_t u24 = load64_le(b1 + 200U); ws[25U] = u24; uint64_t u25 = load64_le(b1 + 208U); ws[26U] = u25; uint64_t u26 = load64_le(b1 + 216U); ws[27U] = u26; uint64_t u27 = load64_le(b1 + 224U); ws[28U] = u27; uint64_t u28 = load64_le(b1 + 232U); ws[29U] = u28; uint64_t u29 = load64_le(b1 + 240U); ws[30U] = u29; uint64_t u30 = load64_le(b1 + 248U); ws[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws[i]; } for (uint32_t i0 = 0U; i0 < 24U; i0++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i1, 0U, 5U, 1U, uint64_t uu____0 = _C[(i1 + 1U) % 5U]; uint64_t _D = _C[(i1 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i1 + 5U * i] = s[i1 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i0]; s[0U] = s[0U] ^ c; } } static uint32_t block_len(Spec_Hash_Definitions_hash_alg a) { switch (a) { case Spec_Hash_Definitions_SHA3_224: { return 144U; } case Spec_Hash_Definitions_SHA3_256: { return 136U; } case Spec_Hash_Definitions_SHA3_384: { return 104U; } case Spec_Hash_Definitions_SHA3_512: { return 72U; } case Spec_Hash_Definitions_Shake128: { return 168U; } case Spec_Hash_Definitions_Shake256: { return 136U; } default: { KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__); KRML_HOST_EXIT(253U); } } } static uint32_t hash_len(Spec_Hash_Definitions_hash_alg a) { switch (a) { case Spec_Hash_Definitions_SHA3_224: { return 28U; } case Spec_Hash_Definitions_SHA3_256: { return 32U; } case Spec_Hash_Definitions_SHA3_384: { return 48U; } case Spec_Hash_Definitions_SHA3_512: { return 64U; } default: { KRML_HOST_EPRINTF("KaRaMeL incomplete match at %s:%d\n", __FILE__, __LINE__); KRML_HOST_EXIT(253U); } } } void Hacl_Hash_SHA3_update_multi_sha3( Spec_Hash_Definitions_hash_alg a, uint64_t *s, uint8_t *blocks, uint32_t n_blocks ) { uint32_t l = block_len(a) * n_blocks; for (uint32_t i = 0U; i < l / block_len(a); i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = blocks; uint8_t *bl0 = b_; uint8_t *uu____0 = b0 + i * block_len(a); memcpy(bl0, uu____0, block_len(a) * sizeof (uint8_t)); uint32_t unused = block_len(a); KRML_MAYBE_UNUSED_VAR(unused); absorb_inner_32(b_, s); } } void Hacl_Hash_SHA3_update_last_sha3( Spec_Hash_Definitions_hash_alg a, uint64_t *s, uint8_t *input, uint32_t input_len ) { uint8_t suffix; if (a == Spec_Hash_Definitions_Shake128 || a == Spec_Hash_Definitions_Shake256) { suffix = 0x1fU; } else { suffix = 0x06U; } uint32_t len = block_len(a); if (input_len == len) { uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint8_t *b00 = input; uint8_t *bl00 = b_; memcpy(bl00, b00 + 0U * len, len * sizeof (uint8_t)); absorb_inner_32(b_, s); uint8_t b2[256U] = { 0U }; uint8_t *b_0 = b2; uint32_t rem = 0U % len; uint8_t *b01 = input + input_len; uint8_t *bl0 = b_0; memcpy(bl0, b01 + 0U - rem, rem * sizeof (uint8_t)); uint8_t *b02 = b_0; b02[0U % len] = suffix; uint64_t ws[32U] = { 0U }; uint8_t *b = b_0; uint64_t u = load64_le(b); ws[0U] = u; uint64_t u0 = load64_le(b + 8U); ws[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws[i]; } if (!(((uint32_t)suffix & 0x80U) == 0U) && 0U % len == len - 1U) { for (uint32_t i0 = 0U; i0 < 24U; i0++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i1, 0U, 5U, 1U, uint64_t uu____0 = _C[(i1 + 1U) % 5U]; uint64_t _D = _C[(i1 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i1 + 5U * i] = s[i1 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i0]; s[0U] = s[0U] ^ c; } } uint8_t b3[256U] = { 0U }; uint8_t *b4 = b3; uint8_t *b0 = b4; b0[len - 1U] = 0x80U; absorb_inner_32(b4, s); return; } uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = input_len % len; uint8_t *b00 = input; uint8_t *bl0 = b_; memcpy(bl0, b00 + input_len - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[input_len % len] = suffix; uint64_t ws[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws[0U] = u; uint64_t u0 = load64_le(b + 8U); ws[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws[i]; } if (!(((uint32_t)suffix & 0x80U) == 0U) && input_len % len == len - 1U) { for (uint32_t i0 = 0U; i0 < 24U; i0++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i1, 0U, 5U, 1U, uint64_t uu____2 = _C[(i1 + 1U) % 5U]; uint64_t _D = _C[(i1 + 4U) % 5U] ^ (uu____2 << 1U | uu____2 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i1 + 5U * i] = s[i1 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____3 = current; s[_Y] = uu____3 << r | uu____3 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i0]; s[0U] = s[0U] ^ c; } } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[len - 1U] = 0x80U; absorb_inner_32(b3, s); } typedef struct hash_buf2_s { Hacl_Hash_SHA3_hash_buf fst; Hacl_Hash_SHA3_hash_buf snd; } hash_buf2; Spec_Hash_Definitions_hash_alg Hacl_Hash_SHA3_get_alg(Hacl_Hash_SHA3_state_t *s) { Hacl_Hash_SHA3_hash_buf block_state = (*s).block_state; return block_state.fst; } Hacl_Hash_SHA3_state_t *Hacl_Hash_SHA3_malloc(Spec_Hash_Definitions_hash_alg a) { KRML_CHECK_SIZE(sizeof (uint8_t), block_len(a)); uint8_t *buf0 = (uint8_t *)KRML_HOST_CALLOC(block_len(a), sizeof (uint8_t)); uint64_t *buf = (uint64_t *)KRML_HOST_CALLOC(25U, sizeof (uint64_t)); Hacl_Hash_SHA3_hash_buf block_state = { .fst = a, .snd = buf }; Hacl_Hash_SHA3_state_t s = { .block_state = block_state, .buf = buf0, .total_len = (uint64_t)0U }; Hacl_Hash_SHA3_state_t *p = (Hacl_Hash_SHA3_state_t *)KRML_HOST_MALLOC(sizeof (Hacl_Hash_SHA3_state_t)); p[0U] = s; uint64_t *s1 = block_state.snd; memset(s1, 0U, 25U * sizeof (uint64_t)); return p; } void Hacl_Hash_SHA3_free(Hacl_Hash_SHA3_state_t *state) { Hacl_Hash_SHA3_state_t scrut = *state; uint8_t *buf = scrut.buf; Hacl_Hash_SHA3_hash_buf block_state = scrut.block_state; uint64_t *s = block_state.snd; KRML_HOST_FREE(s); KRML_HOST_FREE(buf); KRML_HOST_FREE(state); } Hacl_Hash_SHA3_state_t *Hacl_Hash_SHA3_copy(Hacl_Hash_SHA3_state_t *state) { Hacl_Hash_SHA3_state_t scrut0 = *state; Hacl_Hash_SHA3_hash_buf block_state0 = scrut0.block_state; uint8_t *buf0 = scrut0.buf; uint64_t total_len0 = scrut0.total_len; Spec_Hash_Definitions_hash_alg i = block_state0.fst; KRML_CHECK_SIZE(sizeof (uint8_t), block_len(i)); uint8_t *buf1 = (uint8_t *)KRML_HOST_CALLOC(block_len(i), sizeof (uint8_t)); memcpy(buf1, buf0, block_len(i) * sizeof (uint8_t)); uint64_t *buf = (uint64_t *)KRML_HOST_CALLOC(25U, sizeof (uint64_t)); Hacl_Hash_SHA3_hash_buf block_state = { .fst = i, .snd = buf }; hash_buf2 scrut = { .fst = block_state0, .snd = block_state }; uint64_t *s_dst = scrut.snd.snd; uint64_t *s_src = scrut.fst.snd; memcpy(s_dst, s_src, 25U * sizeof (uint64_t)); Hacl_Hash_SHA3_state_t s = { .block_state = block_state, .buf = buf1, .total_len = total_len0 }; Hacl_Hash_SHA3_state_t *p = (Hacl_Hash_SHA3_state_t *)KRML_HOST_MALLOC(sizeof (Hacl_Hash_SHA3_state_t)); p[0U] = s; return p; } void Hacl_Hash_SHA3_reset(Hacl_Hash_SHA3_state_t *state) { Hacl_Hash_SHA3_state_t scrut = *state; uint8_t *buf = scrut.buf; Hacl_Hash_SHA3_hash_buf block_state = scrut.block_state; Spec_Hash_Definitions_hash_alg i = block_state.fst; KRML_MAYBE_UNUSED_VAR(i); uint64_t *s = block_state.snd; memset(s, 0U, 25U * sizeof (uint64_t)); Hacl_Hash_SHA3_state_t tmp = { .block_state = block_state, .buf = buf, .total_len = (uint64_t)0U }; state[0U] = tmp; } Hacl_Streaming_Types_error_code Hacl_Hash_SHA3_update(Hacl_Hash_SHA3_state_t *state, uint8_t *chunk, uint32_t chunk_len) { Hacl_Hash_SHA3_state_t s = *state; Hacl_Hash_SHA3_hash_buf block_state = s.block_state; uint64_t total_len = s.total_len; Spec_Hash_Definitions_hash_alg i = block_state.fst; if ((uint64_t)chunk_len > 0xFFFFFFFFFFFFFFFFULL - total_len) { return Hacl_Streaming_Types_MaximumLengthExceeded; } uint32_t sz; if (total_len % (uint64_t)block_len(i) == 0ULL && total_len > 0ULL) { sz = block_len(i); } else { sz = (uint32_t)(total_len % (uint64_t)block_len(i)); } if (chunk_len <= block_len(i) - sz) { Hacl_Hash_SHA3_state_t s1 = *state; Hacl_Hash_SHA3_hash_buf block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)block_len(i) == 0ULL && total_len1 > 0ULL) { sz1 = block_len(i); } else { sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i)); } uint8_t *buf2 = buf + sz1; memcpy(buf2, chunk, chunk_len * sizeof (uint8_t)); uint64_t total_len2 = total_len1 + (uint64_t)chunk_len; *state = ((Hacl_Hash_SHA3_state_t){ .block_state = block_state1, .buf = buf, .total_len = total_len2 }); } else if (sz == 0U) { Hacl_Hash_SHA3_state_t s1 = *state; Hacl_Hash_SHA3_hash_buf block_state1 = s1.block_state; uint8_t *buf = s1.buf; uint64_t total_len1 = s1.total_len; uint32_t sz1; if (total_len1 % (uint64_t)block_len(i) == 0ULL && total_len1 > 0ULL) { sz1 = block_len(i); } else { sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i)); } if (!(sz1 == 0U)) { Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, buf, block_len(i) / block_len(a1)); } uint32_t ite; if ((uint64_t)chunk_len % (uint64_t)block_len(i) == 0ULL && (uint64_t)chunk_len > 0ULL) { ite = block_len(i); } else { ite = (uint32_t)((uint64_t)chunk_len % (uint64_t)block_len(i)); } uint32_t n_blocks = (chunk_len - ite) / block_len(i); uint32_t data1_len = n_blocks * block_len(i); uint32_t data2_len = chunk_len - data1_len; uint8_t *data1 = chunk; uint8_t *data2 = chunk + data1_len; Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, data1, data1_len / block_len(a1)); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *state = ( (Hacl_Hash_SHA3_state_t){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)chunk_len } ); } else { uint32_t diff = block_len(i) - sz; uint8_t *chunk1 = chunk; uint8_t *chunk2 = chunk + diff; Hacl_Hash_SHA3_state_t s1 = *state; Hacl_Hash_SHA3_hash_buf block_state10 = s1.block_state; uint8_t *buf0 = s1.buf; uint64_t total_len10 = s1.total_len; uint32_t sz10; if (total_len10 % (uint64_t)block_len(i) == 0ULL && total_len10 > 0ULL) { sz10 = block_len(i); } else { sz10 = (uint32_t)(total_len10 % (uint64_t)block_len(i)); } uint8_t *buf2 = buf0 + sz10; memcpy(buf2, chunk1, diff * sizeof (uint8_t)); uint64_t total_len2 = total_len10 + (uint64_t)diff; *state = ( (Hacl_Hash_SHA3_state_t){ .block_state = block_state10, .buf = buf0, .total_len = total_len2 } ); Hacl_Hash_SHA3_state_t s10 = *state; Hacl_Hash_SHA3_hash_buf block_state1 = s10.block_state; uint8_t *buf = s10.buf; uint64_t total_len1 = s10.total_len; uint32_t sz1; if (total_len1 % (uint64_t)block_len(i) == 0ULL && total_len1 > 0ULL) { sz1 = block_len(i); } else { sz1 = (uint32_t)(total_len1 % (uint64_t)block_len(i)); } if (!(sz1 == 0U)) { Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, buf, block_len(i) / block_len(a1)); } uint32_t ite; if ( (uint64_t)(chunk_len - diff) % (uint64_t)block_len(i) == 0ULL && (uint64_t)(chunk_len - diff) > 0ULL ) { ite = block_len(i); } else { ite = (uint32_t)((uint64_t)(chunk_len - diff) % (uint64_t)block_len(i)); } uint32_t n_blocks = (chunk_len - diff - ite) / block_len(i); uint32_t data1_len = n_blocks * block_len(i); uint32_t data2_len = chunk_len - diff - data1_len; uint8_t *data1 = chunk2; uint8_t *data2 = chunk2 + data1_len; Spec_Hash_Definitions_hash_alg a1 = block_state1.fst; uint64_t *s2 = block_state1.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s2, data1, data1_len / block_len(a1)); uint8_t *dst = buf; memcpy(dst, data2, data2_len * sizeof (uint8_t)); *state = ( (Hacl_Hash_SHA3_state_t){ .block_state = block_state1, .buf = buf, .total_len = total_len1 + (uint64_t)(chunk_len - diff) } ); } return Hacl_Streaming_Types_Success; } static void digest_( Spec_Hash_Definitions_hash_alg a, Hacl_Hash_SHA3_state_t *state, uint8_t *output, uint32_t l ) { Hacl_Hash_SHA3_state_t scrut0 = *state; Hacl_Hash_SHA3_hash_buf block_state = scrut0.block_state; uint8_t *buf_ = scrut0.buf; uint64_t total_len = scrut0.total_len; uint32_t r; if (total_len % (uint64_t)block_len(a) == 0ULL && total_len > 0ULL) { r = block_len(a); } else { r = (uint32_t)(total_len % (uint64_t)block_len(a)); } uint8_t *buf_1 = buf_; uint64_t buf[25U] = { 0U }; Hacl_Hash_SHA3_hash_buf tmp_block_state = { .fst = a, .snd = buf }; hash_buf2 scrut = { .fst = block_state, .snd = tmp_block_state }; uint64_t *s_dst = scrut.snd.snd; uint64_t *s_src = scrut.fst.snd; memcpy(s_dst, s_src, 25U * sizeof (uint64_t)); uint32_t ite; if (r % block_len(a) == 0U && r > 0U) { ite = block_len(a); } else { ite = r % block_len(a); } uint8_t *buf_last = buf_1 + r - ite; uint8_t *buf_multi = buf_1; Spec_Hash_Definitions_hash_alg a1 = tmp_block_state.fst; uint64_t *s0 = tmp_block_state.snd; Hacl_Hash_SHA3_update_multi_sha3(a1, s0, buf_multi, 0U / block_len(a1)); Spec_Hash_Definitions_hash_alg a10 = tmp_block_state.fst; uint64_t *s1 = tmp_block_state.snd; Hacl_Hash_SHA3_update_last_sha3(a10, s1, buf_last, r); Spec_Hash_Definitions_hash_alg a11 = tmp_block_state.fst; uint64_t *s = tmp_block_state.snd; if (a11 == Spec_Hash_Definitions_Shake128 || a11 == Spec_Hash_Definitions_Shake256) { for (uint32_t i0 = 0U; i0 < l / block_len(a11); i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b0 = output; uint8_t *uu____0 = hbuf; memcpy(b0 + i0 * block_len(a11), uu____0, block_len(a11) * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____1 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____1 << 1U | uu____1 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r1 = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____2 = current; s[_Y] = uu____2 << r1 | uu____2 >> (64U - r1); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = l % block_len(a11); uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(output + l - remOut, hbuf, remOut * sizeof (uint8_t)); return; } for (uint32_t i0 = 0U; i0 < hash_len(a11) / block_len(a11); i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b0 = output; uint8_t *uu____3 = hbuf; memcpy(b0 + i0 * block_len(a11), uu____3, block_len(a11) * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____4 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____4 << 1U | uu____4 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r1 = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____5 = current; s[_Y] = uu____5 << r1 | uu____5 >> (64U - r1); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = hash_len(a11) % block_len(a11); uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *uu____6 = hbuf; memcpy(output + hash_len(a11) - remOut, uu____6, remOut * sizeof (uint8_t)); } Hacl_Streaming_Types_error_code Hacl_Hash_SHA3_digest(Hacl_Hash_SHA3_state_t *state, uint8_t *output) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(state); if (a1 == Spec_Hash_Definitions_Shake128 || a1 == Spec_Hash_Definitions_Shake256) { return Hacl_Streaming_Types_InvalidAlgorithm; } digest_(a1, state, output, hash_len(a1)); return Hacl_Streaming_Types_Success; } Hacl_Streaming_Types_error_code Hacl_Hash_SHA3_squeeze(Hacl_Hash_SHA3_state_t *s, uint8_t *dst, uint32_t l) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(s); if (!(a1 == Spec_Hash_Definitions_Shake128 || a1 == Spec_Hash_Definitions_Shake256)) { return Hacl_Streaming_Types_InvalidAlgorithm; } if (l == 0U) { return Hacl_Streaming_Types_InvalidLength; } digest_(a1, s, dst, l); return Hacl_Streaming_Types_Success; } uint32_t Hacl_Hash_SHA3_block_len(Hacl_Hash_SHA3_state_t *s) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(s); return block_len(a1); } uint32_t Hacl_Hash_SHA3_hash_len(Hacl_Hash_SHA3_state_t *s) { Spec_Hash_Definitions_hash_alg a1 = Hacl_Hash_SHA3_get_alg(s); return hash_len(a1); } bool Hacl_Hash_SHA3_is_shake(Hacl_Hash_SHA3_state_t *s) { Spec_Hash_Definitions_hash_alg uu____0 = Hacl_Hash_SHA3_get_alg(s); return uu____0 == Spec_Hash_Definitions_Shake128 || uu____0 == Spec_Hash_Definitions_Shake256; } void Hacl_Hash_SHA3_absorb_inner_32(uint32_t rateInBytes, uint8_t *b, uint64_t *s) { KRML_MAYBE_UNUSED_VAR(rateInBytes); uint64_t ws[32U] = { 0U }; uint8_t *b1 = b; uint64_t u = load64_le(b1); ws[0U] = u; uint64_t u0 = load64_le(b1 + 8U); ws[1U] = u0; uint64_t u1 = load64_le(b1 + 16U); ws[2U] = u1; uint64_t u2 = load64_le(b1 + 24U); ws[3U] = u2; uint64_t u3 = load64_le(b1 + 32U); ws[4U] = u3; uint64_t u4 = load64_le(b1 + 40U); ws[5U] = u4; uint64_t u5 = load64_le(b1 + 48U); ws[6U] = u5; uint64_t u6 = load64_le(b1 + 56U); ws[7U] = u6; uint64_t u7 = load64_le(b1 + 64U); ws[8U] = u7; uint64_t u8 = load64_le(b1 + 72U); ws[9U] = u8; uint64_t u9 = load64_le(b1 + 80U); ws[10U] = u9; uint64_t u10 = load64_le(b1 + 88U); ws[11U] = u10; uint64_t u11 = load64_le(b1 + 96U); ws[12U] = u11; uint64_t u12 = load64_le(b1 + 104U); ws[13U] = u12; uint64_t u13 = load64_le(b1 + 112U); ws[14U] = u13; uint64_t u14 = load64_le(b1 + 120U); ws[15U] = u14; uint64_t u15 = load64_le(b1 + 128U); ws[16U] = u15; uint64_t u16 = load64_le(b1 + 136U); ws[17U] = u16; uint64_t u17 = load64_le(b1 + 144U); ws[18U] = u17; uint64_t u18 = load64_le(b1 + 152U); ws[19U] = u18; uint64_t u19 = load64_le(b1 + 160U); ws[20U] = u19; uint64_t u20 = load64_le(b1 + 168U); ws[21U] = u20; uint64_t u21 = load64_le(b1 + 176U); ws[22U] = u21; uint64_t u22 = load64_le(b1 + 184U); ws[23U] = u22; uint64_t u23 = load64_le(b1 + 192U); ws[24U] = u23; uint64_t u24 = load64_le(b1 + 200U); ws[25U] = u24; uint64_t u25 = load64_le(b1 + 208U); ws[26U] = u25; uint64_t u26 = load64_le(b1 + 216U); ws[27U] = u26; uint64_t u27 = load64_le(b1 + 224U); ws[28U] = u27; uint64_t u28 = load64_le(b1 + 232U); ws[29U] = u28; uint64_t u29 = load64_le(b1 + 240U); ws[30U] = u29; uint64_t u30 = load64_le(b1 + 248U); ws[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws[i]; } for (uint32_t i0 = 0U; i0 < 24U; i0++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i1, 0U, 5U, 1U, uint64_t uu____0 = _C[(i1 + 1U) % 5U]; uint64_t _D = _C[(i1 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i1 + 5U * i] = s[i1 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i0]; s[0U] = s[0U] ^ c; } } void Hacl_Hash_SHA3_shake128( uint8_t *output, uint32_t outputByteLen, uint8_t *input, uint32_t inputByteLen ) { uint8_t *ib = input; uint8_t *rb = output; uint64_t s[25U] = { 0U }; uint32_t rateInBytes1 = 168U; for (uint32_t i = 0U; i < inputByteLen / rateInBytes1; i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = ib; uint8_t *bl0 = b_; memcpy(bl0, b0 + i * rateInBytes1, rateInBytes1 * sizeof (uint8_t)); Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b_, s); } uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = inputByteLen % rateInBytes1; uint8_t *b00 = ib; uint8_t *bl0 = b_; memcpy(bl0, b00 + inputByteLen - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[inputByteLen % rateInBytes1] = 0x1FU; uint64_t ws0[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws0[0U] = u; uint64_t u0 = load64_le(b + 8U); ws0[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws0[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws0[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws0[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws0[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws0[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws0[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws0[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws0[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws0[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws0[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws0[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws0[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws0[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws0[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws0[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws0[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws0[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws0[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws0[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws0[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws0[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws0[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws0[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws0[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws0[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws0[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws0[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws0[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws0[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws0[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws0[i]; } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[rateInBytes1 - 1U] = 0x80U; Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b3, s); for (uint32_t i0 = 0U; i0 < outputByteLen / rateInBytes1; i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b02 = rb; memcpy(b02 + i0 * rateInBytes1, hbuf, rateInBytes1 * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____0 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = outputByteLen % rateInBytes1; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(rb + outputByteLen - remOut, hbuf, remOut * sizeof (uint8_t)); } void Hacl_Hash_SHA3_shake256( uint8_t *output, uint32_t outputByteLen, uint8_t *input, uint32_t inputByteLen ) { uint8_t *ib = input; uint8_t *rb = output; uint64_t s[25U] = { 0U }; uint32_t rateInBytes1 = 136U; for (uint32_t i = 0U; i < inputByteLen / rateInBytes1; i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = ib; uint8_t *bl0 = b_; memcpy(bl0, b0 + i * rateInBytes1, rateInBytes1 * sizeof (uint8_t)); Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b_, s); } uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = inputByteLen % rateInBytes1; uint8_t *b00 = ib; uint8_t *bl0 = b_; memcpy(bl0, b00 + inputByteLen - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[inputByteLen % rateInBytes1] = 0x1FU; uint64_t ws0[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws0[0U] = u; uint64_t u0 = load64_le(b + 8U); ws0[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws0[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws0[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws0[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws0[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws0[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws0[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws0[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws0[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws0[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws0[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws0[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws0[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws0[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws0[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws0[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws0[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws0[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws0[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws0[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws0[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws0[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws0[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws0[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws0[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws0[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws0[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws0[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws0[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws0[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws0[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws0[i]; } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[rateInBytes1 - 1U] = 0x80U; Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b3, s); for (uint32_t i0 = 0U; i0 < outputByteLen / rateInBytes1; i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b02 = rb; memcpy(b02 + i0 * rateInBytes1, hbuf, rateInBytes1 * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____0 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = outputByteLen % rateInBytes1; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(rb + outputByteLen - remOut, hbuf, remOut * sizeof (uint8_t)); } void Hacl_Hash_SHA3_sha3_224(uint8_t *output, uint8_t *input, uint32_t inputByteLen) { uint8_t *ib = input; uint8_t *rb = output; uint64_t s[25U] = { 0U }; uint32_t rateInBytes1 = 144U; for (uint32_t i = 0U; i < inputByteLen / rateInBytes1; i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = ib; uint8_t *bl0 = b_; memcpy(bl0, b0 + i * rateInBytes1, rateInBytes1 * sizeof (uint8_t)); Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b_, s); } uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = inputByteLen % rateInBytes1; uint8_t *b00 = ib; uint8_t *bl0 = b_; memcpy(bl0, b00 + inputByteLen - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[inputByteLen % rateInBytes1] = 0x06U; uint64_t ws0[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws0[0U] = u; uint64_t u0 = load64_le(b + 8U); ws0[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws0[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws0[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws0[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws0[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws0[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws0[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws0[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws0[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws0[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws0[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws0[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws0[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws0[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws0[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws0[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws0[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws0[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws0[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws0[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws0[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws0[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws0[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws0[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws0[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws0[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws0[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws0[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws0[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws0[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws0[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws0[i]; } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[rateInBytes1 - 1U] = 0x80U; Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b3, s); for (uint32_t i0 = 0U; i0 < 28U / rateInBytes1; i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b02 = rb; memcpy(b02 + i0 * rateInBytes1, hbuf, rateInBytes1 * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____0 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = 28U % rateInBytes1; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(rb + 28U - remOut, hbuf, remOut * sizeof (uint8_t)); } void Hacl_Hash_SHA3_sha3_256(uint8_t *output, uint8_t *input, uint32_t inputByteLen) { uint8_t *ib = input; uint8_t *rb = output; uint64_t s[25U] = { 0U }; uint32_t rateInBytes1 = 136U; for (uint32_t i = 0U; i < inputByteLen / rateInBytes1; i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = ib; uint8_t *bl0 = b_; memcpy(bl0, b0 + i * rateInBytes1, rateInBytes1 * sizeof (uint8_t)); Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b_, s); } uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = inputByteLen % rateInBytes1; uint8_t *b00 = ib; uint8_t *bl0 = b_; memcpy(bl0, b00 + inputByteLen - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[inputByteLen % rateInBytes1] = 0x06U; uint64_t ws0[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws0[0U] = u; uint64_t u0 = load64_le(b + 8U); ws0[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws0[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws0[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws0[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws0[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws0[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws0[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws0[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws0[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws0[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws0[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws0[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws0[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws0[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws0[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws0[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws0[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws0[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws0[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws0[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws0[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws0[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws0[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws0[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws0[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws0[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws0[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws0[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws0[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws0[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws0[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws0[i]; } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[rateInBytes1 - 1U] = 0x80U; Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b3, s); for (uint32_t i0 = 0U; i0 < 32U / rateInBytes1; i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b02 = rb; memcpy(b02 + i0 * rateInBytes1, hbuf, rateInBytes1 * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____0 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = 32U % rateInBytes1; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(rb + 32U - remOut, hbuf, remOut * sizeof (uint8_t)); } void Hacl_Hash_SHA3_sha3_384(uint8_t *output, uint8_t *input, uint32_t inputByteLen) { uint8_t *ib = input; uint8_t *rb = output; uint64_t s[25U] = { 0U }; uint32_t rateInBytes1 = 104U; for (uint32_t i = 0U; i < inputByteLen / rateInBytes1; i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = ib; uint8_t *bl0 = b_; memcpy(bl0, b0 + i * rateInBytes1, rateInBytes1 * sizeof (uint8_t)); Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b_, s); } uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = inputByteLen % rateInBytes1; uint8_t *b00 = ib; uint8_t *bl0 = b_; memcpy(bl0, b00 + inputByteLen - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[inputByteLen % rateInBytes1] = 0x06U; uint64_t ws0[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws0[0U] = u; uint64_t u0 = load64_le(b + 8U); ws0[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws0[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws0[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws0[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws0[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws0[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws0[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws0[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws0[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws0[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws0[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws0[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws0[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws0[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws0[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws0[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws0[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws0[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws0[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws0[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws0[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws0[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws0[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws0[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws0[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws0[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws0[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws0[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws0[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws0[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws0[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws0[i]; } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[rateInBytes1 - 1U] = 0x80U; Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b3, s); for (uint32_t i0 = 0U; i0 < 48U / rateInBytes1; i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b02 = rb; memcpy(b02 + i0 * rateInBytes1, hbuf, rateInBytes1 * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____0 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = 48U % rateInBytes1; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(rb + 48U - remOut, hbuf, remOut * sizeof (uint8_t)); } void Hacl_Hash_SHA3_sha3_512(uint8_t *output, uint8_t *input, uint32_t inputByteLen) { uint8_t *ib = input; uint8_t *rb = output; uint64_t s[25U] = { 0U }; uint32_t rateInBytes1 = 72U; for (uint32_t i = 0U; i < inputByteLen / rateInBytes1; i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = ib; uint8_t *bl0 = b_; memcpy(bl0, b0 + i * rateInBytes1, rateInBytes1 * sizeof (uint8_t)); Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b_, s); } uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = inputByteLen % rateInBytes1; uint8_t *b00 = ib; uint8_t *bl0 = b_; memcpy(bl0, b00 + inputByteLen - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[inputByteLen % rateInBytes1] = 0x06U; uint64_t ws0[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws0[0U] = u; uint64_t u0 = load64_le(b + 8U); ws0[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws0[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws0[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws0[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws0[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws0[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws0[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws0[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws0[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws0[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws0[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws0[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws0[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws0[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws0[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws0[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws0[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws0[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws0[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws0[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws0[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws0[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws0[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws0[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws0[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws0[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws0[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws0[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws0[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws0[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws0[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { s[i] = s[i] ^ ws0[i]; } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[rateInBytes1 - 1U] = 0x80U; Hacl_Hash_SHA3_absorb_inner_32(rateInBytes1, b3, s); for (uint32_t i0 = 0U; i0 < 64U / rateInBytes1; i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b02 = rb; memcpy(b02 + i0 * rateInBytes1, hbuf, rateInBytes1 * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = s[i + 0U] ^ (s[i + 5U] ^ (s[i + 10U] ^ (s[i + 15U] ^ s[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____0 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, s[i2 + 5U * i] = s[i2 + 5U * i] ^ _D;);); uint64_t x = s[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = s[_Y]; uint64_t uu____1 = current; s[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = s[0U + 5U * i] ^ (~s[1U + 5U * i] & s[2U + 5U * i]); uint64_t v1 = s[1U + 5U * i] ^ (~s[2U + 5U * i] & s[3U + 5U * i]); uint64_t v2 = s[2U + 5U * i] ^ (~s[3U + 5U * i] & s[4U + 5U * i]); uint64_t v3 = s[3U + 5U * i] ^ (~s[4U + 5U * i] & s[0U + 5U * i]); uint64_t v4 = s[4U + 5U * i] ^ (~s[0U + 5U * i] & s[1U + 5U * i]); s[0U + 5U * i] = v0; s[1U + 5U * i] = v1; s[2U + 5U * i] = v2; s[3U + 5U * i] = v3; s[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; s[0U] = s[0U] ^ c; } } uint32_t remOut = 64U % rateInBytes1; uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, s, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } memcpy(rb + 64U - remOut, hbuf, remOut * sizeof (uint8_t)); } /** Allocate state buffer of 200-bytes */ uint64_t *Hacl_Hash_SHA3_state_malloc(void) { uint64_t *buf = (uint64_t *)KRML_HOST_CALLOC(25U, sizeof (uint64_t)); return buf; } /** Free state buffer */ void Hacl_Hash_SHA3_state_free(uint64_t *s) { KRML_HOST_FREE(s); } /** Absorb number of input blocks and write the output state This function is intended to receive a hash state and input buffer. It processes an input of multiple of 168-bytes (SHAKE128 block size), any additional bytes of final partial block are ignored. The argument `state` (IN/OUT) points to hash state, i.e., uint64_t[25] The argument `input` (IN) points to `inputByteLen` bytes of valid memory, i.e., uint8_t[inputByteLen] */ void Hacl_Hash_SHA3_shake128_absorb_nblocks(uint64_t *state, uint8_t *input, uint32_t inputByteLen) { for (uint32_t i = 0U; i < inputByteLen / 168U; i++) { uint8_t b[256U] = { 0U }; uint8_t *b_ = b; uint8_t *b0 = input; uint8_t *bl0 = b_; memcpy(bl0, b0 + i * 168U, 168U * sizeof (uint8_t)); Hacl_Hash_SHA3_absorb_inner_32(168U, b_, state); } } /** Absorb a final partial block of input and write the output state This function is intended to receive a hash state and input buffer. It processes a sequence of bytes at end of input buffer that is less than 168-bytes (SHAKE128 block size), any bytes of full blocks at start of input buffer are ignored. The argument `state` (IN/OUT) points to hash state, i.e., uint64_t[25] The argument `input` (IN) points to `inputByteLen` bytes of valid memory, i.e., uint8_t[inputByteLen] Note: Full size of input buffer must be passed to `inputByteLen` including the number of full-block bytes at start of input buffer that are ignored */ void Hacl_Hash_SHA3_shake128_absorb_final(uint64_t *state, uint8_t *input, uint32_t inputByteLen) { uint8_t b1[256U] = { 0U }; uint8_t *b_ = b1; uint32_t rem = inputByteLen % 168U; uint8_t *b00 = input; uint8_t *bl0 = b_; memcpy(bl0, b00 + inputByteLen - rem, rem * sizeof (uint8_t)); uint8_t *b01 = b_; b01[inputByteLen % 168U] = 0x1FU; uint64_t ws[32U] = { 0U }; uint8_t *b = b_; uint64_t u = load64_le(b); ws[0U] = u; uint64_t u0 = load64_le(b + 8U); ws[1U] = u0; uint64_t u1 = load64_le(b + 16U); ws[2U] = u1; uint64_t u2 = load64_le(b + 24U); ws[3U] = u2; uint64_t u3 = load64_le(b + 32U); ws[4U] = u3; uint64_t u4 = load64_le(b + 40U); ws[5U] = u4; uint64_t u5 = load64_le(b + 48U); ws[6U] = u5; uint64_t u6 = load64_le(b + 56U); ws[7U] = u6; uint64_t u7 = load64_le(b + 64U); ws[8U] = u7; uint64_t u8 = load64_le(b + 72U); ws[9U] = u8; uint64_t u9 = load64_le(b + 80U); ws[10U] = u9; uint64_t u10 = load64_le(b + 88U); ws[11U] = u10; uint64_t u11 = load64_le(b + 96U); ws[12U] = u11; uint64_t u12 = load64_le(b + 104U); ws[13U] = u12; uint64_t u13 = load64_le(b + 112U); ws[14U] = u13; uint64_t u14 = load64_le(b + 120U); ws[15U] = u14; uint64_t u15 = load64_le(b + 128U); ws[16U] = u15; uint64_t u16 = load64_le(b + 136U); ws[17U] = u16; uint64_t u17 = load64_le(b + 144U); ws[18U] = u17; uint64_t u18 = load64_le(b + 152U); ws[19U] = u18; uint64_t u19 = load64_le(b + 160U); ws[20U] = u19; uint64_t u20 = load64_le(b + 168U); ws[21U] = u20; uint64_t u21 = load64_le(b + 176U); ws[22U] = u21; uint64_t u22 = load64_le(b + 184U); ws[23U] = u22; uint64_t u23 = load64_le(b + 192U); ws[24U] = u23; uint64_t u24 = load64_le(b + 200U); ws[25U] = u24; uint64_t u25 = load64_le(b + 208U); ws[26U] = u25; uint64_t u26 = load64_le(b + 216U); ws[27U] = u26; uint64_t u27 = load64_le(b + 224U); ws[28U] = u27; uint64_t u28 = load64_le(b + 232U); ws[29U] = u28; uint64_t u29 = load64_le(b + 240U); ws[30U] = u29; uint64_t u30 = load64_le(b + 248U); ws[31U] = u30; for (uint32_t i = 0U; i < 25U; i++) { state[i] = state[i] ^ ws[i]; } uint8_t b2[256U] = { 0U }; uint8_t *b3 = b2; uint8_t *b0 = b3; b0[167U] = 0x80U; Hacl_Hash_SHA3_absorb_inner_32(168U, b3, state); } /** Squeeze a hash state to output buffer This function is intended to receive a hash state and output buffer. It produces an output of multiple of 168-bytes (SHAKE128 block size), any additional bytes of final partial block are ignored. The argument `state` (IN) points to hash state, i.e., uint64_t[25] The argument `output` (OUT) points to `outputByteLen` bytes of valid memory, i.e., uint8_t[outputByteLen] */ void Hacl_Hash_SHA3_shake128_squeeze_nblocks( uint64_t *state, uint8_t *output, uint32_t outputByteLen ) { for (uint32_t i0 = 0U; i0 < outputByteLen / 168U; i0++) { uint8_t hbuf[256U] = { 0U }; uint64_t ws[32U] = { 0U }; memcpy(ws, state, 25U * sizeof (uint64_t)); for (uint32_t i = 0U; i < 32U; i++) { store64_le(hbuf + i * 8U, ws[i]); } uint8_t *b0 = output; memcpy(b0 + i0 * 168U, hbuf, 168U * sizeof (uint8_t)); for (uint32_t i1 = 0U; i1 < 24U; i1++) { uint64_t _C[5U] = { 0U }; KRML_MAYBE_FOR5(i, 0U, 5U, 1U, _C[i] = state[i + 0U] ^ (state[i + 5U] ^ (state[i + 10U] ^ (state[i + 15U] ^ state[i + 20U])));); KRML_MAYBE_FOR5(i2, 0U, 5U, 1U, uint64_t uu____0 = _C[(i2 + 1U) % 5U]; uint64_t _D = _C[(i2 + 4U) % 5U] ^ (uu____0 << 1U | uu____0 >> 63U); KRML_MAYBE_FOR5(i, 0U, 5U, 1U, state[i2 + 5U * i] = state[i2 + 5U * i] ^ _D;);); uint64_t x = state[1U]; uint64_t current = x; for (uint32_t i = 0U; i < 24U; i++) { uint32_t _Y = Hacl_Hash_SHA3_keccak_piln[i]; uint32_t r = Hacl_Hash_SHA3_keccak_rotc[i]; uint64_t temp = state[_Y]; uint64_t uu____1 = current; state[_Y] = uu____1 << r | uu____1 >> (64U - r); current = temp; } KRML_MAYBE_FOR5(i, 0U, 5U, 1U, uint64_t v0 = state[0U + 5U * i] ^ (~state[1U + 5U * i] & state[2U + 5U * i]); uint64_t v1 = state[1U + 5U * i] ^ (~state[2U + 5U * i] & state[3U + 5U * i]); uint64_t v2 = state[2U + 5U * i] ^ (~state[3U + 5U * i] & state[4U + 5U * i]); uint64_t v3 = state[3U + 5U * i] ^ (~state[4U + 5U * i] & state[0U + 5U * i]); uint64_t v4 = state[4U + 5U * i] ^ (~state[0U + 5U * i] & state[1U + 5U * i]); state[0U + 5U * i] = v0; state[1U + 5U * i] = v1; state[2U + 5U * i] = v2; state[3U + 5U * i] = v3; state[4U + 5U * i] = v4;); uint64_t c = Hacl_Hash_SHA3_keccak_rndc[i1]; state[0U] = state[0U] ^ c; } } }