/* Tuple object implementation */ #include "Python.h" /* Speed optimization to avoid frequent malloc/free of small tuples */ #ifndef MAXSAVESIZE #define MAXSAVESIZE 20 /* Largest tuple to save on free list */ #endif #ifndef MAXSAVEDTUPLES #define MAXSAVEDTUPLES 2000 /* Maximum number of tuples of each size to save */ #endif #if MAXSAVESIZE > 0 /* Entries 1 up to MAXSAVESIZE are free lists, entry 0 is the empty tuple () of which at most one instance will be allocated. */ static PyTupleObject *free_tuples[MAXSAVESIZE]; static int num_free_tuples[MAXSAVESIZE]; #endif #ifdef COUNT_ALLOCS int fast_tuple_allocs; int tuple_zero_allocs; #endif PyObject * PyTuple_New(register int size) { register int i; register PyTupleObject *op; if (size < 0) { PyErr_BadInternalCall(); return NULL; } #if MAXSAVESIZE > 0 if (size == 0 && free_tuples[0]) { op = free_tuples[0]; Py_INCREF(op); #ifdef COUNT_ALLOCS tuple_zero_allocs++; #endif return (PyObject *) op; } if (0 < size && size < MAXSAVESIZE && (op = free_tuples[size]) != NULL) { free_tuples[size] = (PyTupleObject *) op->ob_item[0]; num_free_tuples[size]--; #ifdef COUNT_ALLOCS fast_tuple_allocs++; #endif /* PyObject_InitVar is inlined */ #ifdef Py_TRACE_REFS op->ob_size = size; op->ob_type = &PyTuple_Type; #endif _Py_NewReference((PyObject *)op); } else #endif { int nbytes = size * sizeof(PyObject *); /* Check for overflow */ if (nbytes / sizeof(PyObject *) != (size_t)size || (nbytes += sizeof(PyTupleObject) - sizeof(PyObject *) + PyGC_HEAD_SIZE) <= 0) { return PyErr_NoMemory(); } /* PyObject_NewVar is inlined */ op = (PyTupleObject *) PyObject_MALLOC(nbytes); if (op == NULL) return PyErr_NoMemory(); op = (PyTupleObject *) PyObject_FROM_GC(op); PyObject_INIT_VAR(op, &PyTuple_Type, size); } for (i = 0; i < size; i++) op->ob_item[i] = NULL; #if MAXSAVESIZE > 0 if (size == 0) { free_tuples[0] = op; ++num_free_tuples[0]; Py_INCREF(op); /* extra INCREF so that this is never freed */ } #endif PyObject_GC_Init(op); return (PyObject *) op; } int PyTuple_Size(register PyObject *op) { if (!PyTuple_Check(op)) { PyErr_BadInternalCall(); return -1; } else return ((PyTupleObject *)op)->ob_size; } PyObject * PyTuple_GetItem(register PyObject *op, register int i) { if (!PyTuple_Check(op)) { PyErr_BadInternalCall(); return NULL; } if (i < 0 || i >= ((PyTupleObject *)op) -> ob_size) { PyErr_SetString(PyExc_IndexError, "tuple index out of range"); return NULL; } return ((PyTupleObject *)op) -> ob_item[i]; } int PyTuple_SetItem(register PyObject *op, register int i, PyObject *newitem) { register PyObject *olditem; register PyObject **p; if (!PyTuple_Check(op) || op->ob_refcnt != 1) { Py_XDECREF(newitem); PyErr_BadInternalCall(); return -1; } if (i < 0 || i >= ((PyTupleObject *)op) -> ob_size) { Py_XDECREF(newitem); PyErr_SetString(PyExc_IndexError, "tuple assignment index out of range"); return -1; } p = ((PyTupleObject *)op) -> ob_item + i; olditem = *p; *p = newitem; Py_XDECREF(olditem); return 0; } /* Methods */ static void tupledealloc(register PyTupleObject *op) { register int i; register int len = op->ob_size; Py_TRASHCAN_SAFE_BEGIN(op) PyObject_GC_Fini(op); if (len > 0) { i = len; while (--i >= 0) Py_XDECREF(op->ob_item[i]); #if MAXSAVESIZE > 0 if (len < MAXSAVESIZE && num_free_tuples[len] < MAXSAVEDTUPLES) { op->ob_item[0] = (PyObject *) free_tuples[len]; num_free_tuples[len]++; free_tuples[len] = op; goto done; /* return */ } #endif } op = (PyTupleObject *) PyObject_AS_GC(op); PyObject_DEL(op); done: Py_TRASHCAN_SAFE_END(op) } static int tupleprint(PyTupleObject *op, FILE *fp, int flags) { int i; fprintf(fp, "("); for (i = 0; i < op->ob_size; i++) { if (i > 0) fprintf(fp, ", "); if (PyObject_Print(op->ob_item[i], fp, 0) != 0) return -1; } if (op->ob_size == 1) fprintf(fp, ","); fprintf(fp, ")"); return 0; } static PyObject * tuplerepr(PyTupleObject *v) { PyObject *s, *comma; int i; s = PyString_FromString("("); comma = PyString_FromString(", "); for (i = 0; i < v->ob_size && s != NULL; i++) { if (i > 0) PyString_Concat(&s, comma); PyString_ConcatAndDel(&s, PyObject_Repr(v->ob_item[i])); } Py_DECREF(comma); if (v->ob_size == 1) PyString_ConcatAndDel(&s, PyString_FromString(",")); PyString_ConcatAndDel(&s, PyString_FromString(")")); return s; } static long tuplehash(PyTupleObject *v) { register long x, y; register int len = v->ob_size; register PyObject **p; x = 0x345678L; p = v->ob_item; while (--len >= 0) { y = PyObject_Hash(*p++); if (y == -1) return -1; x = (1000003*x) ^ y; } x ^= v->ob_size; if (x == -1) x = -2; return x; } static int tuplelength(PyTupleObject *a) { return a->ob_size; } static int tuplecontains(PyTupleObject *a, PyObject *el) { int i, cmp; for (i = 0; i < a->ob_size; ++i) { cmp = PyObject_RichCompareBool(el, PyTuple_GET_ITEM(a, i), Py_EQ); if (cmp > 0) return 1; else if (cmp < 0) return -1; } return 0; } static PyObject * tupleitem(register PyTupleObject *a, register int i) { if (i < 0 || i >= a->ob_size) { PyErr_SetString(PyExc_IndexError, "tuple index out of range"); return NULL; } Py_INCREF(a->ob_item[i]); return a->ob_item[i]; } static PyObject * tupleslice(register PyTupleObject *a, register int ilow, register int ihigh) { register PyTupleObject *np; register int i; if (ilow < 0) ilow = 0; if (ihigh > a->ob_size) ihigh = a->ob_size; if (ihigh < ilow) ihigh = ilow; if (ilow == 0 && ihigh == a->ob_size) { /* XXX can only do this if tuples are immutable! */ Py_INCREF(a); return (PyObject *)a; } np = (PyTupleObject *)PyTuple_New(ihigh - ilow); if (np == NULL) return NULL; for (i = ilow; i < ihigh; i++) { PyObject *v = a->ob_item[i]; Py_INCREF(v); np->ob_item[i - ilow] = v; } return (PyObject *)np; } PyObject * PyTuple_GetSlice(PyObject *op, int i, int j) { if (op == NULL || !PyTuple_Check(op)) { PyErr_BadInternalCall(); return NULL; } return tupleslice((PyTupleObject *)op, i, j); } static PyObject * tupleconcat(register PyTupleObject *a, register PyObject *bb) { register int size; register int i; PyTupleObject *np; if (!PyTuple_Check(bb)) { PyErr_Format(PyExc_TypeError, "can only concatenate tuple (not \"%.200s\") to tuple", bb->ob_type->tp_name); return NULL; } #define b ((PyTupleObject *)bb) size = a->ob_size + b->ob_size; np = (PyTupleObject *) PyTuple_New(size); if (np == NULL) { return NULL; } for (i = 0; i < a->ob_size; i++) { PyObject *v = a->ob_item[i]; Py_INCREF(v); np->ob_item[i] = v; } for (i = 0; i < b->ob_size; i++) { PyObject *v = b->ob_item[i]; Py_INCREF(v); np->ob_item[i + a->ob_size] = v; } return (PyObject *)np; #undef b } static PyObject * tuplerepeat(PyTupleObject *a, int n) { int i, j; int size; PyTupleObject *np; PyObject **p; if (n < 0) n = 0; if (a->ob_size == 0 || n == 1) { /* Since tuples are immutable, we can return a shared copy in this case */ Py_INCREF(a); return (PyObject *)a; } size = a->ob_size * n; if (size/a->ob_size != n) return PyErr_NoMemory(); np = (PyTupleObject *) PyTuple_New(size); if (np == NULL) return NULL; p = np->ob_item; for (i = 0; i < n; i++) { for (j = 0; j < a->ob_size; j++) { *p = a->ob_item[j]; Py_INCREF(*p); p++; } } return (PyObject *) np; } static int tupletraverse(PyTupleObject *o, visitproc visit, void *arg) { int i, err; PyObject *x; for (i = o->ob_size; --i >= 0; ) { x = o->ob_item[i]; if (x != NULL) { err = visit(x, arg); if (err) return err; } } return 0; } static PyObject * tuplerichcompare(PyObject *v, PyObject *w, int op) { PyTupleObject *vt, *wt; int i; int vlen, wlen; if (!PyTuple_Check(v) || !PyTuple_Check(w)) { Py_INCREF(Py_NotImplemented); return Py_NotImplemented; } vt = (PyTupleObject *)v; wt = (PyTupleObject *)w; vlen = vt->ob_size; wlen = wt->ob_size; /* Note: the corresponding code for lists has an "early out" test * here when op is EQ or NE and the lengths differ. That pays there, * but Tim was unable to find any real code where EQ/NE tuple * compares don't have the same length, so testing for it here would * have cost without benefit. */ /* Search for the first index where items are different. * Note that because tuples are immutable, it's safe to reuse * vlen and wlen across the comparison calls. */ for (i = 0; i < vlen && i < wlen; i++) { int k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ); if (k < 0) return NULL; if (!k) break; } if (i >= vlen || i >= wlen) { /* No more items to compare -- compare sizes */ int cmp; PyObject *res; switch (op) { case Py_LT: cmp = vlen < wlen; break; case Py_LE: cmp = vlen <= wlen; break; case Py_EQ: cmp = vlen == wlen; break; case Py_NE: cmp = vlen != wlen; break; case Py_GT: cmp = vlen > wlen; break; case Py_GE: cmp = vlen >= wlen; break; default: return NULL; /* cannot happen */ } if (cmp) res = Py_True; else res = Py_False; Py_INCREF(res); return res; } /* We have an item that differs -- shortcuts for EQ/NE */ if (op == Py_EQ) { Py_INCREF(Py_False); return Py_False; } if (op == Py_NE) { Py_INCREF(Py_True); return Py_True; } /* Compare the final item again using the proper operator */ return PyObject_RichCompare(vt->ob_item[i], wt->ob_item[i], op); } static PySequenceMethods tuple_as_sequence = { (inquiry)tuplelength, /* sq_length */ (binaryfunc)tupleconcat, /* sq_concat */ (intargfunc)tuplerepeat, /* sq_repeat */ (intargfunc)tupleitem, /* sq_item */ (intintargfunc)tupleslice, /* sq_slice */ 0, /* sq_ass_item */ 0, /* sq_ass_slice */ (objobjproc)tuplecontains, /* sq_contains */ }; PyTypeObject PyTuple_Type = { PyObject_HEAD_INIT(&PyType_Type) 0, "tuple", sizeof(PyTupleObject) - sizeof(PyObject *) + PyGC_HEAD_SIZE, sizeof(PyObject *), (destructor)tupledealloc, /* tp_dealloc */ (printfunc)tupleprint, /* tp_print */ 0, /* tp_getattr */ 0, /* tp_setattr */ 0, /* tp_compare */ (reprfunc)tuplerepr, /* tp_repr */ 0, /* tp_as_number */ &tuple_as_sequence, /* tp_as_sequence */ 0, /* tp_as_mapping */ (hashfunc)tuplehash, /* tp_hash */ 0, /* tp_call */ 0, /* tp_str */ 0, /* tp_getattro */ 0, /* tp_setattro */ 0, /* tp_as_buffer */ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_GC, /* tp_flags */ 0, /* tp_doc */ (traverseproc)tupletraverse, /* tp_traverse */ 0, /* tp_clear */ tuplerichcompare, /* tp_richcompare */ }; /* The following function breaks the notion that tuples are immutable: it changes the size of a tuple. We get away with this only if there is only one module referencing the object. You can also think of it as creating a new tuple object and destroying the old one, only more efficiently. In any case, don't use this if the tuple may already be known to some other part of the code. The last_is_sticky is not used and must always be false. */ int _PyTuple_Resize(PyObject **pv, int newsize, int last_is_sticky) { register PyTupleObject *v; register PyTupleObject *sv; int i; int sizediff; v = (PyTupleObject *) *pv; if (v == NULL || !PyTuple_Check(v) || last_is_sticky || (v->ob_size != 0 && v->ob_refcnt != 1)) { *pv = 0; Py_XDECREF(v); PyErr_BadInternalCall(); return -1; } sizediff = newsize - v->ob_size; if (sizediff == 0) return 0; if (v->ob_size == 0) { /* Empty tuples are often shared, so we should never resize them in-place even if we do own the only (current) reference */ Py_DECREF(v); *pv = PyTuple_New(newsize); return 0; } /* XXX UNREF/NEWREF interface should be more symmetrical */ #ifdef Py_REF_DEBUG --_Py_RefTotal; #endif _Py_ForgetReference((PyObject *) v); for (i = newsize; i < v->ob_size; i++) { Py_XDECREF(v->ob_item[i]); v->ob_item[i] = NULL; } PyObject_GC_Fini(v); v = (PyTupleObject *) PyObject_AS_GC(v); sv = (PyTupleObject *) PyObject_REALLOC((char *)v, sizeof(PyTupleObject) + PyGC_HEAD_SIZE + newsize * sizeof(PyObject *)); if (sv == NULL) { *pv = NULL; PyObject_DEL(v); PyErr_NoMemory(); return -1; } sv = (PyTupleObject *) PyObject_FROM_GC(sv); _Py_NewReference((PyObject *) sv); for (i = sv->ob_size; i < newsize; i++) sv->ob_item[i] = NULL; sv->ob_size = newsize; *pv = (PyObject *) sv; PyObject_GC_Init(sv); return 0; } void PyTuple_Fini(void) { #if MAXSAVESIZE > 0 int i; Py_XDECREF(free_tuples[0]); free_tuples[0] = NULL; for (i = 1; i < MAXSAVESIZE; i++) { PyTupleObject *p, *q; p = free_tuples[i]; free_tuples[i] = NULL; while (p) { q = p; p = (PyTupleObject *)(p->ob_item[0]); q = (PyTupleObject *) PyObject_AS_GC(q); PyObject_DEL(q); } } #endif }