The array of small PyLong objects has been statically declared. Here I also statically initialize them. Consequently they are no longer initialized dynamically during runtime init.
I've also moved them under a new sub-struct in _PyRuntimeState, in preparation for static allocation and initialization of other global objects.
https://bugs.python.org/issue45953
When Python is embedded in other applications, it is not easy to determine which version of Python is being used. This change exposes the Python version as part of the API data. Tools like Austin (https://github.com/P403n1x87/austin) can benefit from this data when targeting applications like uWSGI, as the Python version can then be inferred systematically by looking at the exported symbols rather than relying on unreliable pattern matching or other hacks (like remote code execution etc...).
Automerge-Triggered-By: GH:pablogsal
This change is strictly renames and moving code around. It helps in the following ways:
* ensures type-related init functions focus strictly on one of the three aspects (state, objects, types)
* passes in PyInterpreterState * to all those functions, simplifying work on moving types/objects/state to the interpreter
* consistent naming conventions help make what's going on more clear
* keeping API related to a type in the corresponding header file makes it more obvious where to look for it
https://bugs.python.org/issue46008
Exclude the PyUnicode_CHECK_INTERNED() macro from the limited C API,
because it uses the PyASCIIObject structure which is excluded from
the limited C API.
Automerge-Triggered-By: GH:encukou
Previously, basic initialization of PyInterprterState happened in PyInterpreterState_New() (along with allocation and adding the new interpreter to the runtime state). This prevented us from initializing interpreter states that were allocated separately (e.g. statically or in a free list). We've addressed that here by factoring out a separate function just for initialization. We've done the same for PyThreadState. _PyRuntimeState was sorted out when we added it since _PyRuntime is statically allocated. However, here we update the existing init code to line up with the functions for PyInterpreterState and PyThreadState.
https://bugs.python.org/issue46008
PyInterpreterState_Main() is a plain function exposed in the public C-API. For internal usage we can take the more efficient approach in this PR.
https://bugs.python.org/issue46008
This simplifies new_threadstate(). We also rename _PyThreadState_Init() to _PyThreadState_SetCurrent() to reflect what it actually does.
https://bugs.python.org/issue46008
This parallels _PyRuntimeState.interpreters. Doing this helps make it more clear what part of PyInterpreterState relates to its threads.
https://bugs.python.org/issue46008
This falls into the category of keep-allocation-and-initialization separate. It also allows us to use _PyEval_InitState() safely in functions that return void.
https://bugs.python.org/issue46008
* Make generator, coroutine and async gen structs all the same size.
* Store interpreter frame in generator (and coroutine). Reduces the number of allocations neeeded for a generator from two to one.
The getpath.py file is frozen at build time and executed as code over a namespace. It is never imported, nor is it meant to be importable or reusable. However, it should be easier to read, modify, and patch than the previous code.
This commit attempts to preserve every previously tested quirk, but these may be changed in the future to better align platforms.
Rename PyConfig.no_debug_ranges to PyConfig.code_debug_ranges and
invert the value.
Document -X no_debug_ranges and PYTHONNODEBUGRANGES env var in
PyConfig.code_debug_ranges documentation.
* Split exit paths into exceptional and non-exceptional.
* Move exit tracing code to individual bytecodes.
* Wrap all trace entry and exit events in macros to make them clearer and easier to enhance.
* Move return sequence into RETURN_VALUE, YIELD_VALUE and YIELD_FROM. Distinguish between normal trace events and dtrace events.
The following internal macros can not longer be used as l-value:
* asdl_seq_GET()
* asdl_seq_GET_UNTYPED()
* asdl_seq_LEN()
They are modified to use the _Py_RVALUE() macro.
Add a new _Py_RVALUE() macro to prevent using an expression as an
l-value.
Replace a "(void)" cast with the _Py_RVALUE() macro in the following
macros:
* PyCell_SET()
* PyList_SET_ITEM()
* PyTuple_SET_ITEM()
* _PyGCHead_SET_FINALIZED()
* _PyGCHead_SET_NEXT()
* asdl_seq_SET()
* asdl_seq_SET_UNTYPED()
Add also parentheses around macro arguments in PyCell_SET() and
PyTuple_SET_ITEM() macros.
* Make internal APIs that take PyFrameConstructor take a PyFunctionObject instead.
* Add reference to function to frame, borrow references to builtins and globals.
* Add COPY_FREE_VARS instruction to allow specialization of calls to inner functions.
This gains 10% or more in startup time for `python -c pass` on UNIX-ish systems.
The Makefile.pre.in generating code builds on Eric's work for bpo-45020, but the .c file generator is new.
Windows version TBD.
Currently custom modules (the array set on PyImport_FrozenModules) replace all the frozen stdlib modules. That can be problematic and is unlikely to be what the user wants. This change treats the custom frozen modules as additions instead. They take precedence over all other frozen modules except for those needed to bootstrap the import system. If the "code" field of an entry in the custom array is NULL then that frozen module is treated as disabled, which allows a custom entry to disable a frozen stdlib module.
This change allows us to get rid of is_essential_frozen_module() and simplifies the logic for which frozen modules should be ignored.
https://bugs.python.org/issue45395